8 research outputs found

    Z-Numbers-Based Approach to Hotel Service Quality Assessment

    Get PDF
    In this study, we are analyzing the possibility of using Z-numbers for measuring the service quality and decision-making for quality improvement in the hotel industry. Techniques used for these purposes are based on consumer evalu- ations - expectations and perceptions. As a rule, these evaluations are expressed in crisp numbers (Likert scale) or fuzzy estimates. However, descriptions of the respondent opinions based on crisp or fuzzy numbers formalism not in all cases are relevant. The existing methods do not take into account the degree of con- fidence of respondents in their assessments. A fuzzy approach better describes the uncertainties associated with human perceptions and expectations. Linguis- tic values are more acceptable than crisp numbers. To consider the subjective natures of both service quality estimates and confidence degree in them, the two- component Z-numbers Z = (A, B) were used. Z-numbers express more adequately the opinion of consumers. The proposed and computationally efficient approach (Z-SERVQUAL, Z-IPA) allows to determine the quality of services and iden- tify the factors that required improvement and the areas for further development. The suggested method was applied to evaluate the service quality in small and medium-sized hotels in Turkey and Azerbaijan, illustrated by the example

    Technology 2002: the Third National Technology Transfer Conference and Exposition, Volume 1

    Get PDF
    The proceedings from the conference are presented. The topics covered include the following: computer technology, advanced manufacturing, materials science, biotechnology, and electronics

    A New Design Method Framework for Open Origami Design Problems

    Get PDF
    With the development of computer science and manufacturing techniques, modern origami is no longer just used for making artistic shapes as its traditional counterpart was many centuries ago. Instead, the outstanding lightweight and high flexibility of origami structures has expanded their engineering application in aerospace, medical devices, and architecture. In order to support the automatic design of more complex modern origami structures, several computational origami design methods have been established. However these methods still focus on the problem of determining a crease pattern to fold into an exact pre-determined shape. And these methods apply deductive logic and function for only one type of topological origami structure. In order to drop the topological constraints on the shapes, this dissertation introduces the research on the development and implementation of the abductive evolutionary design methods to open origami design problems, which is asking for their designs to achieve geometric and functional requirements instead of an exact shape. This type of open origami design problem has no formal computational solutions yet. Since the open origami design problem requires searching for solutions among arbitrary candidates without fixing to a certain topological formation, it is NP-complete in computational complexity. Therefore, this research selects the genetic algorithm (GA) and one of its variations – the computational evolutionary embryogeny (CEE) – to solve origami problems. The dissertation made two major contributions. One contribution is on creating the GA-based/abstract design method framework on open origami design problems. The other contribution is on the geometric representation of origami designs that directs the definition and mapping of their genetic representation and physical representation. This research introduced two novel geometric representations, which are the “ice-cracking” and the pixelated multicellular representation (PMR). The proposed design methods and the adapted evolutionary operators have been testified by two open origami design problems of making flat-foldable shapes with desired profile area and rigid-foldable 3D water containers with desired volume. The results have proved the proposed methods widely applicable and highly effective in solving the open origami design problems
    corecore