30 research outputs found

    Intrinsic Images by Clustering

    Get PDF
    International audienceDecomposing an input image into its intrinsic shading and reflectance components is a long-standing ill-posed problem. We present a novel algorithm that requires no user strokes and works on a single image. Based on simple assumptions about its reflectance and luminance, we first find clusters of similar reflectance in the image, and build a linear system describing the connections and relations between them. Our assumptions are less restrictive than widely-adopted Retinex-based approaches, and can be further relaxed in conflicting situations. The resulting system is robust even in the presence of areas where our assumptions do not hold. We show a wide variety of results, including natural images, objects from the MIT dataset and texture images, along with several applications, proving the versatility of our method

    Practical intrinsic image decomposition

    Get PDF
    El conocimiento previo de las luces y los materiales que componen una escena es el primer paso para su total captura y reconstrucci贸n. Sin embargo, obtener esta informaci贸n a partir de una sencilla fotograf铆a no es una tarea f谩cil. Cuando capturamos una imagen del mundo real, toda la informaci贸n de color, geometr铆a e iluminaci贸n se integra en el sensor de nuestra c谩mara dando como resultado un conjunto de p铆xeles RGB. Estos valores carecen de toda la informaci贸n geom茅trica de la imagen que nos permitir铆a realizar tareas como reiluminaci贸n o cambio de materiales. El objetivo de la presente Tesis Fin de M谩ster ha sido estudiar y resolver este problema que com煤nmente se conoce como descomposici贸n de una imagen en sus componentes intr铆nsecas, y que consiste en obtener, para una 煤nica imagen, la parte correspondiente a iluminaci贸n y la que corresponde con reflectancia (textura, color). Actualmente, la mayor铆a de los m茅todos que resuelven este problema requieren excesiva interacci贸n del usuario. De este modo, un usuario inexperto o la ausencia de informaci贸n pueden dar lugar a malas descomposiciones. En este trabajo se ha tratado de obtener una soluci贸n eficiente, con resultados de alta calidad y robustos, partiendo de una 煤nica imagen de la escena a descomponer. En particular, se han estudiado dos soluciones distintas. La primera soluci贸n propuesta, denominada Intrinsic Images by Clustering, ha sido publicada en la revista Computer Graphics Forum cuyo JCR 2011 index es 35/83 (Q2) en la categor铆a de Computer Science, Software Engineering, con un 铆ndice de impacto de 5 a帽os de 1.634. El m茅todo propuesto requiere una 煤nica imagen para funcionar y se basa en la detecci贸n en la imagen de zonas de la misma reflectancia. Con esta informaci贸n se construye un sistema de ecuaciones lineales donde se describen las conexiones y las relaciones entre ellas. Este algoritmo constituye el actual estado del arte en m茅todos de separaci贸n en im谩genes intr铆nsecas a partir de una sola imagen de entrada. La segunda soluci贸n planteada ha sido desarrollada en colaboraci贸n con la empresa Adobe Systems Inc. bajo la supervisi贸n del Dr. Sunil Hadap. El nuevo m茅todo se basa en la observaci贸n de que los gradientes de reflectancia de la imagen siguen una direcci贸n invariante y relativa a la fuente de luz. De este modo, estimando la direcci贸n invariante a partir de la informaci贸n de color de la imagen, podr铆amos ser capaces de desambiguar los cambios debidos a reflectancia y los cambios debidos sombreado. Los resultados obtenidos de este primer estudio del algoritmo bajo un entorno controlado concluyen que el algoritmo tiene mucho potencial, y se abre una interesante v铆a para futuras investigaciones mediante la combinaci贸n con otras t茅cnicas complementarias que aporten nueva informaci贸n de la escena. Descomponer una imagen en sus componentes intr铆nsecas es todav铆a un problema abierto con m煤ltiples aplicaciones potenciales. Con esta investigaci贸n se ha contribuido con un paso m谩s hacia la soluci贸n global y 贸ptima. Adem谩s, se concluye que futuras investigaciones deber铆an enfocarse a obtener un algoritmo que requiera la menor interacci贸n posible, ya que debido a la complejidad del problema es matem谩ticamente imposible obtener una soluci贸n 煤nica y sin interacci贸n para todos los escenarios

    CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

    Full text link
    Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present \ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging \ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering' published in ECCV, 201

    Reflectance Adaptive Filtering Improves Intrinsic Image Estimation

    Full text link
    Separating an image into reflectance and shading layers poses a challenge for learning approaches because no large corpus of precise and realistic ground truth decompositions exists. The Intrinsic Images in the Wild~(IIW) dataset provides a sparse set of relative human reflectance judgments, which serves as a standard benchmark for intrinsic images. A number of methods use IIW to learn statistical dependencies between the images and their reflectance layer. Although learning plays an important role for high performance, we show that a standard signal processing technique achieves performance on par with current state-of-the-art. We propose a loss function for CNN learning of dense reflectance predictions. Our results show a simple pixel-wise decision, without any context or prior knowledge, is sufficient to provide a strong baseline on IIW. This sets a competitive baseline which only two other approaches surpass. We then develop a joint bilateral filtering method that implements strong prior knowledge about reflectance constancy. This filtering operation can be applied to any intrinsic image algorithm and we improve several previous results achieving a new state-of-the-art on IIW. Our findings suggest that the effect of learning-based approaches may have been over-estimated so far. Explicit prior knowledge is still at least as important to obtain high performance in intrinsic image decompositions.Comment: CVPR 201

    Unsupervised Deep Single-Image Intrinsic Decomposition using Illumination-Varying Image Sequences

    Full text link
    Machine learning based Single Image Intrinsic Decomposition (SIID) methods decompose a captured scene into its albedo and shading images by using the knowledge of a large set of known and realistic ground truth decompositions. Collecting and annotating such a dataset is an approach that cannot scale to sufficient variety and realism. We free ourselves from this limitation by training on unannotated images. Our method leverages the observation that two images of the same scene but with different lighting provide useful information on their intrinsic properties: by definition, albedo is invariant to lighting conditions, and cross-combining the estimated albedo of a first image with the estimated shading of a second one should lead back to the second one's input image. We transcribe this relationship into a siamese training scheme for a deep convolutional neural network that decomposes a single image into albedo and shading. The siamese setting allows us to introduce a new loss function including such cross-combinations, and to train solely on (time-lapse) images, discarding the need for any ground truth annotations. As a result, our method has the good properties of i) taking advantage of the time-varying information of image sequences in the (pre-computed) training step, ii) not requiring ground truth data to train on, and iii) being able to decompose single images of unseen scenes at runtime. To demonstrate and evaluate our work, we additionally propose a new rendered dataset containing illumination-varying scenes and a set of quantitative metrics to evaluate SIID algorithms. Despite its unsupervised nature, our results compete with state of the art methods, including supervised and non data-driven methods.Comment: To appear in Pacific Graphics 201
    corecore