5 research outputs found

    Covert Wireless Communication with a Poisson Field of Interferers

    Get PDF
    In this paper, we study covert communication in wireless networks consisting of a transmitter, Alice, an intended receiver, Bob, a warden, Willie, and a Poisson field of interferers. Bob and Willie are subject to uncertain shot noise due to the ambient signals from interferers in the network. With the aid of stochastic geometry, we analyze the throughput of the covert communication between Alice and Bob subject to given requirements on the covertness against Willie and the reliability of decoding at Bob. We consider non-fading and fading channels. We analytically obtain interesting findings on the impacts of the density and the transmit power of the concurrent interferers on the covert throughput. That is, the density and the transmit power of the interferers have no impact on the covert throughput as long as the network stays in the interference-limited regime, for both the non-fading and the fading cases. When the interference is sufficiently small and comparable with the receiver noise, the covert throughput increases as the density or the transmit power of the concurrent interferers increases

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Wireless Network Intrinsic Secrecy

    Get PDF
    Wireless secrecy is essential for communication confidentiality, health privacy, public safety, information superiority, and economic advantage in the modern information society. Contemporary security systems are based on cryptographic primitives and can be complemented by techniques that exploit the intrinsic properties of a wireless environment. This paper develops a foundation for design and analysis of wireless networks with secrecy provided by intrinsic properties such as node spatial distribution, wireless propagation medium, and aggregate network interference. We further propose strategies that mitigate eavesdropping capabilities, and we quantify their benefits in terms of network secrecy metrics. This research provides insights into the essence of wireless network intrinsic secrecy and offers a new perspective on the role of network interference in communication confidentiality.Marie Curie International Fellowship (Grant 2010-272923)Seventh Framework Programme (European Commission) (Project CONCERTO Grant 288502)Copernicus FellowshipNational Science Foundation (U.S.) (Grant CCF-1116501)United States. Office of Naval Research (Grant N00014-11-1-0397)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologie

    Energy Saving Mechanisms in the Security of the Internet of Things

    Get PDF
    Energy consumption is one of the priorities of security on the Internet of Things. It is not easy to find the best solutions that will reduce energy consumption, while ensuring that the security requirements are met. Many of the issues that have been presented so far have covered the basics of security, such as the basic principles of encryption, extension environments, target applications, and so on.This paper examines one of the most effective energy-efficiency mechanisms for providing Internet-based security services. By studying techniques that enable the development of advanced energy-efficient security solutions, we take a closer look at the ideas that have already been introduced in this area. In this study, not only the security issues, but also the energy impacts on solutions have been considered. Initially, the amount of energy related to security services is introduced. Then a classification is proposed for energy efficient mechanisms on the Internet of Things. Finally, the main drivers of the impact of energy saving techniques are analyzed for security solutions

    Intrinsic Information of Wideband Channels

    No full text
    corecore