281,445 research outputs found

    Liver and intestine

    Get PDF

    Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine

    Get PDF
    Background: The upper gastrointestinal tract plays a prominent role in human physiology as the primary site for enzymatic digestion and nutrient absorption, immune sampling, and drug uptake. Alterations to the small intestine microbiome have been implicated in various human diseases, such as non-alcoholic steatohepatitis and inflammatory bowel conditions. Yet, the physiological and functional roles of the small intestine microbiota in humans remain poorly characterized because of the complexities associated with its sampling. Rodent models are used extensively in microbiome research and enable the spatial, temporal, compositional, and functional interrogation of the gastrointestinal microbiota and its effects on the host physiology and disease phenotype. Classical, culture-based studies have documented that fecal microbial self-reinoculation (via coprophagy) affects the composition and abundance of microbes in the murine proximal gastrointestinal tract. This pervasive self-reinoculation behavior could be a particularly relevant study factor when investigating small intestine microbiota. Modern microbiome studies either do not take self-reinoculation into account, or assume that approaches such as single housing mice or housing on wire mesh floors eliminate it. These assumptions have not been rigorously tested with modern tools. Here, we used quantitative 16S rRNA gene amplicon sequencing, quantitative microbial functional gene content inference, and metabolomic analyses of bile acids to evaluate the effects of self-reinoculation on microbial loads, composition, and function in the murine upper gastrointestinal tract. Results: In coprophagic mice, continuous self-exposure to the fecal flora had substantial quantitative and qualitative effects on the upper gastrointestinal microbiome. These differences in microbial abundance and community composition were associated with an altered profile of the small intestine bile acid pool, and, importantly, could not be inferred from analyzing large intestine or stool samples. Overall, the patterns observed in the small intestine of non-coprophagic mice (reduced total microbial load, low abundance of anaerobic microbiota, and bile acids predominantly in the conjugated form) resemble those typically seen in the human small intestine. Conclusions: Future studies need to take self-reinoculation into account when using mouse models to evaluate gastrointestinal microbial colonization and function in relation to xenobiotic transformation and pharmacokinetics or in the context of physiological states and diseases linked to small intestine microbiome and to small intestine dysbiosis

    Removal of luminal content protects the small intestine during hemorrhagic shock but is not sufficient to prevent lung injury.

    Get PDF
    The small intestine plays a key role in the pathogenesis of multiple organ failure following circulatory shock. Current results show that reduced perfusion of the small intestine compromises the mucosal epithelial barrier, and the intestinal contents (including pancreatic digestive enzymes and partially digested food) can enter the intestinal wall and transport through the circulation or mesenteric lymph to other organs such as the lung. The extent to which the luminal contents of the small intestine mediate tissue damage in the intestine and lung is poorly understood in shock. Therefore, rats were assigned to three groups: No-hemorrhagic shock (HS) control and HS with or without a flushed intestine. HS was induced by reducing the mean arterial pressure (30 mmHg; 90 min) followed by return of shed blood and observation (3 h). The small intestine and lung were analyzed for hemorrhage, neutrophil accumulation, and cellular membrane protein degradation. After HS, animals with luminal contents had increased neutrophil accumulation, bleeding, and destruction of E-cadherin in the intestine. Serine protease activity was elevated in mesenteric lymph fluid collected from a separate group of animals subjected to intestinal ischemia/reperfusion. Serine protease activity was elevated in the plasma after HS but was detected in lungs only in animals with nonflushed lumens. Despite removal of the luminal contents, lung injury occurred in both groups as determined by elevated neutrophil accumulation, permeability, and lung protein destruction. In conclusion, luminal contents significantly increase intestinal damage during experimental HS, suggesting transport of luminal contents across the intestinal wall should be minimized

    Regulation of bicarbonate secretion in marine fish intestine by the calcium-sensing receptor

    Get PDF
    In marine fish, high epithelial intestinal HCO3- secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO3- secretion in the intestine of the sea bream (Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO3- secretion in vitro using the anterior intestine. HCO3- secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO3- secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.European Social Funds through the Portuguese National Science Foundation (FCT) [SFRH/BD/113363/2015, PTDC/MAR-BIO/3034/2014]; Portuguese Foundation for Science and Technology (FCT) [UID/Multi/04326/2013]; Ministry of Science and Higher Educatio

    Intestinal transplantation in composite visceral grafts or alone

    Get PDF
    Under FK 506-based immunosuppression, the entire cadaver small bowel except for a few proximal and distal centimeters was translated to 17 randomly matched patients, of whom two had antigraft cytotoxic antibodies (positive cross-match). Eight patients received the intestine only, eight had intestine in continuity with the liver, and one received a full multivisceral graft that included the liver, stomach, and pancreas. One liver-intestine recipient died after an intestinal anastomotic leak, sepsis, and graft- versus-host disease. The other 16 patients are alive after 1 to 23 months, in one case after chronic rejection, graft removal, and retransplantation. Twelve of the patients have been liberated from total parenteral nutrition, including all whose transplantation was 2 months or longer ago. The grafts have supported good nutrition, and in children, have allowed growth and weight gain. Management of these patients has been difficult and often complicated, but the end result has been satisfactory in most cases, justifying further clinical trials. The convalescence of the eight patients receiving intestine only has been faster and more trouble free than after liver-intestine or multivisceral transplantation, with no greater difficulty in the control of rejection

    Intestinal transplantation in composite visceral grafts or alone

    Get PDF
    Under FK 506-based immunosuppression, the entire cadaver small bowel except for a few proximal and distal centimeters was translated to 17 randomly matched patients, of whom two had antigraft cytotoxic antibodies (positive cross-match). Eight patients received the intestine only, eight had intestine in continuity with the liver, and one received a full multivisceral graft that included the liver, stomach, and pancreas. One liver-intestine recipient died after an intestinal anastomotic leak, sepsis, and graft- versus-host disease. The other 16 patients are alive after 1 to 23 months, in one case after chronic rejection, graft removal, and retransplantation. Twelve of the patients have been liberated from total parenteral nutrition, including all whose transplantation was 2 months or longer ago. The grafts have supported good nutrition, and in children, have allowed growth and weight gain. Management of these patients has been difficult and often complicated, but the end result has been satisfactory in most cases, justifying further clinical trials. The convalescence of the eight patients receiving intestine only has been faster and more trouble free than after liver-intestine or multivisceral transplantation, with no greater difficulty in the control of rejection

    Absorption of food in the black-jaw tilapia, Sarotherodon melanotheron (Ruppell) from a small tropical man-made lake in Ibadan, Nigeria

    Get PDF
    The carbohydrate, protein and lipid contents of the food ingested and their absorption in the intestine of Sarotherodon melanotheron inhabiting Awba lake in Ibadan, Nigeria, were investigated. Total carbohydrates of the ingested food ranged from 39.33 to 55.38% (mean = 48.70% while total protein and total lipid ranged from 10.10 to 17.13% (mean = 12.91%) and 7.79 to 8.96% (mean = 8.28%) dry weight, respectively. Calculated total percentages absorbed were 54.86-62.01 (mean 58.07) carbohydrates 47.33-54.06 (mean = 50.43) protein and 43.27-52.23% (mean 46.56) lipid. Absorption of protein and carbohydrate occurred mostly in the fore-gut (the first one-third of the intestine), while lipid was mostly absorbed in the mid-gut (the second one-third of the intestine). Dietary carbohydrate, protein and lipid contents of the food as well as the absorptive capacity of the intestine for these components of the food varied with size of fis

    Effect of ischemia on the canine large bowel: A comparison with the small intestine

    Get PDF
    Mucosal injury caused by ischemia and reperfusion has been well documented with the small intestine, but little is known about the colon. In the present study, the effect of warm and cold ischemia on the canine colon was studied and compared to that on the small intestine. After in situ flushing, the small intestine and the colon from six beagle dogs were removed and stored for 0.5, 1.5, and 3 hr at 37°C (warm ischemia) or for 1, 6, 12, 24, 36, and 48 hr at 4°C (cold ischemia). Electrophysiology, permeability, biochemistry, and histopathology of the specimens at each ischemic period and after reperfusion in the Ussing chamber were determined. Warm and cold ischemia induced duration-dependent suppression of electrophysiology in both organs, but the colonic mucosa retained higher activity of absorptive enterocytes and cryptic cells than the small intestine. Only the colon showed increased permeability of FITC-conjugated Dextran from the mucosal surface to the submucosal layer after prolonged ischemia. Changes in adenine nucleotides and purine catabolites were not markedly different between the organs. Histopathologic abnormalities during ischemia and after reperfusion were more serious with the small intestine than with the colon. Compared to warm ischemia, hypothermia lessened or delayed these morphofunctional derangements in both organs, which became universally worsened after reperfusion. Colonic mucosa receives morphofunctional derangements from ischemia and reperfusion, but the severity of the damage was much less severe in the colon than in the small intestine

    The use of the Ussing chamber system to investigate iron absorption by the duodenum, jejunum and ileum in the mouse : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Physiology at Massey University, Palmerston North, New Zealand

    Get PDF
    Iron deficiency anaemia is found in approximately 30% of the worlds population and is particularly prevalent in developing countries. The majority of these deficiencies are due to insufficient absorption of iron from the diet. Iron is absorbed primarily by the proximal small intestine, however, there is evidence for a gradient of absorption along the full length of the small intestine. In 1951 Ussing and Zerahn developed a bicameral method for studying iron transport by in vitro epithelia. This method has been used previously to investigate iron transport mechanisms in the proximal small intestine. In the present study Ussing chambers were used to investigate iron absorption by the full length of the mouse small intestine. Consistently high levels of iron were removed from the mucosal compartment by all regions of the small intestine. This iron removal was due to the physiological actions of the tissue and was not caused by iron adhering to the interior of the Ussing chamber apparatus. There was no change in iron uptake when large intestine or caecum was used in place of small intestine. Ferrous gluconate was chosen as the reference test chemical as it is a readily bioavailable form of iron which has been used previously to investigate iron absorption with the Ussing chamber model. There was a consistently high level of iron uptake when 27.9 mg/L or 9.3 mg/L was added to the mucosal compartment, with no significant differences between results for either concentration. When 9.15 mg/L manganese sulphate was combined with 9.3 mg/L ferrous gluconate in the mucosal compartment, iron removal was significantly lower in the proximal than the mid small intestine. This was presumably due to competition between the iron and the manganese for transport by the DCT1 protein. When 200 mg/L calcium chloride and 9.3 mg/L ferrous gluconate were added to the mucosal compartment, there was no significant difference to results compared to ferrous gluconate alone. The addition of glucose to the intestinal lumen has been shown previously to increase the passive transport of solutes across the intestinal mucosa. However, in the present experiments when glucose was added to the mucosal Ringer's solution in place of mannitol there was a significant decrease in iron removed from the mucosal compartment by all intestinal regions. There was evidence that the gluconate portion of ferrous gluconate increased iron absorption in the distal small intestine. This was supported by a significant decrease in iron uptake by the distal small intestine when ferrous sulphate was used in place of ferrous gluconate. Ferric chloride was unsuitable for use in this system as it precipitated out of the Ringer's solution. Histological examination of jejunal samples after a typical Ussing chamber experiment found there was no damage to the tissue and the epithelial layer remained intact. There were significant levels of iron found in both the intestinal tissue and secreted mucus for all intestinal segments. The binding of iron to secreted mucus appears to involve a significant proportion of iron and should be measured in all future Ussing chamber studies

    Factors influencing the development and carbohydrate metabolism of Echinococcus granulosus in dogs

    Get PDF
    Echinococcus granulosus adult worms, 35 days postinfection, were measured for dispersion in the intestines of 10 dogs, a range of morphological characters, and the excreted end products of carbohydrate catabolism following 4 hr incubation in vitro. Most worms were found in the proximal sections of the small intestine, but the pattern of dispersion differed between dogs. Worm development varied both between dogs and between different regions of the small intestine of individual dogs. Overall there was a high level of variability with no simple patterns. Worm metabolism was related to worm development and, also independently, to local population density within the intestine. Larger, more mature worms produced less lactate and, at higher densities. worms tended to produce more acetate and succinate (pathways with a higher energy yield than lactate) and less ethanol. Thus, both more developed worms and high population density are associated with a shift from cytosolic to mitochondrial metabolism. The variation between worm populations along the small intestine along with the observed variation between worm populations from sibling dogs infected with genetically identical parasites suggests that the local host environment has a significant effect on parasite development
    corecore