20,043 research outputs found

    The Alexandrov-Fenchel type inequalities, revisited

    Full text link
    Various Alexandrov-Fenchel type inequalities have appeared and played important roles in convex geometry, matrix theory and complex algebraic geometry. It has been noticed for some time that they share some striking analogies and have intimate relationships. The purpose of this article is to shed new light on this by comparatively investigating them in several aspects. \emph{The principal result} in this article is a complete solution to the equality characterization problem of various Alexandrov-Fenchel type inequalities for intersection numbers of nef and big classes on compact K\"{a}hler manifolds, extending earlier results of Boucksom-Favre-Jonsson, Fu-Xiao and Xiao-Lehmann. Our proof combines a result of Dinh-Nguy\^{e}n on K\"{a}hler geometry and an idea in convex geometry tracing back to Shephard. In addition to this central result, we also give a geometric proof of the complex version of the Alexandrov-Fenchel type inequality for mixed discriminants and a determinantal type generalization of various Alexandrov-Fenchel type inequalities.Comment: 18 pages, slightly revised version stressing our principal result, comments welcom

    Good covers are algorithmically unrecognizable

    Full text link
    A good cover in R^d is a collection of open contractible sets in R^d such that the intersection of any subcollection is either contractible or empty. Motivated by an analogy with convex sets, intersection patterns of good covers were studied intensively. Our main result is that intersection patterns of good covers are algorithmically unrecognizable. More precisely, the intersection pattern of a good cover can be stored in a simplicial complex called nerve which records which subfamilies of the good cover intersect. A simplicial complex is topologically d-representable if it is isomorphic to the nerve of a good cover in R^d. We prove that it is algorithmically undecidable whether a given simplicial complex is topologically d-representable for any fixed d \geq 5. The result remains also valid if we replace good covers with acyclic covers or with covers by open d-balls. As an auxiliary result we prove that if a simplicial complex is PL embeddable into R^d, then it is topologically d-representable. We also supply this result with showing that if a "sufficiently fine" subdivision of a k-dimensional complex is d-representable and k \leq (2d-3)/3, then the complex is PL embeddable into R^d.Comment: 22 pages, 5 figures; result extended also to acyclic covers in version

    Multiplicative combinatorial properties of return time sets in minimal dynamical systems

    Full text link
    We investigate the relationship between the dynamical properties of minimal topological dynamical systems and the multiplicative combinatorial properties of return time sets arising from those systems. In particular, we prove that for a residual sets of points in any minimal system, the set of return times to any non-empty, open set contains arbitrarily long geometric progressions. Under the separate assumptions of total minimality and distality, we prove that return time sets have positive multiplicative upper Banach density along N\mathbb{N} and along multiplicative subsemigroups of N\mathbb{N}, respectively. The primary motivation for this work is the long-standing open question of whether or not syndetic subsets of the positive integers contain arbitrarily long geometric progressions; our main result is some evidence for an affirmative answer to this question.Comment: 32 page

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Dual Mixed Volumes and the Slicing Problem

    Get PDF
    We develop a technique using dual mixed-volumes to study the isotropic constants of some classes of spaces. In particular, we recover, strengthen and generalize results of Ball and Junge concerning the isotropic constants of subspaces and quotients of L_p and related spaces. An extension of these results to negative values of p is also obtained, using generalized intersection-bodies. In particular, we show that the isotropic constant of a convex body which is contained in an intersection-body is bounded (up to a constant) by the ratio between the latter's mean-radius and the former's volume-radius. We also show how type or cotype 2 may be used to easily prove inequalities on any isotropic measure.Comment: 38 pages, to appear in Advances in Mathematics. Corrected Remark 4.

    Topological transversals to a family of convex sets

    Full text link
    Let F\mathcal F be a family of compact convex sets in Rd\mathbb R^d. We say that F\mathcal F has a \emph{topological ρ\rho-transversal of index (m,k)(m,k)} (ρ<m\rho<m, 0<kdm0<k\leq d-m) if there are, homologically, as many transversal mm-planes to F\mathcal F as mm-planes containing a fixed ρ\rho-plane in Rm+k\mathbb R^{m+k}. Clearly, if F\mathcal F has a ρ\rho-transversal plane, then F\mathcal F has a topological ρ\rho-transversal of index (m,k),(m,k), for ρ<m\rho<m and kdmk\leq d-m. The converse is not true in general. We prove that for a family F\mathcal F of ρ+k+1\rho+k+1 compact convex sets in Rd\mathbb R^d a topological ρ\rho-transversal of index (m,k)(m,k) implies an ordinary ρ\rho-transversal. We use this result, together with the multiplication formulas for Schubert cocycles, the Lusternik-Schnirelmann category of the Grassmannian, and different versions of the colorful Helly theorem by B\'ar\'any and Lov\'asz, to obtain some geometric consequences
    corecore