1,670 research outputs found

    Mapping hybrid functional-structural connectivity traits in the human connectome

    Get PDF
    One of the crucial questions in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between these structural and functional layers is an open problem that involves novel conceptual ways of tackling this question. We here propose an extension of the Connectivity Independent Component Analysis (connICA) framework, to identify joint structural-functional connectivity traits. Here, we extend connICA to integrate structural and functional connectomes by merging them into common hybrid connectivity patterns that represent the connectivity fingerprint of a subject. We test this extended approach on the 100 unrelated subjects from the Human Connectome Project. The method is able to extract main independent structural-functional connectivity patterns from the entire cohort that are sensitive to the realization of different tasks. The hybrid connICA extracted two main task-sensitive hybrid traits. The first, encompassing the within and between connections of dorsal attentional and visual areas, as well as fronto-parietal circuits. The second, mainly encompassing the connectivity between visual, attentional, DMN and subcortical networks. Overall, these findings confirms the potential ofthe hybrid connICA for the compression of structural/functional connectomes into integrated patterns from a set of individual brain networks.Comment: article: 34 pages, 4 figures; supplementary material: 5 pages, 5 figure

    Fluctuations between high- and low-modularity topology in time-resolved functional connectivity

    Full text link
    Modularity is an important topological attribute for functional brain networks. Recent studies have reported that modularity of functional networks varies not only across individuals being related to demographics and cognitive performance, but also within individuals co-occurring with fluctuations in network properties of functional connectivity, estimated over short time intervals. However, characteristics of these time-resolved functional networks during periods of high and low modularity have remained largely unexplored. In this study we investigate spatiotemporal properties of time-resolved networks in the high and low modularity periods during rest, with a particular focus on their spatial connectivity patterns, temporal homogeneity and test-retest reliability. We show that spatial connectivity patterns of time-resolved networks in the high and low modularity periods are represented by increased and decreased dissociation of the default mode network module from task-positive network modules, respectively. We also find that the instances of time-resolved functional connectivity sampled from within the high (low) modularity period are relatively homogeneous (heterogeneous) over time, indicating that during the low modularity period the default mode network interacts with other networks in a variable manner. We confirmed that the occurrence of the high and low modularity periods varies across individuals with moderate inter-session test-retest reliability and that it is correlated with previously-reported individual differences in the modularity of functional connectivity estimated over longer timescales. Our findings illustrate how time-resolved functional networks are spatiotemporally organized during periods of high and low modularity, allowing one to trace individual differences in long-timescale modularity to the variable occurrence of network configurations at shorter timescales.Comment: Reorganized the paper; to appear in NeuroImage; arXiv abstract shortened to fit within character limit

    An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data

    Get PDF
    AbstractLarge amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-dimensional information for computational neuroscience applications standardized data fusion and efficient reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used for computational brain modeling to constrain models with individual measurable features of the brain, such as done with The Virtual Brain (TVB). TVB is a simulation platform that uses empirical structural and functional data to build full brain models of individual humans. For convenient model construction, we developed a processing pipeline for structural, functional and diffusion-weighted magnetic resonance imaging (MRI) and optionally electroencephalography (EEG) data. The pipeline combines several state-of-the-art neuroinformatics tools to generate subject-specific cortical and subcortical parcellations, surface-tessellations, structural and functional connectomes, lead field matrices, electrical source activity estimates and region-wise aggregated blood oxygen level dependent (BOLD) functional MRI (fMRI) time-series. The output files of the pipeline can be directly uploaded to TVB to create and simulate individualized large-scale network models that incorporate intra- and intercortical interaction on the basis of cortical surface triangulations and white matter tractograpy. We detail the pitfalls of the individual processing streams and discuss ways of validation. With the pipeline we also introduce novel ways of estimating the transmission strengths of fiber tracts in whole-brain structural connectivity (SC) networks and compare the outcomes of different tractography or parcellation approaches. We tested the functionality of the pipeline on 50 multimodal data sets. In order to quantify the robustness of the connectome extraction part of the pipeline we computed several metrics that quantify its rescan reliability and compared them to other tractography approaches. Together with the pipeline we present several principles to guide future efforts to standardize brain model construction. The code of the pipeline and the fully processed data sets are made available to the public via The Virtual Brain website (thevirtualbrain.org) and via github (https://github.com/BrainModes/TVB-empirical-data-pipeline). Furthermore, the pipeline can be directly used with High Performance Computing (HPC) resources on the Neuroscience Gateway Portal (http://www.nsgportal.org) through a convenient web-interface

    Investigating microstructural variation in the human hippocampus using non-negative matrix factorization

    No full text
    In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis. Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally, we related individual subject weightings to demographic and behavioural measures using a partial least squares analysis. Through this approach we identified interpretable relationships between hippocampus microstructure and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics for data-driven component analyses

    Improving the reliability of network metrics in structural brain networks by integrating different network weighting strategies into a single graph

    Get PDF
    Structural brain networks estimated from diffusion MRI (dMRI) via tractography have been widely studied in healthy controls and in patients with neurological and psychiatric diseases. However, few studies have addressed the reliability of derived network metrics both node-specific and network-wide. Different network weighting strategies (NWS) can be adopted to weight the strength of connection between two nodes yielding structural brain networks that are almost full-weighted. Here, we scanned 5 healthy participants 5 times each, using a diffusion-weighted MRI protocol and computed edges between 90 regions of interest (ROIs) from the AAL template. The edges were weighted according to nine different methods.We propose a linear combination of these nine NWS into a single graph using an appropriate diffusion distance metric. We refer to the resulting weighted graph as an integrated weighted structural brain network (ISWBN). Additionally, we consider a topological filtering scheme that maximizes the information flow in the brain network under the constraint of the overall cost of the surviving connections. We compared each of the nine NWS and the ISWBN based on the improvement of : a) intra-class correlation coefficient (ICC) of well-known network metrics, both node-wise and per network level; and b) the recognition accuracy of each subject over the rest of the cohort, as an attempt to access the uniqueness of the structural brain network for each subject; after first applying our proposed topological filtering scheme. Based on a threshold that the network-level ICC should be > 0.90, our findings revealed six out of nine NWS lead to unreliable results at the network-level, while all nine NWS were unreliable at the node-level. In comparison, our proposed ISWBN performed as well as the best-performing individual NWS at the network-level, and the ICC was higher compared to all individual NWS at the node-level. Importantly, both network- and node-wise ICCs of network metrics derived from the topologically filtered ISBWN(ISWBNTF), were further improved compared to non-filtered ISWBN. Finally, in the recognition accuracy tests, we assigned each single ISWBNTF to the correct subject. Overall, these findings suggest that the proposed methodology results in improved characterisation of genuine between-subject differences in connectivit

    Measuring cortical connectivity in Alzheimer's disease as a brain neural network pathology: Toward clinical applications

    Get PDF
    Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163

    Dictionary Learning and Sparse Coding-based Denoising for High-Resolution Task Functional Connectivity MRI Analysis

    Full text link
    We propose a novel denoising framework for task functional Magnetic Resonance Imaging (tfMRI) data to delineate the high-resolution spatial pattern of the brain functional connectivity via dictionary learning and sparse coding (DLSC). In order to address the limitations of the unsupervised DLSC-based fMRI studies, we utilize the prior knowledge of task paradigm in the learning step to train a data-driven dictionary and to model the sparse representation. We apply the proposed DLSC-based method to Human Connectome Project (HCP) motor tfMRI dataset. Studies on the functional connectivity of cerebrocerebellar circuits in somatomotor networks show that the DLSC-based denoising framework can significantly improve the prominent connectivity patterns, in comparison to the temporal non-local means (tNLM)-based denoising method as well as the case without denoising, which is consistent and neuroscientifically meaningful within motor area. The promising results show that the proposed method can provide an important foundation for the high-resolution functional connectivity analysis, and provide a better approach for fMRI preprocessing.Comment: 8 pages, 3 figures, MLMI201
    corecore