1,159 research outputs found

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference

    A Physical Estimation based Continuous Monitoring Scheme for Wireless Sensor Networks

    Get PDF
    Data estimation is emerging as a powerful strategy for energy conservation in sensor networks. In this thesis is reported a technique, called Data Estimation using Physical Method (DEPM), that efficiently conserves battery power in an environment that may take a variety of complex manifestations in real situations. The methodology can be ported easily with minor changes to address a multitude of tasks by altering the parameters of the algorithm and ported on any platform. The technique aims at conserving energy in the limited energy supply source that runs a sensor network by enabling a large number of sensors to go to sleep and having a minimal set of active sensors that may gather data and communicate the same to a base station. DEPM rests on solving a set of linear inhomogeneous algebraic equations which are set up using well-established physical laws. The present technique is powerful enough to yield data estimation at an arbitrary number of point-locations, and provides for easy experimental verification of the estimated data by using only a few extra sensors

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Spatio-temporal logics for verification and control of networked systems

    Full text link
    Emergent behaviors in networks of locally interacting dynamical systems have been a topic of great interest in recent years. As the complexity of these systems increases, so does the range of emergent properties that they exhibit. Due to recent developments in areas such as synthetic biology and multi-agent robotics, there has been a growing necessity for a formal and automated framework for studying global behaviors in such networks. We propose a formal methods approach for describing, verifying, and synthesizing complex spatial and temporal network properties. Two novel logics are introduced in the first part of this dissertation: Tree Spatial Superposition Logic (TSSL) and Spatial Temporal Logic (SpaTeL). The former is a purely spatial logic capable of formally describing global spatial patterns. The latter is a temporal extension of TSSL and is ideal for expressing how patterns evolve over time. We demonstrate how machine learning techniques can be utilized to learn logical descriptors from labeled and unlabeled system outputs. Moreover, these logics are equipped with quantitative semantics and thus provide a metric for distance to satisfaction for randomly generated system trajectories. We illustrate how this metric is used in a statistical model checking framework for verification of networks of stochastic systems. The parameter synthesis problem is considered in the second part, where the goal is to determine static system parameters that lead to the emergence of desired global behaviors. We use quantitative semantics to formulate optimization procedures with the purpose of tuning system inputs. Particle swarm optimization is employed to efficiently solve these optimization problems, and the efficacy of this framework is demonstrated in two applications: biological cell networks and smart power grids. The focus of the third part is the control synthesis problem, where the objective is to find time-varying control strategies. We propose two approaches to solve this problem: an exact solution based on mixed integer linear programming, and an approximate solution based on gradient descent. These algorithms are not restricted to the logics introduced in this dissertation and can be applied to other existing logics in the literature. Finally, the capabilities of our framework are shown in the context of multi-agent robotics and robotic swarms

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy
    corecore