7 research outputs found

    Multiattribute Group Decision Making with Unknown Decision Expert Weights Information in the Framework of Interval Intuitionistic Trapezoidal Fuzzy Numbers

    Get PDF
    The aim of this paper is to investigate an approach to multiattribute group decision making with interval intuitionistic trapezoidal fuzzy numbers, in which the decision expert weights are unknown. First, we introduce a distance measure between two interval intuitionistic trapezoidal fuzzy matrixes, and based on the distance between individual matrix and extreme matrix, as well as the average matrix, we obtain the decision expert weights. Second, we utilize the interval intuitionistic trapezoidal fuzzy weighted geometric (IITFWG) operator and the interval intuitionistic trapezoidal fuzzy ordered weighted geometric (IITFOWG) operator to aggregate all individual interval intuitionistic trapezoidal fuzzy decision matrices into a collective interval intuitionistic trapezoidal fuzzy decision matrix and then derive the group overall evaluation values of the given alternatives. Finally, an illustrative example of emergency alternatives selection is given to demonstrate the effectiveness and superiority of the proposed method

    City Sustainable Development Evaluation Based on Hesitant Multiplicative Fuzzy Information

    Get PDF
    Sustainable development evaluation is the basis of city sustainable development research, and effective evaluation is the foundation for guiding the formulation and implementation of sustainable development strategy. In this paper, we provided a new city sustainable development evaluation method called hesitant multiplicative fuzzy TODIM (HMF-TODIM). The main advantage of this method is that it can deal with the subjective preference information of the decision-makers. The comparison study of existing methods and HMF-TODIM is also carried out. Additionally, real case analysis is presented to show the validity and superiority of the proposed method. Research results in this paper can provide useful information for the construction of sustainable cities

    Interval-Valued Intuitionistic Fuzzy Einstein Geometric Choquet Integral Operator and Its Application to Multiattribute Group Decision-Making

    Get PDF
    With respect to the multiattribute decision-making (MADM) problem in which the attributes have interdependent or interactive phenomena under the interval-valued intuitionistic fuzzy environment, we propose a group decision-making approach based on the interval-valued intuitionistic fuzzy Einstein geometric Choquet integral operator (IVIFEGC). Firstly, the Einstein operational laws and some basic principle on interval-valued intuitionistic fuzzy sets are introduced. Then, the IVIFEGC is developed and some desirable properties of the operator are studied. Further, an approach to multiattribute group decision-making with interval-valued intuitionistic fuzzy information is developed, where the attributes have interdependent phenomena. Finally, an illustrative example is used to illustrate the developed approach

    Uncertain prioritized operators and their application to multiple attribute group decision making

    Get PDF
    In this paper, we investigate the uncertain multiple attribute group decision making (MAGDM) problems in which the attributes and experts are in different priority level. Motivated by the idea of prioritized aggregation operators (Yager 2008), we develop some prioritized aggregation operators for aggregating uncertain information, and then apply them to develop some models for uncertain multiple attribute group decision making (MAGDM) problems in which the attributes and experts are in different priority level. Finally, a practical example about talent introduction is given to verify the developed approach and to demonstrate its practicality and effectiveness

    A new decision model for cross-docking center location in logistics networks under interval-valued intuitionistic fuzzy uncertainty

    Get PDF
    Cross-dock has been a novel logistic approach to effectively consolidate and distribute multiple products in logistics networks. Location selection of cross-docking centers is a decision problem under different conflicting criteria. The decision has a vital part in the strategic design of distribution networks in logistics management. Conventional methods for the location selection of cross-docking centers are insufficient for handling uncertainties in Decision-Makers (DMs) or experts’ opinions. This study presents a modern Multi-Criteria Group Decision-Making (MCGDM) model, which applies the concept of compromise solution under uncertainty. To address uncertainty, Interval-Valued Intuitionistic Fuzzy (IVIF) sets are used. In this paper, first an IVIF-weighted arithmetic averaging (IVIF-WAA) operator is used in order to aggregate all IVIF-decision matrices, which were made by a team of the DMs into final IVIF-decision matrix. Then, a new Collective Index (CI) is developed that simultaneously regards distances of cross-docking centers as candidates from the IVIF-ideal points. Finally, the feasibility and practicability of proposed MCGDM model is illustrated with an application example on location choices of cross-docking centers to the logistics network design

    The Interval-Valued Intuitionistic Fuzzy MULTIMOORA Method for Group Decision Making in Engineering

    Get PDF
    Multiple criteria decision making methods have received different extensions under the uncertain environment in recent years. The aim of the current research is to extend the application of the MULTIMOORA method (Multiobjective Optimization by Ratio Analysis plus Full Multiplicative Form) for group decision making in the uncertain environment. Taking into account the advantages of IVIFS (interval-valued intuitionistic fuzzy sets) in handling the problem of uncertainty, the development of the interval-valued intuitionistic fuzzy MULTIMOORA (IVIF-MULTIMOORA) method for group decision making is considered in the paper. Two numerical examples of real-world civil engineering problems are presented, and ranking of the alternatives based on the suggested method is described. The results are then compared to the rankings yielded by some other methods of decision making with IVIF information. The comparison has shown the conformity of the proposed IVIF-MULTIMOORA method with other approaches. The proposed algorithm is favorable because of the abilities of IVIFS to be used for imagination of uncertainty and the MULTIMOORA method to consider three different viewpoints in analyzing engineering decision alternatives

    A linguistic Neutrosophic Multi-Criteria Group Decision-Making Method to University Human Resource Management

    Get PDF
    Competition among different universities depends largely on the competition for talent. Talent evaluation and selection is one of the main activities in human resource management (HRM) which is critical for university development. Firstly, linguistic neutrosophic sets (LNSs) are introduced to better express multiple uncertain information during the evaluation procedure. We further merge the power averaging operator with LNSs for information aggregation and propose a LN-power weighted averaging (LNPWA) operator and a LN-power weighted geometric (LNPWG) operator. Then, an extended technique for order preference by similarity to ideal solution (TOPSIS) method is developed to solve a case of university HRM evaluation problem. The main contribution and novelty of the proposed method rely on that it allows the information provided by different decision makers (DMs) to support and reinforce each other which is more consistent with the actual situation of university HRM evaluation. In addition, its effectiveness and advantages over existing methods are verified through sensitivity and comparative analysis. The results show that the proposal is capable in the domain of university HRM evaluation and may contribute to the talent introduction in universities
    corecore