180 research outputs found

    Interlocking structure design and assembly

    Get PDF
    Many objects in our life are not manufactured as whole rigid pieces. Instead, smaller components are made to be later assembled into larger structures. Chairs are assembled from wooden pieces, cabins are made of logs, and buildings are constructed from bricks. These components are commonly designed by many iterations of human thinking. In this report, we will look at a few problems related to interlocking components design and assembly. Given an atomic object, how can we design a package that holds the object firmly without a gap in-between? How many pieces should the package be partitioned into? How can we assemble/extract each piece? We will attack this problem by first looking at the lower bound on the number of pieces, then at the upper bound. Afterwards, we will propose a practical algorithm for designing these packages. We also explore a special kind of interlocking structure which has only one or a small number of movable pieces. For example, a burr puzzle. We will design a few blocks with joints whose combination can be assembled into almost any voxelized 3D model. Our blocks require very simple motions to be assembled, enabling robotic assembly. As proof of concept, we also develop a robot system to assemble the blocks. In some extreme conditions where construction components are small, controlling each component individually is impossible. We will discuss an option using global controls. These global controls can be from gravity or magnetic fields. We show that in some special cases where the small units form a rectangular matrix, rearrangement can be done in a small space following a technique similar to bubble sort algorithm

    On Sunflowers and Matrix Multiplication

    Get PDF
    We present several variants of the sunflower conjecture of Erdős and Rado and discuss the relations among them. We then show that two of these conjectures (if true) imply negative answers to questions of Coppersmith and Winograd and Cohn et al. regarding possible approaches for obtaining fast matrix multiplication algorithms. Specifically, we show that the Erdős-Rado sunflower conjecture (if true) implies a negative answer to the ā€œno three disjoint equivoluminous subsetsā€ question of Coppersmith and Winograd; we also formulate a ā€œmulticoloredā€ sunflower conjecture in Znā‚ƒ and show that (if true) it implies a negative answer to the ā€œstrong USPā€ conjecture of Cohn et al. (although it does not seem to impact a second conjecture in that paper or the viability of the general group theoretic approach). A surprising consequence of our results is that the Coppersmith-Winograd conjecture actually implies the Cohn et al. conjecture. The multicolored sunflower conjecture in Znā‚ƒ is a strengthening of the well-known (ordinary) sunflower conjecture in Znā‚ƒ, and we show via our connection that a construction of Cohn et al. yields a lower bound of (2.51...)^n on the size of the largest multicolored 3-sunflower-free set, which beats the current best known lower bound of (2.21...)^n on the size of the largest 3-sunflower-free set in Znā‚ƒ

    Existence of r-fold perfect (v,K,1)-Mendelsohn designs with KāŠ†{4,5,6,7}

    Get PDF
    AbstractLet v be a positive integer and let K be a set of positive integers. A (v,K,1)-Mendelsohn design, which we denote briefly by (v,K,1)-MD, is a pair (X,B) where X is a v-set (of points) and B is a collection of cyclically ordered subsets of X (called blocks) with sizes in the set K such that every ordered pair of points of X are consecutive in exactly one block of B. If for all t=1,2,ā€¦,r, every ordered pair of points of X are t-apart in exactly one block of B, then the (v,K,1)-MD is called an r-fold perfect design and denoted briefly by an r-fold perfect (v,K,1)-MD. If K={k} and r=kāˆ’1, then an r-fold perfect (v,{k},1)-MD is essentially the more familiar (v,k,1)-perfect Mendelsohn design, which is briefly denoted by (v,k,1)-PMD. In this paper, we investigate the existence of r-fold perfect (v,K,1)-Mendelsohn designs for a specified set K which is a subset of {4, 5, 6, 7} containing precisely two elements

    Advanced and current topics in coding theory

    Get PDF

    Disjoint skolem-type sequences and applications

    Get PDF
    Let D = {iā‚, iā‚‚,..., in} be a set of n positive integers. A Skolem-type sequence of order n is a sequence of i such that every i āˆˆ D appears exactly twice in the sequence at position aįµ¢ and bįµ¢, and |bįµ¢ - aįµ¢| = i. These sequences might contain empty positions, which are filled with 0 elements and called hooks. For example, (2; 4; 2; 0; 3; 4; 0; 3) is a Skolem-type sequence of order n = 3, D = f2; 3; 4g and two hooks. If D = f1; 2; 3; 4g we have (1; 1; 4; 2; 3; 2; 4; 3), which is a Skolem-type sequence of order 4 and zero hooks, or a Skolem sequence. In this thesis we introduce additional disjoint Skolem-type sequences of order n such as disjoint (hooked) near-Skolem sequences and (hooked) Langford sequences. We present several tables of constructions that are disjoint with known constructions and prove that our constructions yield Skolem-type sequences. We also discuss the necessity and sufficiency for the existence of Skolem-type sequences of order n where n is positive integers

    Approximate unitary tt-designs by short random quantum circuits using nearest-neighbor and long-range gates

    Full text link
    We prove that poly(t)ā‹…n1/Dpoly(t) \cdot n^{1/D}-depth local random quantum circuits with two qudit nearest-neighbor gates on a DD-dimensional lattice with n qudits are approximate tt-designs in various measures. These include the "monomial" measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was poly(t)ā‹…npoly(t)\cdot n due to Brandao-Harrow-Horodecki (BHH) for D=1D=1. We also improve the "scrambling" and "decoupling" bounds for spatially local random circuits due to Brown and Fawzi. One consequence of our result is that assuming the polynomial hierarchy (PH) is infinite and that certain counting problems are #P\#P-hard on average, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under the assumption that PH is infinite. However, to show the hardness of approximate sampling using this strategy requires that the quantum circuits have a property called "anti-concentration", meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Thus our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent proposal by the Google Quantum AI group to perform such a sampling task with 49 qubits on a two-dimensional lattice and confirms their conjecture that O(n)O(\sqrt n) depth suffices for anti-concentration. We also prove that anti-concentration is possible in depth O(log(n) loglog(n)) using a different model
    • ā€¦
    corecore