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Abstract

Let D = {i1, i2, . . . , in} be a set of n positive integers. A Skolem-type sequence

of order n is a sequence of i such that every i ∈ D appears exactly twice in the

sequence at position ai and bi, and |bi − ai| = i. These sequences might contain

empty positions, which are filled with 0 elements and called hooks. For example,

(2, 4, 2, 0, 3, 4, 0, 3) is a Skolem-type sequence of order n = 3, D = {2, 3, 4} and two

hooks. If D = {1, 2, 3, 4} we have (1, 1, 4, 2, 3, 2, 4, 3), which is a Skolem-type sequence

of order 4 and zero hooks, or a Skolem sequence.

In this thesis we introduce additional disjoint Skolem-type sequences of order n

such as disjoint (hooked) near-Skolem sequences and (hooked) Langford sequences.

We present several tables of constructions that are disjoint with known constructions

and prove that our constructions yield Skolem-type sequences. We also discuss the

necessity and sufficiency for the existence of Skolem-type sequences of order n where

n is positive integers.
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Chapter 1

Introduction

Combinatorial design theory originated in 1776, when Euler posed the question of

constructing two orthogonal latin squares of order 6 [10]. This was known as Euler’s

36 Officers Problem. Euler conjectured that no solution occurs for order six. Subse-

quently, in 1782 [12] Euler wrote a paper, in which he conjectured that there exist

orthogonal latin squares of all orders n except for n ≡ 2(mod 4).

Over the years, various designs have been discovered by combinatorial researchers

such as Room Squares, Balanced Incomplete Block Designs, and 1-factorizations as

well as other designs.

Informally, a combinatorial design can be defined as a way of selecting subsets from

a finite set such that some conditions are satisfied. For example, suppose we have
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{a, b, c, d, e, f, g} a set of seven elements and we have to select 3-sets from the seven

elements, such that each element occurs in three of the 3-sets and every intersection of

two 3-sets has precisely one number. One example is {abc, ade, afg, bdf, beg, cdg, cef},

which is also called a Steiner triple system of order 7 and is denoted by STS(7). It

is known that an STS(v) exists if and only if v ≡ 1, 3(mod 6). An STS(v) is cyclic

if it has an automorphism consisting of a single cycle of length v. A cyclic Steiner

triple system of order v, denoted by CSTS(v), exists if and only if v ≡ 1, 3(mod 6)

and v 6= 9.

A triple system of order v and index λ, denoted TS(v, λ), is a set V of v elements,

together with a collection B of 3-element subsets of V called triples such that each 2-

subset of V is a subset in precisely λ triples of B. TS(v, λ) is cyclic if its automorphism

group contains a v-cycle. A cyclic TS(v, λ) is denoted by CTS(v, λ).

In 1847, Kirkman studied triple systems when he formulated a problem called

Kirkman Triple System Schoolgirls [15]. He posed the problem as follows: Fifteen

young ladies in a school walk out three abreast for seven days in succession. It is

required to arrange them daily, so that no two will walk twice abreast. Without

the requirement of arranging the triples in days, the configuration is a Steiner triple

system of order 15, and hence was known to Kirkman. Kirkman [16], presented his

solution to this problem.
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In 1897, Heffter [14], studied cyclic triple systems and he introduced his first and

second difference problems to construct cyclic Steiner triple systems of order 6n + 1

and 6n + 3. Heffter’s first difference problem is as follows: Can a set {1, 2, . . . , 3n}

be partitioned into n ordered triples (ai, bi, ci) with 1 6 i 6 n such that ai + bi ≡ ci

or ai + bi + ci ≡ 0(mod 6n + 1)? If this partition is possible then {{0, ai + n, bi + n} :

1 6 i 6 n} will be the base blocks of a cyclic Steiner triple system of order 6n + 1.

Heffter’s second difference problem is as follows:

Can a set {1, 2, . . . , 3n+1}\{2n+1} be partitioned into n ordered triples (ai, bi, ci)

with 1 6 i 6 n such that ai + bi ≡ ci or ai + bi + ci ≡ 0(mod 6n+3)? If this partition

is possible then {{0, ai +n, bi +n} : 1 6 i 6 n} with the base block {0, 2n+1, 4n+2}

having a short orbit of length 3n + 1 will be the base blocks of a cyclic Steiner triple

system of order 6n + 3.

In 1957, [37] Skolem studied Steiner triple systems and constructed STS(v) for

v = 6n + 1. He introduced the idea of Skolem sequences by asking if it is possible

to distribute the numbers of the set {1, 2, . . . , 2n} into n ordered pairs (ai, bi) such

that bi − ai = i for i = 1, 2, . . . , n. For example, the sequence (4, 2, 3, 2, 4, 3, 1, 1) is a

Skolem sequence of order 4. In the literature, Skolem sequences are also referred to as

pure Skolem sequences. Skolem [38] proved that such a distribution exists whenever

n ≡ 0, 1(mod 4). He extended his idea to that of the hooked Skolem sequence, he
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considered distributing the set {1, 2, . . . , 2n − 1, 2n + 1} into n ordered pairs (ai, bi)

such that bi − ai = i for i = 1, 2, . . . , n, and conjectured that such distribution exists

whenever n ≡ 2, 3(mod 4). In 1961, O’Keefe [24] proved this conjecture to be true,

and the solution requires leaving a space or zero for the missing integer called a hook

in the (2n)th position. For example, the sequence (3, 1, 1, 3, 2, 0, 2) is a hooked Skolem

sequence of order three. The existence of (hooked) Skolem sequences of order n give a

complete solution to Heffter’s first problem, which leads to the construction of cyclic

STS(6n + 1).

In 1966, Rosa [27] introduced other types of sequences by inserting a hook or

zero in the middle of (hooked) Skolem sequences and called such sequences Rosa and

hooked Rosa sequences of order n. He proved that a Rosa sequence exists whenever

n ≡ 0, 3(mod 4) and a hooked Rosa sequence exists whenever n ≡ 1, 2(mod 4). These

two types give a complete solution to Heffter’s second difference problem, which leads

to the construction of cyclic STS(6n + 3).

In 1958, Langford [17] observed his son playing with colored blocks and organizing

them in sequences similar to Skolem sequences. However, he noticed that every integer

i of the set {1, 2, . . . , 2n} can be arranged into disjoint pairs {(ai, bi) : 1 6 i 6 n}

such that {bi−ai : 1 6 i 6 n} = {d, d+1, . . . , d+n− 1} and {d, d+1, . . . , d+n− 1}

is a sequence of n positive integers, where each i in the set appears exactly twice
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and the two appearances of i are exactly i element apart. He presented the case of

three colors n = 3 as (3, 1, 2, 1, 3, 2) by adding one to each term of (2, 0, 1, 0, 2, 1) to

yield a Skolem-type sequence of order n + 1. In 1959, Davies [11] and Priday [25]

completely solved the case when d = 2. The combined works of Bermond, Brouwer,

and Germa [4] in 1978 and Simpson [36] in 1983 showed that for all d > 2, and

all admissible n, the necessary conditions for the existence of a (hooked) Langford

sequence are also sufficient.

In 1981, Stanton and Goulden [39] used a pairing concept and asked for a set of

n − 1 pairs P (1, n) \m with each of the integers of {1, . . . , 2n − 2} appears exactly

once and each of the integers of {1, . . . , m − 1,m + 1, . . . , n} occurs as a difference

exactly once. By using this concept they introduced near-Skolem sequences of order

n and defect m. For example, we have the pairs (1, 3),(2, 8),(4, 9),(5, 6),(7, 10) form

a P (1, 6) \ 4, and this is a 4-near-Skolem sequence of order 6.

In 1994, Shalaby [28] presented the necessary conditions for the existence of near-

Skolem sequences, and proved their sufficiency for all admissible orders.

Two sequences S = (s1, s2, . . . , s2n) and S
′
= (s

′
1, s

′
2, . . . , s

′
2n) of order n are defined

to be disjoint if the pairs (ai, bi) and (a
′
i, b

′
i), for i = 1, 2, . . . , n, where ai = bi = a

′
i =

b
′
i = i, do not appear in the same locations in both sequences S and S

′
. Two

Steiner triple systems, (V, B1) and (V, B2), are disjoint if B1 ∩ B2 = ∅. If (V, B1)
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and (V, B2) are cyclic, then they are disjoint if they have no orbits in common. In

1993, Baker and Shalaby [2], used disjoint Skolem sequences to the existence problems

for disjoint cyclic Steiner triple systems. They found the existence of four mutually

disjoint Skolem sequences, three mutually disjoint hooked Skolem sequences, and two

mutually disjoint near-Skolem sequences.

A λ-fold triple system of order v, denoted by TS(v, λ), is a pair (V, B) where V

is a v-set of points and B is a set of 3-subsets (blocks) such that any 2-subset of

V appears in precisely λ blocks. In 2012, Shalaby and Silvesan [32] determined the

intersection spectrum of (hooked) Skolem sequences with i pairs in common, for all

admissible orders, where i ∈ {1, 2, . . . , n − 3, n}. They discussed cyclic λ-fold triple

systems with a prescribed number of base blocks in common, and provided results

for λ = 2, 3 and 4.

Given a TS(v, λ), the fine structure of a triple system of index λ is the vector

(c1, . . . , cλ), where ci is the number of triples repeated precisely i times in the system.

In 2014, Shalaby and Silvesan [31] proved that the necessary conditions are sufficient

for the existence of two hooked Skolem sequences of order n with 0, 1, 2, . . . , n − 3

and n pairs in common, and applied these results to the fine structure of cyclic λ-fold

triple systems for λ = 3 and 4.

A set of m pairwise disjoint (hooked) Skolem sequences of order n forms a (hooked)
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Skolem rectangle of order n and strength m. For example, the two disjoint hooked

Skolem sequences of order 4 (1, 1, 2, 3, 2, 0, 3) and (3, 1, 1, 3, 2, 0, 2) are disjoint, and it

forms a hooked Skolem rectangle of strength 2. In 2014, Linek, Mor and Shalaby [19]

constructed (hooked) Skolem and Rosa rectangles and introduced direct constructions

for Skolem and Rosa rectangles for n > 20, and proved the existence of six mutually

disjoint Skolem sequences of order n for n ≡ 0, 1(mod 4), five mutually disjoint hooked

Skolem sequences of order n for n ≡ 2, 3(mod 4), and four mutually disjoint Rosa

sequences of order n for n ≡ 0, 3(mod 4). They applied these results to generate

simple cyclic triple systems and disjoint cyclic triple systems.

In this thesis, we discuss some special cases of disjoint Skolem-type sequences.

We start the paper with Baker and Shalaby [2], where the authors constructed dis-

joint Skolem-type sequences and related disjoint structures. We provide new disjoint

results for (hooked) near-Skolem sequences and we also provide new disjoint results

for (hooked) Langford sequences when d > 3 with finite exceptions of n. We present

some applications for disjoint Skolem-type sequences.

In Chapter 2, we show a summary of disjoint Skolem-type sequences. We demon-

strate some of the constructions of (hooked) Skolem sequences and (hooked) Rosa

sequences. We emphasize the necessity in these sequences by presenting the same

techniques that are used in proving the existence of Skolem related sequences [13].
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For sufficiency, we directly construct the required sequences and produce tables that

yield (hooked) Skolem sequences. We discuss known results of disjoint Skolem-type

sequences. (See references [2] and [19]).

In Chapter 3, we discuss two disjoint (hooked) near-Skolem sequences of order n

and defect m. We present necessity and sufficiency for such sequences. For sufficiency,

we provide several constructions for some of the small cases for two disjoint near-

Skolem sequences given in [28]. We produce new constructions for hooked near-Skolem

sequences and prove that the constructions are disjoint with known constructions of

hooked near-Skolem sequences given in [28].

In Chapter 4, we survey all the known results given in [32], [31], [18] and [4] of two

disjoint (hooked) Langford sequences. We introduce results with d = 3 and 4 that are

disjoint with the known results and the results given in [36]. For disjoint Langford

sequences, we adjoin a known Langford sequence of order n and defect d to a Langford

sequence of order n and defect d. For disjoint hooked Langford sequences, we adjoin

a hooked Langford sequence of order n and defect d to a known Langford sequence of

order n and defect d. However, our results are not considered to be complete, because

most of them only work for higher n when n > 2d− 1, and are not valid for cases of

small n.

In Chapter 5, we introduce the work of Shalaby and Silvesan [32], [35], and [34]
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and the work of Meszka and Rosa [22].

In Chapter 6, we conclude the results that we found in this thesis and we present

open questions about Chapters 3 and 4.
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Chapter 2

Disjoint Skolem-type sequences

In this chapter, we give a summary of the known results of disjoint Skolem-type se-

quences. We also present the necessary conditions and the sufficiency for the existence

of (hooked) Skolem sequences. For the sufficiency, we provide constructions for the

existence of (hooked) Skolem sequences of order n.

In 1992, Shalaby [30] proved the existence of disjoint (hooked) Skolem, near-

Skolem sequences and (n, 2)-Langford sequences. He found at least four mutually

disjoint Skolem sequences of order n and three mutually disjoint hooked Skolem se-

quences of order n, and applied the obtained results to the problem of disjoint cyclic

Steiner triple systems and Mendelsohn triple systems.

Baker and Shalaby [2] proved that the maximum number of mutually disjoint
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(hooked) Skolem sequences of order n cannot exceed n for the case of Skolem se-

quences, and n− 1 for the case of hooked Skolem sequences.

In 1993, Baker and Shalaby [2] studied the concept of disjoint Skolem sequences

further, and applied this concept to several unsolved problems in design theory such

as disjoint cyclic STS(v). They derived necessary conditions for the existence of the

maximum number of mutually disjoint (hooked) Skolem sequences of order n.

Lemma 2.0.1 [2] The maximum number of mutually disjoint (hooked) Skolem se-

quences of order n is at most n in the case of Skolem sequences and n− 1 in the case

of hooked Skolem sequences.

Proof The largest two numbers in any two of mutually disjoint Skolem sequences

must occur in distinct positions. Skolem sequences have 2n positions. Therefore, it

is impossible to have more than n mutually disjoint Skolem sequences. For the case

of hooked Skolem sequences, there are only 2n − 1 positions in which to place the

largest two numbers. The hook occurs in the (2n)th position. Thus the (n)th position

also must be empty. Therefore, it is impossible to have more than n − 1 mutually

disjoint hooked Skolem sequences.¥

We present basic definitions, necessary conditions, and sufficiency. We also present

the known constructions for Skolem-type sequences starting with two papers: These
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are Skolem and Rosa rectangles and related designs [19], and disjoint Skolem se-

quences and related disjoint structures [2].

2.1 Definitions and Examples

In this section, we provide the basic definitions that we need in this chapter. Many

generalizations of Skolem sequences exist. Here, we provide some known definitions

of the Skolem-type sequences. (see reference [29] for more information).

Definition 2.1.1 Let D = {i1, i2, . . . , in} be a set of n positive integers. A Skolem-

type sequence of order n and (m− 2n) hooks, is a sequence (s1, s2, . . . , sm) of positive

integers i ∈ D such that for each i ∈ D there is exactly one j ∈ {1, 2, . . . , 2n + m}

such that sj = sj−i = i.

The integers i ∈ D are called elements, and sj and sj−i are called positions. If the

sequence above has a position that is not occupied by integers i ∈ D and contains

null elements denoted by 0, the sequence is called a hooked Skolem sequence.

Definition 2.1.2 A Skolem sequence of order n is a sequence S = (s1, s2, . . . , s2n) of

2n integers which satisfies the conditions:

1. For every k ∈ {1, 2, . . . , n} there are exactly two positions si, sj ∈ S such that

si = sj = k.
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2. If si = sj = k, i < j, then j − i = k.

Example 2.1.1 (1, 1, 3, 4, 2, 3, 2, 4) is a Skolem sequence of order 4. The pairs are

(1, 2), (3, 6), (4, 8), (5, 7).

Definition 2.1.3 A k-extended Skolem sequence of order n is a sequence k−ext S =

(s1, s2, . . . , s2n+1) of 2n + 1 integers that satisfies conditions (1), (2) from Definition

2.1.2 and

3. There is exactly one i ∈ {1, 2, . . . , 2n + 1} such that si = 0.

Note that the si = 0 is the hook that occurs in the sequence.

Example 2.1.2 Let D = {1, 2, 3}, n = 3 , m = 7 and k = 6. We have S =

(3, 1, 1, 3, 2, 0, 2) is a 6-extended Skolem-type sequence or a hooked Skolem sequence

of order 3.

A hooked Skolem sequence of order n is an extended sequence with a hook in the

(2n)th position. A Rosa sequence of order n is an extended sequence such that the

hook in the (n + 1)th position. For example, (2, 4, 2, 3, 0, 4, 3, 1, 1) is a Rosa sequence

of order 4. A hooked Rosa sequence of order n is an extended sequence such that

there are two hooks: one is in the (n + 1)th position and the other is in the (2n + 1)th

position. For example, (3, 1, 1, 3, 5, 0, 2, 4, 2, 5, 0, 4) is a hooked Rosa sequence of order

5.
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Skolem [37] derived necessary conditions and the sufficiency for the existence of

a Skolem sequence. O’Keefe [24] solved the existence problem for a hooked Skolem

sequence. Later in this study, we will present the necessary conditions and the suffi-

ciency for the existence of some of the Skolem-type sequences.

Definition 2.1.4 A near-Skolem sequence of order n and defect m, is a sequence

S = (s1, s2, . . . , s2n−2) of integers si ∈ {1, 2, . . . , m− 1,m+1, . . . , n} that satisfies the

following conditions:

1. For every k ∈ {1, 2, . . . , m − 1,m + 1, . . . , n}, there are exactly two positions

si, sj ∈ S such that si = sj = k.

2. If si = sj = k, then j − i = k.

Definition 2.1.5 A hooked near-Skolem sequence of order n and defect m, is a se-

quence hS = (s1, s2, . . . , s2n−1) of integers si ∈ {1, 2, . . . , m − 1,m + 1, . . . , n} that

satisfies conditions (1), (2) from Definition 2.1.4 and

3. s2n−2 = 0.

We also refer to a (hooked) near-Skolem sequence of order n and defect m as a

(hooked) m-near-Skolem sequence.

Remark 2.1.1 Note that the definitions of (hooked) Skolem sequences can be ob-

tained from (hooked) near-Skolem sequences by adding the difference m as in the

14



previous definitions.

Definition 2.1.6 Two (hooked) Skolem sequences S and S
′
of order n, are disjoint

if si = sj = k = s
′
t = s

′
u such that (i, j) 6= (t, u) for all k = 1, 2, . . . , n.

Note that |(i, j) ∩ (t, u)| = 1 is possible in disjoint Skolem-type sequences and dis-

joint (hooked) Langford sequences. We present an example of two disjoint Skolem

sequences that have one element occurs at the positions j and t.

Example 2.1.3 S = (2, 3, 2, 4, 3, 1, 1, 4) and S
′
= (4, 2, 3, 2, 4, 3, 1, 1) are two disjoint

Skolem sequences of order 4. We have (1, 3),(6, 7),(4, 8),(2, 5) pairs for S and we also

have (1, 5),(2, 4),(3, 6),(7, 8) pairs for S
′
. We find that every pair of elements appears

in different locations in the sequences S and S
′
. We also find that |(i, j)∩ (t, u)| = 1,

for example, element 1 exists in the pairs (6, 7) for S and (7, 8) for S
′
, we notice that

j = t = 7.

Lemma 2.1.1 Given a Skolem sequence S = (s1, s2, . . . , s2n), the reverse
←
S=

(s2n, . . . , s2, s1) is also a Skolem sequence.

The reverse of a Skolem sequence is a Skolem sequence, the reverse of a Rosa sequence

is a Rosa sequence, the reverse of a near-Skolem sequence is a near-Skolem sequence

and the revers of a Langford sequence is a Langford sequence. Therefore, a Skolem
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sequence, a Rosa sequence, a near-Skolem sequence and a Langford sequence will be

considered to be equivalent to their reverses.

Example 2.1.4 Let S = (3, 4, 2, 3, 2, 4, 1, 1) be a Skolem sequence of order 4 and

←
S= (1, 1, 4, 2, 3, 2, 4, 3) be the reverse of S and it is also a Skolem sequence of order

4. S and
←
S are two disjoint Skolem sequences of order 4. So, S is a reverse-disjoint

sequence. To check disjointness, we simply check the positions of the elements in both

sequences. If the positions of the elements are different in both sequences, we obtain

disjoint sequences. For example, element 1 in the sequence S appears in positions

7 and 8, and also appears in positions 1 and 2 in the sequence
←
S. We follow the

same process to check the disjointness for the remaining elements. We found that all

the elements occur in different positions in both sequences S and
←
S, so S and

←
S are

disjoint. Thus, S is a reverse-disjoint sequence of order 4.

Similarly, near-Skolem sequences can be represented as a set of disjoint integer

pairs. However, the partition of the near-Skolem sequences of the set {1, 2, . . . , 2n−2}

is represented as n− 1 pairs.

Definition 2.1.7 Two (hooked) near-Skolem sequences S = (s1, s2, . . . , s2n−2) and

S
′
= (s

′
1, s

′
2, . . . , s

′
2n−2) of order n with defects m1, m2 (where 1 6 m1,m2 6 n) are

disjoint if si = sj = k = s
′
t = s

′
u such that (i, j) 6= (t, u) for all k ∈ {1, 2, . . . , n}\{m1}
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for the sequence S and k ∈ {1, 2, . . . , n} \ {m2} for the sequence S
′
.

Example 2.1.5 S = (3, 4, 2, 3, 2, 4) and S
′

= (4, 2, 3, 2, 4, 3) are two disjoint near-

Skolem sequences of order 4 and m = 1.

Example 2.1.6 S = (5, 3, 1, 1, 3, 5, 2, 0, 2) and S
′

= (1, 1, 3, 5, 2, 3, 2, 0, 5) are two

disjoint hooked near-Skolem sequences of order 5 and m = 4.

Given a near-Skolem sequence of order n and defect m, S = (s1, s2, . . . , s2n−2) and

the reverse of S is
←
S= (s2n−2, s2n−3, . . . , s2, s1). It is also a near-Skolem sequence of

order n and defect m. If S and
←
S are disjoint, S is called a reverse-disjoint sequence.

We present the following examples for two disjoint (hooked) near-Skolem sequences

of order n and defect m.

Example 2.1.7 Let S1 = (3, 5, 6, 3, 1, 1, 5, 2, 6, 2) and S2 = (6, 2, 3, 2, 5, 3, 6, 1, 1, 5)

be two disjoint near-Skolem sequences of order 6 and m = 4. We notice that S2 is a

reverse-disjoint sequence but S1 is not because element 1 occurs at the same position

in S1 in addition to its reverse sequence.

Example 2.1.8 S1 = (5, 3, 1, 1, 3, 5, 2, 0, 2) and S2 = (1, 1, 3, 5, 2, 3, 2, 0, 5) are two

disjoint hooked near-Skolem sequences of order 5 and m = 3.

Definition 2.1.8 A Langford sequence of order n and defect d denoted by Ln
d , is a

sequence Ln
d = (l1, l2, . . . , l2n) of 2n integers that satisfies:
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1. For every k ∈ {d, d + 1, . . . , d + n− 1} there are exactly two positions li, lj ∈ Ln
d

such that li = lj = k.

2. If li = lj = k, i < j, then j − i = k.

Example 2.1.9 L5
3 = (7, 5, 3, 6, 4, 3, 5, 7, 4, 6) is a Langford sequence of order 5 and

defect 3.

Definition 2.1.9 A hooked Langford sequence of order n and defect d, denoted by

hLn
d , is a sequence hLn

d = (l1, l2, . . . , l2n+1) of 2n + 1 integers that satisfies conditions

(1), (2) from Definition 2.1.9 and

3. l2n = 0.

Example 2.1.10 hL6
2 = (7, 5, 3, 6, 4, 3, 5, 7, 4, 6, 2, 0, 2) is a hooked Langford sequence

of order 6 and defect 2.

Definition 2.1.10 Two (hooked) Langford sequences L = (l1, l2, . . . , l2n) and L
′

=

(l
′
1, l

′
2, . . . , l

′
2n) of order n are disjoint if li = lj = k = l

′
t = l

′
u such that (i, j) 6= (t, u)

for all k ∈ {d, d + 1, . . . , d + n− 1}.

Given a Langford sequence of order n and defect d, L = (l1, l2, . . . , l2n) and the

reverse of L is
←
L= (l2n, l2n−1, . . . , l2, l1). It is also a Langford sequence of order n

and defect d. For example, we have a Langford sequence of order 5 and defect 3,
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L = (6, 4, 7, 5, 3, 4, 6, 3, 5, 7). It is clearly to see that L is a reverse-disjoint Langford

sequence because when we reverse L we obtain
←
L= (7, 5, 3, 6, 4, 3, 5, 7, 4, 6), which is

a Langford sequence of order 5 and defect 3 that is disjoint with L.

Definition 2.1.11 A Steiner triple system of order v, denoted by STS(v), is a col-

lection of 3-subsets, called triples or blocks, of a set V with v elements, such that

every pair of elements occurs in exactly one block.

2.2 Necessary Conditions for the Existence of the

Four Types of Sequences

In this section, we provide the necessary conditions for the existence of (hooked)

Skolem sequences and (hooked) Rosa sequences. However, we only present the proof

for a Skolem sequence because the proofs for the other cases are similar.

2.2.1 Skolem sequences

The necessary conditions for the existence of a Skolem sequence of order n are n ≡

0, 1(mod 4). The proof given here was discovered by Bang [3].

Lemma 2.2.1 [3] A Skolem sequence of order n can only exist if n ≡ 0, 1(mod 4).

Proof Consider the set of positions {(ai, bi) : i = 1, 2, . . . , n} such that bi − ai = i.
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n∑
i=1

bi −
n∑

i=1

ai =
n∑

i=1

(bi − ai), =
n∑

i=1

i, = n(n+1)
2

, . . . (1)

Note that these numbers ai and bi, i = 1, 2, . . . , n comprise the set {1, 2, . . . , 2n}.

Therefore,
n∑

i=1

bi +
n∑

i=1

ai =
2n∑
i=1

i,

= (2n)(2n+1)
2

,

= n(2n + 1), . . . (2)

Adding (1) and (2) yields:

2
n∑

i=1

bi = n(n+1)
2

+ n(2n + 1) = n(5n+3)
2

.

This implies that
n∑

i=1

bi = n(5n+3)
4

.

Thus, n(5n+3)
4

must be an integer; and this happens only when n ≡ 0, 1(mod 4).

Therefore, a Skolem sequence can exist only if n ≡ 0, 1(mod 4). ¥

2.2.2 Hooked Skolem sequences

The necessary conditions for the existence of a hooked Skolem sequence of order n,

which were derived by O’Keefe [24], are n ≡ 2, 3(mod 4).

Lemma 2.2.2 [38] A hooked Skolem sequence of order n can only exist if n ≡

2, 3(mod 4).

Proof The proof is similar to the proof of necessary conditions for the existence of a

Skolem sequence given in Lemma 2.2.1.¥
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2.2.3 Rosa sequences

The necessary conditions for the existence of (hooked) Rosa sequences were derived

by Rosa [27]. He introduced the following results in Lemma 2.2.3 and Lemma 2.2.4

Lemma 2.2.3 [27] A Rosa sequence of order n can only exist if n ≡ 0, 3(mod 4).

Proof The idea of this proof is similar to the proof of necessary conditions for the

existence of a Skolem sequence given in Lemma 2.2.1.¥

2.2.4 Hooked Rosa sequences

Lemma 2.2.4 [27] A hooked Rosa sequence of order n can only exist if n ≡

1, 2(mod 4).

Proof Again, the idea behind this proof is similar to the proof of necessary conditions

for the existence of a Skolem sequence given in Lemma 2.2.1.¥

2.3 Sufficiency for the Existence of (hooked)

Skolem Sequences

In this section, we provide the sufficiency for the existence of (hooked) Skolem se-

quences by providing four tables, namely Table 2.1, Table 2.2, Table 2.3 and Table

2.4, of constructions that are not seen in the literature. These tables show evidence
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of the existence of (hooked) Skolem sequences of order n. We will only verify Table

2.1 as the verifications of the other tables are similar.

2.3.1 Skolem sequences

Skolem introduced a method for constructing Skolem sequences, and proved that the

necessary conditions for the existence of Skolem sequences are also sufficient [37]. We

prove this sufficiency by providing constructions that yield Skolem sequences. Our

constructions include the element i and positions ai and bi, where i is an element in

the sequence, and ai and bi are the positions of i. The relationship can be expressed

as follows:

For 1 6 i 6 n, ai < bi, then bi − ai = i.

Theorem 2.3.1 [37] A Skolem sequence of order n exists for all n ≡ 0, 1(mod 4).

In the literature there are several constructions for the existence of Skolem se-

quences. We constructed Skolem sequences of order n and produced Table 2.1 and

Table 2.2 of constructions.

Proof The constructions below yield Skolem sequences of order n for all n ≡

0, 1(mod 4). There are two missing cases n = 1 and n = 5. These cases can be

given by the sequences (1, 1) and (2, 4, 2, 3, 5, 4, 3, 1, 1, 5). Now, there are two cases

for sufficiency: for n ≡ 0(mod 4), let n = 4m. The following construction yields
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Row numbers i ai bi

(1) 1 m + 1 m + 2
(2) 4m 1 4m + 1
(3) 4m− 2r − 2 4m + 2 + r 8m− r 0 6 r 6 2m− 2
(4) 4m− 1 2m + 2 6m + 1
(5) 2m− 1 2m + 1 4m
(6) 4m− 2r − 1 r + 1 4m− r 1 6 r 6 m− 1
(7) 2m− 2r − 3 m + 3 + r 3m− r 0 6 r 6 m− 3

Table 2.1: A construction of a Skolem sequence of order n

Skolem sequences of order n for m > 2. We add the case of n = 4, which is satisfied

by the sequence (3, 4, 2, 3, 2, 4, 1, 1).

Case 1: n ≡ 0(mod 4), let n = 4m. Omit row (7) when m = 2. In order to verify that

this construction yields a Skolem sequence, it must be shown that each element of

{1, 2, . . . , 2n} appears in a pair (ai, bi) exactly once, so that the differences bi− ai = i

are exactly the elements i = 1, 2, . . . , n. Consider the pairs (ai, bi). It is clear that

there are n = 4m such pairs, and so there are exactly 2n = 8m elements, ai and bi.

Thus, if every element of {1, 2, . . . , 2n} = {1, 2, . . . , 8m} occurs in one of these pairs,

then each of these elements must occur exactly once.

The elements 2, 3, . . . , m occur in the pair (r + 1, 4m− r) for 1 6 r 6 m− 1 from

row (6). Both m + 1 and m + 2 are given by the pair (m + 1,m + 2) in row (1). The

elements m+3,m+4, . . . , 2m are given in the pairs (m+3+r, 3m−r) for 0 6 r 6 m−3
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in row (7). The elements 2m + 1 and 2m + 2 occur in the pairs (2m + 1, 4m) in row

(5) and (2m + 2, 6m + 1) in row (4), respectively. The pairs (m + 3 + r, 3m− r) for

0 6 r 6 m− 3 in row (7) give the elements 2m + 3, 2m + 4, . . . , 3m.

The elements 3m + 1, 3m + 2, . . . , 4m − 1 occur in the pairs (r + 1, 4m − r) for

1 6 r 6 m− 1 in row (6) while 4m appears in (2m + 1, 4m) in row (5). The elements

4m+2, 4m+3, . . . , 6m−2 are given by the pairs (4m+2+r, 8m−r) for 0 6 r 6 2m−2

in row (3). The element 6m+1 appears in (2m+2, 6m+1) in row (4). The remaining

elements 6m + 2, 6m + 3, . . . , 8m are presented in the pairs (4m + 2 + r, 8m− r) for

0 6 r 6 2m− 2 in row (3). Finally, element 1 appears in the pair (1, 4m + 1) in row

(2) while 4m + 1 appears in (1, 4m + 1) in row (2).

Thus, the proof is complete and the construction above yields a Skolem sequence.

Therefore, all elements of {1, 2, . . . , 8m} occur in the pairs (ai, bi). Hence, each such

element occurs exactly once as either ai or bi for some i.

Now, it must be verified that the differences bi − ai give all values 1, 2, . . . , 4m

exactly once. There are n = 4m differences, so it must only be shown that each

element occurs at least once, which then implies that each occurs exactly once. First,

1 = (m + 2) − (m + 1) is the difference of bi − ai from row (1). The differences

(3m− r)− (m + 3 + r) = 2m− 2r− 3 for 0 6 r 6 m− 3 in row (7) give the numbers

3, 5, . . . , 2m − 3. The differences (4m) − (2m + 1) from row (5) give 2m − 1. The
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numbers 2m+1, 2m+3, . . . , 4m−3 are given by (4m− r)− (r +1) = 4m−2r−1 for

1 6 r 6 m−1 from row (6). 4m−1 occurs as the difference (6m+1)− (2m+2) from

row (4). The elements 2, 4, . . . , 4m are given by (8m−r)− (4m+r+2) = 4m−2r−2

for 0 6 r 6 2m − 2 from row (3). Finally, 4m occurs as the difference (4m + 1) − 1

from row (2).

Thus, the verification is complete. The sequences that are formed from the pre-

vious construction are Skolem sequences. We apply Table 2.1 and we obtain the

following example.

Example 2.3.1 For n = 8, we have (8, 5, 1, 1, 3, 7, 5, 3, 8, 6, 4, 2, 7, 2, 4, 6). The pairs

are (1, 9), (2, 7), (3, 4),(5, 8), (6, 13), (11, 15), (10, 16), (12, 14).

Case 2: n ≡ 1(mod 4), let n = 4m + 1. The following construction gives Skolem

sequences of order n for m > 2. Omit row (7) when m = 2. This completes the proof

of Theorem 2.3.1.¥

We apply Table 2.2 and we obtain the following example.

Example 2.3.2 For n = 9, we have (9, 5, 8, 1, 1, 3, 5, 7, 3, 9, 8, 6, 4, 2, 7, 2, 4, 6). The

pairs are (1, 10), (2, 7), (3, 11), (4, 5), (6, 9), (8, 15), (12, 18), (13, 17), (14, 16).
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Row numbers i ai bi

(1) 4m− 2r 4m + 3 + r 8m + 3− r 1 6 r 6 2m− 1
(2) 4m 3 4m + 3
(3) 1 m + 2 m + 3
(4) 4m + 1 1 4m + 2
(5) 2m + 1 2 2m + 3
(6) 2m− 1− 2r m + 4 + r 3m + 3− r 0 6 r 6 m− 2
(7) 4m− 3− 2r 4 + r 4m + 1− r 0 6 r 6 m− 3
(8) 4m− 1 2m + 4 6m + 3

Table 2.2: A construction of a Skolem sequence of order n

2.3.2 Hooked Skolem sequences

Theorem 2.3.2 [24] A hooked Skolem sequence of order n exists for all n ≡

2, 3(mod 4).

In the literature there are several constructions for the existence of hooked Skolem

sequences. We construct hooked Skolem sequences of order n and produced Table 2.3

and Table 2.4 of constructions.

Proof The constructions below yield hooked Skolem sequences of order n for all

n ≡ 2, 3(mod 4).

Case 1: n ≡ 2(mod 4), let n = 4m + 2. The required construction gives hooked

Skolem sequences of order n for m > 1. Omit row (6) when m = 1.
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Row numbers i ai bi

(1) 2m + 1 3m + 1 5m + 2
(2) 2m + 2r + 3 m− r 3m + 3 + r 0 6 r 6 m− 1
(3) 2m− 2r − 1 m + 1 + r 3m− r 0 6 r 6 m− 1
(4) 2m + 2 6m + 3 8m + 5
(5) 4m + 2 3m + 2 7m + 4
(6) 4m− 2r 4m + 3 + r 8m + 3− r 0 6 r 6 m− 2
(7) 2m− 2r 5m + 3 + r 7m + 3− r 0 6 r 6 m− 1

Table 2.3: A construction of a hooked Skolem sequence of order n

Example 2.3.3 For n = 6, we have (5, 1, 1, 3, 6, 5, 3, 2, 4, 2, 6, 0, 4). The pairs are

(1, 6), (2, 3), (4, 7), (5, 11), (8, 10), (9, 13).

Case 2: n ≡ 3(mod 4), let n = 4m − 1. The following construction yields hooked

Skolem sequences of order n for m > 2. Omit row (6) when m = 2. This completes

the proof of Theorem 2.3.2.¥
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row numbers i ai bi

(1) 2m− 2r − 1 m + r 3m− 1− r 0 6 r 6 m− 1
(2) 4m− 2r r 4m− r 1 6 r 6 m− 1
(3) 2m + 1 6m− 2 8m− 1
(4) 4m− 1 3m 7m− 1
(5) 2m− 2r 5m− 2 + r 7m− 2− r 0 6 r 6 m− 1
(6) 4m− 2r − 3 4m + r 8m− 3− r 0 6 r 6 m− 3

Table 2.4: A construction of a hooked Skolem sequence of order n

Example 2.3.4 For n = 7, we have (6, 3, 1, 1, 3, 7, 6, 4, 2, 5, 2, 4, 7, 0, 5). The pairs

are (1, 7), (2, 5), (3, 4), (6, 13), (8, 12), (9, 11), (10, 15).

The following example demonstrates the existence of two disjoint (hooked) Skolem

sequences of order n, implying the existence of four disjoint cyclic STS(6n + 1).

Example 2.3.5 Let S = (1, 1, 4, 2, 3, 2, 4, 3) and S
′
= (3, 4, 2, 3, 2, 4, 1, 1) be two dis-

joint Skolem sequences of order 4. We find the pairs (ai, bi) for i = 1, 2, 3 and 4.

The pairs for the sequence S are (1, 2), (4, 6), (5, 8), (3, 7) and we have the difference

systems {0, i, bi + n} (mod 6n + 1) or {0, ai + n, bi + n} (mod 6n + 1) where i = 1, 2,

3 and 4. We obtain two solutions:

1. {0, 1, 6}, {0, 2, 10}, {0, 3, 12}, and {0, 4, 11} (mod 25).

2. {0, 5, 6}, {0, 8, 10}, {0, 9, 12}, and {0, 7, 11} (mod 25).

We check the differences in Z25 and observe that all the non-zero elements appear
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as differences twice in Z25.

We follow the same process for the sequence S
′
. The pairs (a

′
i, b

′
i) for i = 1, 2, 3

and 4 are (7, 8), (3, 5), (1, 4), (2, 6) and we have the difference systems {0, i, b′i + n}

(mod 6n + 1) or {0, a′i + n, b
′
i + n} (mod 6n + 1) where i = 1, 2, 3 and 4. We also

obtain two solutions:

1. {0, 1, 12}, {0, 2, 8}, {0, 3, 9}, and {0, 4, 10} (mod 25).

2. {0, 11, 12}, {0, 7, 9}, {0, 5, 8}, and {0, 6, 10} (mod 25).

We also observe that all the non-zero elements exist as differences twice in Z25.

Therefore, each sequence yields two disjoint cyclic STS(25).

2.3.3 Rosa sequences

Theorem 2.3.3 [27] A Rosa sequence of order n exists for all n ≡ 0, 3(mod 4).

Rosa [27], proved that the necessary conditions for the existence of a Rosa sequence

of order n are sufficient by introducing constructions that yield Rosa sequences of

order n for all n ≡ 0, 3(mod 4).

2.3.4 Hooked Rosa sequences

Theorem 2.3.4 [27] A hooked Rosa sequence of order n exists for all n ≡

1, 2(mod 4).
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Rosa [27] proved that the necessary conditions for the existence of a hooked Rosa

sequence of order n are sufficient by introducing constructions that yield a hooked

Rosa sequence of order n for all n ≡ 1, 2(mod 4).

We present an example showing that the existence of a Rosa sequence implies the

existence of a cyclic STS(6n + 3).

Example 2.3.6 Let R = (6, 4, 2, 7, 2, 4, 6, 0, 3, 5, 7, 3, 1, 1, 5) be a Rosa sequence of

order 7. We find the pairs of positions (ai, bi) for i = 1, 2, . . . , 7. We have

(13, 14),(3, 5),(9, 12),(2, 6),(10, 15),(1, 7),(4, 11).

We take the base blocks of the form {0, i, bi + n} (mod 45) where i = 1, 2, . . . , 7.

We have {0, 1, 7},{0, 2, 12},{0, 3, 19},{0, 4, 13},{0, 5, 22},{0, 6, 14}, and {0, 7, 18}

(mod 45).

Now, we observe that all the non-zero elements exist as differences twice in Z45.

We notice that {0, 15, 30} is a missing base block, so its differences are also missing.

It is clear to see that each base block will give a full orbit except for the missing

base block, which will give a short orbit. So we will cyclically develop this base block

{0, 15, 30} (mod 45) and the previous base blocks of the form {0, i, bi + n} to obtain

blocks then add them all together. Thus, we obtain 330 blocks of cyclic STS(45).
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2.4 Known results for disjoint Skolem-Type Se-

quences

In this section, we present several known results for (hooked) Skolem sequences and

(hooked) Rosa sequences such as the results of Skolem, O’Keefe and Rosa. In [7],

the results were given in the form of tables listing values of i, ai, and bi such that

i is an element and ai and bi are the positions of that element in the sequence, and

bi − ai = i for all 1 6 i 6 n where ai < bi. However, we do not present the required

constructions here. Rather, we simply state the known results and refer the reader

to reference [19] for the known constructions of disjoint (hooked) Skolem sequences

and (hooked) Rosa sequences.

Many known results of (hooked) Skolem sequences and (hooked) Rosa sequences

exist, and some of them are included in references [7], [11], [23], and some other work.

Now, we present the known results of disjoint Skolem-type sequences, starting

from the paper of Baker and Shalaby [2] in which they proved the existence of disjoint

(hooked) Skolem sequences and disjoint near-Skolem sequences.

In [2], Baker and Shalaby proved the existence of a reverse-disjoint near-Skolem

sequence of order n. They reversed near-Skolem sequences of order n and defect m,

and obtained two disjoint near-Skolem sequences for the majority of them. Shalaby [2]
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introduced the following theorems.

Theorem 2.4.1 [2] For all n ≡ 0, 1(mod 4), n > 4, there exist at least four mutually

disjoint Skolem sequences of order n.

Proof [2] There are three cases to be considered in the proof, but we only display

Case 1 and each case gives a reverse-disjoint Skolem sequence.

Case 1: n ≡ 0(mod 8), n > 0. Let n = 8s.
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row numbers i ai bi

(1) 8s− 2r + 1 r 8s− r + 1 1 6 r 6 4s− 1
(2) 8s− 4r + 2 8s + 2r − 1 16s− 2r + 1 1 6 r 6 s− 1
(3) 8s + 4r 8s + 2r + 2 16s− 2r + 2 1 6 r 6 s− 1
(4) 4s− 2r + 2 10s + r + 1 14s + 3− r 1 6 r 6 2s− 1
(5) 4s + 2 4s 8s + 2
(6) 8s 4s + 1 12s + 1
(7) 1 12s + 2 12s + 3
(8) 2 10s− 1 10s + 1

Table 2.5: A construction of the existence of at least four mutually disjoint Skolem
sequences of order n

For Case 2 and Case 3 see reference [2]. To check the disjointness we check all

the values of (i, j), and whether their new positions in the reverse sequence (2n+1−

j, 2n + 1− i) are distinct components.¥

Example 2.4.1 The following sequences are four mutually disjoint Skolem sequences

of order 4.

(4, 1, 1, 3, 4, 2, 3, 2),

(2, 3, 2, 4, 3, 1, 1, 4),

(3, 4, 2, 3, 2, 4, 1, 1),

(1, 1, 4, 2, 3, 2, 4, 3).

When we check the positions for the elements that occur in these sequences, we

find that element 2, which is in the first sequence, occurs in position (6, 8). Its new
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position is (1, 3) in the second sequence, (3, 5) in the third sequence, and (4, 6) in

the fourth sequence. We follow the same process for the other elements. We observe

that the positions for the elements in the four sequences are distinct. Therefore, we

conclude that these four sequences are mutually disjoint Skolem sequences of order 4.

Theorem 2.4.2 [2] For all n ≡ 2, 3(mod 4), n > 6, there exist at least 3 mutually

disjoint hooked Skolem sequences of order n.

Example 2.4.2 The following sequences are three mutually disjoint hooked Skolem

sequences of order 6.

(5, 6, 4, 1, 1, 5, 4, 6, 2, 3, 2, 0, 3),

(4, 5, 3, 6, 4, 3, 5, 1, 1, 6, 2, 0, 2),

(3, 1, 1, 3, 4, 5, 6, 2, 4, 2, 5, 0, 6).

As a result of Theorem 2.4.1 and Theorem 2.4.2, Baker and Shalaby [2] obtained

Corollary 2.4.3 and Corollary 2.4.4 for the number of mutually disjoint, cyclic STS(v),

denoted by nc(v).

Corollary 2.4.3 [2] For all v > 25 and v ≡ 1, 7(mod 24), nc(v) > 8.

Corollary 2.4.4 [2] For all v > 37 and v ≡ 13, 19(mod 24), nc(v) > 6.

A Mendelsohn triple system of order v, MTS(v), is a pair (V, B) where V is a set

of v elements and B is a collection of cyclic triples of elements of V elements such
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that every ordered pair of distinct elements from V elements occur in exactly one

triple.

Baker and Shalaby [2] observed that a cyclic Mendelsohn triple system can be

obtained from a cyclic STS(v) by replacing any base block {a, b, c} of the cyclic

STS(v) by a set of two cyclic blocks {〈a, b, c〉, 〈a, c, b〉}, where 〈a, b, c〉 is the triple

containing the ordered pairs (a, b),(b, c), and (c, a). They improved on the known

bounds for the numbers of disjoint cyclic Mendelsohn triple systems [9]. We show

this by the following example.

Example 2.4.3 Let S = (1, 1, 5, 2, 4, 2, 3, 5, 4, 3) be a Skolem sequence of order 5,

and we find the pairs {(ai, bi), 0 6 i 6 n}. The pairs are: (1, 2), (4, 6), (7, 10),

(5, 9), (3, 8). To obtain a cyclic STS(6n + 1) we find the base blocks of the form

{(0, i, bi + n)(mod 6n + 1)|i = 1, . . . , n}. The blocks are:

{0, 7, 1},{0, 11, 2},{0, 15, 3},{0, 14, 4},{0, 13, 5} (mod 31).

We notice that all the non-zero elements exist as differences twice in Z31. We

cyclically develop these base blocks (mod 31) and we obtain a cyclic STS(31).

We observe that if we replace each block {a, b, c} of a cyclic STS(6n+1, 2) in this

example with {〈a, b, c〉, 〈a, c, b〉}, the set of two cyclic blocks forms a cyclic Mendelsohn

triple system of order v. For example, we replace the block {1, 8, 2} with the set of

two cyclic blocks {〈1, 8, 2〉, 〈1, 2, 8〉}, and we follow same process for the rest of the
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blocks.

Furthermore, Baker and Shalaby [2] produced the following additional improve-

ment on the results obtained in [9]. They produced results for the number of mutually

disjoint cyclic Mendelsohn triple systems of order v, denoted by mc(v).

Corollary 2.4.5 [2] For all v > 25 and v ≡ 1, 7(mod 24), mc(v) > 8.

Corollary 2.4.6 [2] For all v > 37 and v ≡ 13, 19(mod 24), mc(v) > 6.

In [32], Shalaby and Silvesan proved that there exist two (hooked) Skolem se-

quences of small orders that can have 0, 1, . . . , n− 3, n pairs in common. In addition,

they proved that this argument holds for larger orders. We show this by the following

example.

Example 2.4.4 The following two hooked Skolem sequences of order 7 have three

pairs in common.

hS1 = (3, 1, 1, 3, 6, 7, 2, 4, 2, 5, 6, 4, 7, 0, 5),

hS2 = (6, 3, 1, 1, 3, 7, 6, 4, 2, 5, 2, 4, 7, 0, 5).

The pairs are (6, 13), (8, 12), (10,15).

In particular, they constructed (hooked) Skolem sequences of order n by adjoining

a (hooked) Skolem sequence of a smaller order with a (hooked) Langford sequence,

which produced the following two theorems, provided that the necessary conditions
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for the existence of two (hooked) Skolem sequences of small orders with 0, 1, . . . , n−3,

n pairs in common were sufficient.

Theorem 2.4.7 [32] The necessary conditions are sufficient for two Skolem se-

quences of order n to have 0, 1, . . . , n− 3 and n pairs in the same positions.

Theorem 2.4.8 [32] The necessary conditions are sufficient for two hooked Skolem

sequences of order n to have 0, 1, . . . , n− 3 and n pairs in the same positions.

Shalaby and Silvesan used these results to the fine structure of a cyclic three-fold

triple system and a cyclic four-fold triple system for v ≡ 13, 19(mod 24). Finally, they

extended these results to the fine structure of a cyclic Mendelsohn triple system. In

addition to the results of Shalaby and Silvesan above, Silvesan [35] proved that there

exist two cyclic Steiner triple systems of order 6n+1 intersecting in 0, 1, 2, . . . , n base

blocks, and there exist two cyclic Steiner triple systems of order 6n + 3 intersecting

in 1, 2, . . . , n + 1 base blocks.

In [19], the authors presented several constructions for Skolem and Rosa rectan-

gles that produced several results for disjoint (hooked) Skolem sequences, as well as

disjoint (hooked) Rosa sequences. We state these results, and refer the reader to

reference [19] for the required constructions.

Theorem 2.4.9 [19] If n > 1 and n ≡ 0, 1(mod 4), then there exist at least
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blog3(2n + 9)c − 1 disjoint Skolem sequences of order n.

Theorem 2.4.10 [19] If n > 13 and n ≡ 2, 3(mod 4), then there exist at least

blog3(2n + 9)c − 2 disjoint hooked Skolem sequences of order n.

As a result of Theorem 2.4.9 and Theorem 2.4.10, the authors of [19] produced

two applications, namely disjoint and simple cyclic triple systems, and introduced

Theorem 2.4.11 and Theorem 2.4.12.

Theorem 2.4.11 [19] If n > 1, n ≡ 0, 1(mod 4) and m = 2blog3(2n + 9)c− 2, then

there exist at least m disjoint STS(6n + 1).

Theorem 2.4.12 [19] If n > 13, n ≡ 2, 3(mod 4) and m = 2blog3(2n − 9)c − 4,

then there exist at least m disjoint STS(6n + 1).

The authors added the disjoint base blocks of the constructions that they found

in [19], and obtained the following results:

Theorem 2.4.13 [19] If n > 1, and m = 2blog3(2n + 9)c − 2, then there exists a

simple cyclic triple system CSTSλ(6n + 1) for 1 6 λ 6 m.

Theorem 2.4.14 [19] If n > 1, and m = 2blog3(2n − 9)c − 4, then there exists a

simple cyclic triple system CSTSλ(6n + 1) for 1 6 λ 6 m.
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We present the known results of direct constructions of Skolem and Rosa rectangles

[19].

Theorem 2.4.15 [19] If n > 20 and n ≡ 0(mod 4), then there exist six mutually

disjoint Skolem sequences (i.e., a 6× n Skolem rectangle).

It was shown in the proof of Theorem 2 given in [2] that there exists at least

four mutually disjoint Skolem sequences of order n ≡ 0(mod 4). We present two

reverse-disjoint Skolem sequences from the construction given in [19] that are disjoint

with the four given in [2]. We follow the constructions of the proof of Theorem 2.4.16

given in [19]. We obtain S1 and S2.

Example 2.4.5 Let S1 = (15, 13, 11, 9, 7, 5, 3, 19, 17, 3, 5, 7, 9, 11, 13, 15, 20, 18, 16, 12,

10, 8, 6, 4, 14, 17, 19, 4, 6, 8, 10, 12, 1, 1, 16, 18, 20, 2, 14, 2) be a Skolem sequence

of order 20. We notice that S1 is a reverse-disjoint sequence, so we obtain S2 =

(2, 14, 2, 20, 18, 16, 1, 1, 12, 10, 8, 6, 4, 19, 17, 14, 4, 6, 8, 10, 12, 16, 18, 20, 15, 13, 11, 9, 7, 5,

3, 17, 19, 3, 5, 7, 9, 11, 13, 15), a Skolem sequence of order 20. Thus, S1 and S2 are

disjoint Skolem sequences of order 20. Therefore, we have now two Skolem sequences

S1 and S2 that are disjoint with the four given in [2].

Theorem 2.4.16 [19] If n > 20 and n ≡ 1(mod 4), then there exist six mutually

disjoint Skolem sequences (i.e., a 6× n Skolem rectangle).
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Theorem 2.4.17 [19] If n > 20 and n ≡ 2(mod 4), then there exist five mutually

disjoint hooked Skolem sequences (i.e., a 5× n hooked Skolem rectangle).

It was shown in the proof of Theorem 4 given in [2] that there exists at least

three mutually disjoint hooked Skolem sequences of order n ≡ 2(mod 4). We present

another three sequences from the construction given in [19] that are disjoint from the

sequences given in [2]. In the following example, we follow the constructions of the

proof of Theorem 2.4.18 given in [19] and obtain the sequences hS1, hS2 and hS3.

Example 2.4.6 The following are three hooked Skolem sequences of order 22.

hS1 = (17, 15, 1, 1, 11, 9, 7, 5, 3, 21, 19, 3, 5, 7, 9, 11, 15, 17, 13, 22, 20, 18, 16, 14, 12,

10,8,6,4,19,21,13,4,6,8,10,12,14,16,18,20,22,2,0,2),

hS2 = (2, 3, 2, 19, 3, 15, 13, 11, 9, 1, 1, 5, 22, 20, 7, 17, 5, 9, 11, 13, 15, 7, 19, 21, 18, 16,

14,12,10,8,6,4,17,20,22,4,6,8,10,12,14,16,18,0,21),

and hS3 = (3, 4, 2, 3, 2, 4, 18, 16, 12, 10, 8, 6, 14, 22, 20, 21, 12, 6, 8, 10, 12, 1, 1, 16, 18,

19,14,15,13,11,9,7,5,17,20,22,21,5,7,9,11,13,15,0,19).

Theorem 2.4.18 [19] If n > 20 and n ≡ 3(mod 4), then there exist five mutually

disjoint hooked Skolem sequences (i.e., a 5× n hooked Skolem rectangle).

As a result of the previous four theorems, the authors of [19] produced disjoint

and simple cyclic triple systems for the smaller orders.
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Theorem 2.4.19 [19] For all v ≡ 1(mod 6) and v > 37, there exists a simple cyclic

triple system CSTSλ(v), for 1 6 λ 6 10.

Theorem 2.4.20 [19] For all v ≡ 1, 7(mod 24) and v > 49, there exists a simple

cyclic triple system CSTSλ(v), for 1 6 λ 6 12.

In [19], the authors also produced several theorems of disjoint Rosa sequences,

which we present as follows.

Theorem 2.4.21 [19] If n > 44 and n ≡ 0, 3(mod 4), then there exist at least

blog3(2n + 9)c − 2 disjoint Rosa sequences of order n.

Theorem 2.4.22 [19] For n ≡ 0(mod 4), there exist four mutually disjoint Rosa

sequences (i.e., a 4× n Rosa rectangle).

The four required mutually disjoint Rosa sequences are presented in tables given

in [19]. We present two reverse-disjoint sequences obtained from the constructions

given in [19].

Example 2.4.7 We have R1 = (18, 16, 14, 12, 10, 8, 6, 4, 2, 19, 2, 4, 6, 8, 10, 12, 14, 16,

18, 20, 0, 17, 15, 13, 9, 7, 5, 3, 19, 11, 3, 5, 7, 9, 1, 1, 13, 15, 17, 20, 11) and

R2 = (19, 17, 15, 13, 11, 9, 7, 5, 3, 20, 12, 3, 5, 7, 9, 11, 13, 15, 17, 19, 0, 18, 12, 14, 16, 10,

8, 6, 4, 20, 1, 1, 4, 6, 8, 10, 2, 14, 2, 18, 16), which are two Rosa sequences of order 20. We

41



notice that R1 and R2 are reverse-disjoint Rosa sequences of order 20. Thus, we have

four mutually disjoint Rosa sequences of order 20.

Theorem 2.4.23 [19] For n ≡ 3(mod 4), and n > 20 there exists four mutually

disjoint Rosa sequences (i.e., a 4× n Rosa rectangle).

Finally, the authors in [19] produced results of near disjoint and near simple cyclic

triple systems by using the constructions for Rosa rectangles.

Theorem 2.4.24 [19] For all v ≡ 3, 21(mod 24) and v > 39, there exist 8 mutually

near disjoint cyclic STS(v).
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Chapter 3

Disjoint (hooked) near-Skolem

sequences

In this chapter, we prove that there exist disjoint hooked near-Skolem sequences

of order n and defect m. We prove eight new cases of disjoint hooked near-Skolem

sequences and we constructed tables for each case.

3.1 Introduction

Shalaby [28], [30] derived the necessary conditions for the existence of (hooked) near-

Skolem sequences of order n and defect m, and he proved that the necessary conditions
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are sufficient. Baker and Shalaby [2] proved the existence of disjoint near-Skolem

sequences of order n and defect m when they reversed m-near Skolem sequences and

found that the sequences were reverse-disjoint except for the first case. We complete

some of the missing small cases. For hooked near-Skolem sequences, we produce

new constructions and prove that these constructions are disjoint with the known

constructions given in [28]. We reverse Langford sequences for the small cases of

(hooked) near-Skolem sequences. We refer the reader to Chapter 2 for the definitions

of (hooked) near-Skolem sequences and (hooked) Langford sequences.

In 1981, Stanton and Goulden [39] introduced near-Skolem sequences to construct

cyclic Steiner triple systems. They focused on a set of n − 1 pairs (P (1, n) \ m),

where each integer of {1, 2, . . . , 2n − 2} occurs exactly once and each integer of

{1, 2, . . . , m − 1,m + 1, . . . , n} occurs as a difference exactly once. For example,

(5, 6, 1, 1, 4, 5, 3, 6, 4, 3) is a 2-near-Skolem sequence of order 6, and this sequence cor-

responds to the pairs (P (1, 6) \ 2) that can be written as (3, 4), (7, 10), (5, 9), (1, 6)

and (2, 8). In 1982, Billington [6] studied near-Skolem sequences to obtain several

types of designs.

In 1987, Billington [5] conjectured that the necessary conditions are sufficient for

the existence of extended Skolem sequences. Baker [1] proved that the necessary

conditions are sufficient for the existence of extended Skolem sequences.
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3.2 Necessity

In this section, we briefly present the necessary conditions for the existence of (hooked)

near-Skolem sequences of order n and defect m.

Theorem 3.2.1 [28] An m-near-Skolem sequence of order n, m 6 n, exists if and

only if n ≡ 0, 1(mod 4) and m is odd, or n ≡ 2, 3(mod 4) and m is even.

Proof [28]

n∑
r=1

(i + j) = 2n2 − 3n + 1, such that r 6= m, r = si = sj, . . . (1)

n∑
r=1

(j − i) = n(n+1)
2

−m, . . . (2)

By subtracting (2) from (1) yields:

2
n∑

r=1

i = 3n2−7n+2m+2
2

. So,
n∑

r=1

i = n(3n−7)+2(m+1)
4

, therefore n(3n−7)+2(m+1)
4

must

be an integer. If we solve for n and m we obtain the conditions of Theorem

3.2.1.

¥

Theorem 3.2.2 [28] A hooked m-near-Skolem sequence of order n, m 6 n exists if

and only if n ≡ 0, 1(mod 4) and m is even or n ≡ 2, 3(mod 4) and m is odd.

Proof The proof for the case of a hooked near-Skolem sequence is similar to the

proof above. We have:
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n∑
r=1

(i + j) = 2n2 − 3n + 2, such that r 6= m, r = si = sj, . . . (1)

n∑
r=1

(j − i) = n(n+1)
2

−m, . . . (2)

By subtracting (2) from (1) we obtain:

2
n∑

r=1

i = 3n2−7n+4+2m
2

. This implies that n(3n−7)+2(m+2)
4

must be an integer. We

obtain the conditions of Theorem 3.2.2 by solving for n and m.

¥

3.3 Sufficiency

In this section, we prove that the previously stated necessary conditions are also

sufficient for the existence of two disjoint hooked near-Skolem sequences of order

n and defect m. We provide eight new constructions in the form of tables with the

difference i for i = 1, 2, . . . , m−1,m+1, . . . , n and the positions of ai and bi, that yield

hooked near-Skolem sequences of order n and defect m. In addition, we observe that

these eight new constructions are disjoint with the known constructions for hooked

near-Skolem sequences of order n and defect m given in [28]. We refer the readers

to see reference [28] for the known constructions of (hooked) near-Skolem sequences.

We will prove the disjointness only for Case 1 of hooked near-Skolem sequences as

the proofs of other cases are similar.
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As we previously mentioned, Baker and Shalaby [2] proved that the reverse of near-

Skolem sequences is disjoint, except for two cases, and they proved reverse-disjoint

constructions for those cases. We provide the construction only for the first case with

the correction for the small case when m = n− 1.

Theorem 3.3.1 [28] The necessary conditions for the existence of an m-near-

Skolem sequence of order n are sufficient.

Theorem 3.3.2 [28] The necessary conditions for the existence of a hooked m-near-

Skolem sequence of order n are sufficient.

Lemma 3.3.3 [28] The existence of a Skolem sequence of order t, t ≡ 0, 1(mod 4)

implies the existence of a (t + 1)-near-Skolem sequence of order q, where q > 3t + 4,

and:

(1) If t ≡ 0(mod 4) then q ≡ 2, 3(mod 4),

(2) If t ≡ 1(mod 4) then q ≡ 0, 1(mod 4).

Shalaby [28] proved eight cases yield m-near-Skolem sequences of order n and

defect m and another eight cases yield hooked m-near-Skolem sequences of order n

and defect m. He produced Lemma 3.3.3 to prove the small cases of (hooked) near-

Skolem sequences. The idea of the this lemma is attaching a Skolem sequence of

order n at the left of a hooked Langford sequence of order n and defect d to obtain a
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hooked near-Skolem sequences of order n and defect m. For example, let S = (1, 1)

be a Skolem sequence of order 1, and let hL = (8, 3, 5, 7, 3, 4, 6, 5, 8, 4, 7, 0, 6) be a

hooked Langford sequence of order n = 6 and defect d = 2. We attach the sequence

S with the sequence hL to obtain hS = (1, 1, 8, 3, 5, 7, 3, 4, 6, 5, 8, 4, 7, 0, 6), which is a

hooked near-Skolem sequence of order 8 and defect 2.

Theorem 3.3.4 [2] For all n > 4, m, n satisfying the conditions of Theorem 3.2.1

there exists reverse-disjoint m-near-Skolem sequences of order n.

We produce a construction for Case 1 that gives a near-Skolem sequence of or-

der n and defect m and we prove that this construction is disjoint with the known

construction that we will show in Table 3.3.

Remark 3.3.1 We will only verify Case 1 of a near-Skolem sequence and omit the

verifications of the other cases as they are similar.

Proof Necessity was proved in Theorem 3.2.1.

Case 1: n ≡ 0(mod 8). For this case we give two subcases, when t 6= 4s − 1 and

when t = 4s− 1.

For m = 1, the reverse of the Langford sequence with d = 2 gives the 1-near-Skolem

sequence. For n ≥ m > 1 , let n = 8s, m = 2t + 1. Table 3.1 illustrates when

t 6= 4s − 1. Skip row (3) when s = 1, row (9) when s = 1 and row (8) when s = 2.
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row numbers i ai bi

(1) 8s− 2r − 1 r + 1 8s− r 0 6 r 6 4s− t− 2
(2) 1 4s + t 4s + t + 1
(3) 2t− 2r − 1 4s− t + r 4s + t− 1− r 0 6 r 6 t− 2
(4) 8s− 2r 4s− 1 + r 12s− 1− r 0 6 r 6 1
(5) 2 14s− 2 14s
(6) 8s− 4r 8s + 2r − 1 16s− 1− 2r 1 6 r 6 2s− 1
(7) 4s− 2 8s + 2 12s
(8) 4s− 4r − 2 10s + 2r 14s− 2− 2r 1 6 r 6 s− 2
(9) 8s− 4r − 2 8s + 2 + 2r 16s− 2r 1 6 r 6 s− 1

Table 3.1: A construction of disjoint near-Skolem sequences of order n and defect m

row numbers i ai bi

(1) 8s− 4r − 2 7s + 2r − 1 15s− 3− 2r 1 6 r 6 s− 1
(2) 1 16s− 3 16s− 2
(3) 4s− 2 12s− 3 16s− 5
(4) 8s− 4r 8s− 2 + 2r 16s− 2− 2r 1 6 r 6 2s− 1
(5) 2 10s− 3 10s− 1

Table 3.2: A construction of disjoint near-Skolem sequences of order n and defect m

Table 3.2 illustrates when t = 4s− 1.
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To verify that the construction of Table 3.1 provides near-Skolem sequences, it

must be shown that each element of {1, 2, . . . , 2n−2} appears in a pair (ai, bi) exactly

once where i 6= m and m is the defect, and that the differences bi− ai are exactly the

elements {1, 2, . . . , m− 1,m + 1, . . . , n}. Considering the pairs (ai, bi), it is clear that

there are n = 8s such pairs, and so there are exactly 2n − 2 = 16s − 2 positions ai

and bi. Thus, if every element of {1, 2, . . . , 2n− 2} = {1, 2, . . . , 16s− 2} occurs in one

of these pairs, each of these elements must occur exactly once. When t > 1, we have

the elements 1, 2, . . . , 4s− t−1 occur in the pairs (r+1, 8s−r) for 0 ≤ r ≤ 4s− t−2,

from row (1). The elements 4s+t+2, 4s+t+3, . . . , 8s occur in the pairs (r+1, 8s−r)

for 0 6 r 6 4s− t− 2, from row (1). The elements 4s− t, 4s− t + 1, . . . , 4s− 2 occur

in the pairs (4s − t + r, 4s + t − 1 − r) for 0 6 r 6 t − 2, from row (3). Also, the

elements 4s + 1, 4s + 2, . . . , 4s + t − 1 occur in the pairs (4s − t + r, 4s + t − 1 − r)

for 0 6 r 6 t− 2, from row (3). In row (4), the elements 4s− 1, 4s occur in the pairs

(4s− 1 + r, 12s− 1− r) for 0 6 r 6 1 and the elements 12s− 2, 12s− 1 occur in the

pairs (4s− 1 + r, 12s− 1− r) for 0 6 r 6 1. The elements 8s + 1, 8s + 3, . . . , 12s− 3

occur in the pairs (8s + 2r − 1, 16s− 1− 2r) for 1 6 r 6 2s− 1, from row (6). The

elements 12s + 1, 12s + 3, . . . , 16s − 3 occur in the pairs (8s + 2r − 1, 16s − 1 − 2r)

for 1 6 r 6 2s − 1, from row (6). The elements 10s + 2, 10s + 4, . . . , 12s − 4 occur

in the pairs (10s + 2r, 14s − 2 − 2r) for 1 6 r 6 s − 2, from row (8). The elements
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12s+2, 12s+4, . . . , 14s−4 occur in the pairs (10s+2r, 14s−2−2r) for 1 6 r 6 s−2,

from row (8). The elements 8s+4, 8s+6, . . . , 10s occur in the pairs (8s+2+2r, 16s−2r)

for 1 6 r 6 s− 1, from row (9). The elements 14s + 2, 14s + 4, . . . , 16s− 2 occur in

the pairs (8s + 2 + 2r, 16s − 2r) for 1 6 r 6 s − 1, from row (9). Both 4s + t and

4s + t + 1 are given in the pair (4s + t, 4s + t + 1) in row (2). Both 8s + 2 and 12s

are given in the pair (8s + 2, 12s) in row (7). Both 14s− 2 and 14s are given in the

pair (14s− 2, 14s) in row (5).

Now, we verify that the differences bi − ai = i where i 6= m give the values

1, 2, . . . , 8s exactly once. 1 = (4s + t + 1) − (4s + t) is the difference of bi − ai,

and occurs in row (2). The difference (8s − r) − (r + 1) = 8s − 2r − 1 for 0 6

r 6 4s− t− 2 in row (1) gives the numbers 2t + 3, 2t + 5, . . . , 8s− 1. The difference

(4s+t−1−r)−(4s−t+r) = 2t−2r−1 for 0 6 r 6 t−2 in row (3) gives the numbers

3, 5, . . . , 2t−1. The difference (12s−1−r)−(4s−1+r) = 8s−2r for 0 6 r 6 1 in row

(4) gives the numbers 8s−2, 8s. The difference (16s−1−2r)−(8s+2r−1) = 8s−4r

for 1 6 r 6 2s − 1 in row (6) gives the numbers 4, 8, . . . , 8s − 4. The difference

(14s−2−2r)−(10s+2r) = 4s−4r−2 for 1 6 r 6 s−2 in row (8) gives the numbers

6, 10, . . . , 4s−6. The difference (16s−2r)−(8s+2+2r) = 8s−4r−2 for 1 6 r 6 s−1

in row (9) gives the numbers 4s + 2, 4s + 6, . . . , 8s − 6. 2 = (14s) − (14s − 2) is the

difference of bi − ai, and occurs in row (5). Also, 4s − 2 = (12s) − (8s + 2) is the
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difference of bi − ai, and occurs in row (7). The verification is complete so that the

construction above yields near-Skolem sequences.

The same argument holds for Table 3.2, which covers the case when t = 4s − 1.

The elements 7s+1, 7s+3, . . . , 9s−3 occur in the pairs (7s+2r−1, 15s−3−2r) for

1 6 r 6 s− 1 in row (1). The elements 13s− 1, 13s+1, . . . , 15s− 5 occur in the pairs

(7s+2r−1, 15s−3−2r) for 1 6 r 6 s−1 in row (1). The elements 8s, 8s+2, . . . , 12s−4

occur in the pairs (8s+2r−2, 16s−2−2r) for 1 6 r 6 2s−1 in row (4). The elements

(12s, 12s+2, . . . , 16s−4) occur in the pairs (8s+2r−2, 16s−2−2r) for 1 6 r 6 2s−1

in row (4). Both elements 16s− 3, 16s− 2 are given by the pair (16s− 3, 16s− 2) in

row (2). Both elements 12s − 3, 12s − 5 are given by the pair (12s − 3, 12s − 5) in

row (3). Both elements 10s − 3, 10s − 1 are given by the pair (10s − 3, 10s − 1) in

row (5). The difference (16s − 2) − (16s − 3) = 1 occurs in row (2). The difference

(16s−5)−(12s−3) = 4s−2 occurs in row (3). The difference (10s−1)−(10s−3) = 2

occurs in row (5). The difference (15s − 2r − 3) − (7s + 2r − 1) = 8s − 4r − 2 for

1 6 r 6 s− 1 gives the numbers 4s + 6, 4s + 10, . . . , 8s− 6 in row (1). The difference

(16s − 2r − 2) − (8s + 2r − 2) = 8s − 4r for 1 6 r 6 2s − 1 gives the numbers

4, 8, . . . , 8s− 4 in row (4).

Finally, we check the reverse. The reverse is similar because we replace every

difference bi − ai by −(ai − bi). We conclude that the differences and their reverses
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appear.

Now, we show the known construction that is given by Shalaby in [28] for the

same case when n ≡ 0(mod 8).

For m = 1, the 1-near-Skolem sequence is a Langford sequence with d = 2 introduced

in [11] and [25], so we skip all the subsequent cases when m = 1.

For n > m > 1, let n = 8s, m = 2t + 1. The required table is:
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row numbers i ai bi

(1) 8s− 2r − 1 8s + r − 1 16s− r − 2 0 6 r 6 4s− t− 2
(2) 1 12s− t− 2 12s− t− 1
(3) 2t− 2r − 1 12s− t + r 12s + t− r − 1 0 6 r 6 t− 2
(4) 8s− 2r 4s + r 12s− r 0 6 r 6 1
(5) 2 2s− 1 2s + 1
(6) 8s− 4r 2r 8s− 2r 1 6 r 6 2s− 1
(7) 4s− 2 4s− 1 8s− 3
(8) 4s− 4r − 2 2s + 2r + 1 6s− 2r − 1 1 6 r 6 s− 2
(9) 8s− 4r − 2 2r − 1 8s− 2r − 3 1 6 r 6 s− 1

Table 3.3: A construction of disjoint near-Skolem sequences of order n and defect m

The construction above yields near-Skolem sequences. We conclude that Table

3.1, Table 3.2 and Table 3.3 are disjoint. To check the disjointness, we observe that

most of the even numbers occupy the positions 1, . . . , n − 2 in Table 3.3. When we

reverse them in Table 3.1 and Table 3.2, they occupy the positions n + 1, . . . , 2n− 2,

showing that they do not occupy the same positions. Most of the odd numbers occupy

the positions n− 1, . . . , 2n− 2 in Table 3.3. When we reverse these in Table 3.1 and

Table 3.2, they occupy the positions 1, . . . , n, showing that they do not occupy the

same positions.

We also observe that m1, m2 are not in conflict in the two sequences. For the case

when m = n − 1. If we reverse the sequence for m = n − 1 in Table 3.3, it will not
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be disjoint because there will be one pair in common, namely the pair for element 1.

In order to make the sequence disjoint, we reverse it and then reverse the elements

in the positions n− 1, . . . , 2n− 2 again, but we keep the two largest even numbers in

their positions. The pair for element 1 occupies the positions 2n− 3 and 2n− 2 and

most of the even numbers will occupy the positions n− 1, . . . , 2n− 4. Thus, the two

sequences are disjoint.

Case 2: n ≡ 1(mod 8).

The constructions and solutions for the small cases for Case 2 of Theorem 3 given

in [28] are reverse-disjoint.

Case 3: n ≡ 2(mod 8).

The constructions and solutions for the small cases for Case 3 of Theorem 3 given

in [28] are reverse-disjoint except for n = 10 and 10 > m > 4, we provide the following

disjoint sequences.

For n = 10 and m = 4, we have (5, 10, 8, 6, 9, 5, 2, 7, 2, 6, 8, 10, 3, 9, 7, 3, 1, 1).

For n = 10 and m = 6, we have (5, 10, 8, 4, 2, 5, 2, 4, 9, 7, 8, 10, 3, 1, 1, 3, 7, 9).

For n = 10 and m = 8, we have (10, 6, 4, 2, 9, 2, 4, 6, 3, 7, 10, 3, 5, 9, 1, 1, 7, 5).

For n = 10 and m = 10, it is a Skolem sequence of order 9 which exists by Skolem [38].

Case 4: n ≡ 3(mod 8).

Baker and Shalaby [2] proved constructions that are reverse-disjoint. The construc-
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tions for the small cases for Case 4 of Theorem 3 given in [28] are reverse-disjoint

except for n = 3, m = 2, and for n = 11, 11 > m > 4.

For n = 3 and m = 2 we provide disjoint sequence (3, 1, 1, 3). For n = 11 and

11 > m > 4 we also provide the following disjoint sequences.

For n = 11 and m = 4, we have (10, 8, 6, 11, 9, 7, 1, 1, 6, 8, 10, 5, 7, 9, 11, 3, 5, 2, 3, 2).

For n = 11 and m = 6, we have (10, 8, 4, 11, 9, 7, 4, 1, 1, 8, 10, 5, 7, 9, 11, 3, 5, 2, 3, 2).

For n = 11 and m = 8, we have (10, 6, 4, 11, 9, 7, 4, 6, 1, 1, 10, 5, 7, 9, 11, 3, 5, 2, 3, 2).

For n = 11 and m = 10, we have (8, 6, 4, 2, 11, 2, 4, 6, 8, 9, 7, 1, 1, 3, 5, 11, 3, 7, 9, 5).

Case 5: n ≡ 4(mod 8).

The constructions and solutions for the small cases for Case 5 of Theorem 3 in [28]

are reverse-disjoint.

Case 6: n ≡ 5(mod 8).

The constructions and solutions for the small cases for Case 6 of Theorem 3 in [28]

are reverse-disjoint.

Case 7: n ≡ 6(mod 8).

The constructions and solutions for the small cases for Case 7 of Theorem 3 in [28]

are reverse-disjoint.

Case 8: n ≡ 7(mod 8). The constructions and solutions for the small cases for Case

8 of Theorem 3 in [28] are reverse-disjoint.
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This completes the proof of Theorem 3.3.4 ¥

Theorem 3.3.5 For all n > 4, m,n satisfying the conditions of Theorem 3.2.2, there

exist disjoint hooked m-near-Skolem sequences of order n.

We produce cases for hooked m-near-Skolem sequences of order n and prove that

these sequences are disjoint with hooked m-near-Skolem sequences given in [28]. We

show the construction for Case 1 of a hooked near-Skolem sequence and verify that

this construction yields hooked m-near-Skolem sequences of order n, and also verify

that this construction is disjoint with the known construction for the same case given

in [28]. We will omit the verifications of the remaining constructions since their

verifications are similar to the one we will show and we only provide the constructions

that we produced for disjoint hooked m-near-Skolem sequences of order n.

Proof .

Case 1: n ≡ 0(mod 8)

For hooked near-Skolem sequences with m = 2 and m = 4, we use the reverse of the

Langford sequence in [36] when d = 4s+1, s > 1, t > 2s+1,(where t is odd numbers

only). This gives the solutions for all the cases when n > 16. We add the sequence

(4, 1, 1, 3, 4, 0, 3) when m = 2 and the sequence (3, 1, 1, 3, 2, 0, 2) when m = 4. We

provide the cases of n = 8.
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row numbers i ai bi

(1) 8s− 2r 8s− 3 + r 16s− 3− r 0 6 r 6 4s− t− 1
(2) 2t− 2− 2r 12s− t− 1 + r 12s + t− 3− r 0 6 r 6 t− 4
(3) 1 12s− t− 3 12s− t− 2
(4) 3 12s− 4 12s− 1
(5) 8s + 1− 2r 4s− 2 + r 12s− 1− r 1 6 r 6 2
(6) 4s− 1 12s 16s− 1
(7) 4s− 3− 4r 2s + 2r 6s− 3− 2r 0 6 r 6 s− 2
(8) 4s− 5− 4r 2s + 3 + 2r 6s− 2− 2r 0 6 r 6 s− 3
(9) 2 2s− 1 2s + 1
(10) 4 4s− 2 4s + 2
(11) 8s− 2r − 5 r + 1 8s− 4− r 0 6 r 6 2s− 3

Table 3.4: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

For n = 8 and m = 2, we have (8, 4, 1, 1, 6, 4, 5, 7, 8, 3, 6, 5, 3, 0, 7).

For n = 8 and m = 4, we have (8, 1, 1, 2, 6, 2, 5, 7, 8, 3, 6, 5, 3, 0, 7).

For n = 8 and m = 6, we have (3, 7, 4, 3, 8, 2, 4, 2, 7, 5, 1, 1, 8, 0, 5).

For n = 8 and m = 8, it is a hooked Skolem sequence of order 7 which exists by

O’Keefe [24]. For n > m > 4 and n > 8, let n = 8s and m = 2t, Table 3.4 is the

required construction.
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Skip row (8) when s = 2, skip row (2) when t = 3. To verify that the above

construction provides hooked near-Skolem sequences of order n and defect m, it must

be shown that each element of {1, 2, . . . , 2n−1} appears in a pair (ai, bi) exactly once

where i 6= m and m is the defect, and that the differences bi − ai are exactly the

elements 1, 2, . . . , n − 1. Now consider the pairs (ai, bi) for i = 1, 2, . . . , n. It is easy

to check that there are n = 8s such pairs, and so there are exactly 2n− 1 = 16s− 1

positions ai and bi. Thus, if every element of {1, 2, . . . , 2n − 1} = {1, 2, . . . , 16 − 1}

occurs in one of these pairs, each of these elements must occur exactly once. When

t > 1, we have the elements 8s − 3, 8s − 2, . . . , 4s − t − 4, which occur in the pairs

(8s − 3 + r, 16s − 3 − r) for 0 6 r 6 4s − t − 1, from row (1). The elements

12s + t − 2, 12s + t − 1, . . . , 16s − 3 occur in the pairs (8s − 3 + r, 16s − 3 − r) for

0 6 r 6 4s− t− 1, from row (1). The elements 12s− t− 1, 12s− t, . . . , 12s− 5 occur

in the pairs (12s− t− 1+ r, 12s+ t− 3− r) for 0 6 r 6 t− 4, from row (2). Also, the

elements 12s+1, 12s+2, . . . , 12s+t−3 occur in the pairs (12s−t−1+r, 12s+t−3−r)

for 0 6 r 6 t− 4, from row (2). In row (5), while the elements 4s− 1, 4s occur in the

pairs (4s − 2 + r, 12s − 1 − r) for 1 6 r 6 2, the elements 12s − 2, 12s − 3 occur in

the pairs (4s− 2 + r, 12s− 1− r) for 0 6 r 6 1. The elements 2s, 2s + 2, . . . , 4s− 4

occur in the pairs (2s+2r, 6s− 3− 2r) for 0 6 r 6 s− 2, from row (7). The elements

4s+1, 4s+3, . . . , 6s−3 occur in the pairs (2s+2r, 6s−3−2r) for 0 6 r 6 s−2, from
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row (7). The elements 2s+3, 2s+5, . . . , 4s−3 occur in the pairs (2s+3+2r, 6s−2−2r)

for 0 6 r 6 s − 3, from row (8). The elements 4s + 4, 4s + 6, . . . , 6s − 2 occur in

the pairs (2s + 3 + 2r, 6s − 2 − 2r) for 0 6 r 6 s − 3, from row (8). The elements

1, 2, . . . , 2s − 2 occur in the pairs (1 + r, 8s − 4 − r) for 0 6 r 6 2s − 3, from row

(11). The elements 6s − 1, 6s, . . . , 8s − 4 occur in the pairs (1 + r, 8s − 4 − r) for

0 6 r 6 2s − 3, from row (11). Both 12s − t − 3 and 12s − t − 2 are given in the

pairs (12s− t− 3, 12s− t− 2) in row (3). Both 8s + 2 and 12s are given in the pairs

(12s−4, 12s−1) in row (4). Both 12s and 16s−1 are given in the pairs (12s, 16s−1)

in row (6). Both 2s− 1 and 2s + 1 are given in the pairs (2s− 1, 2s + 1) in row (9).

Both 4s− 2 and 4s + 2 are given in the pairs (4s− 2, 4s + 2) in row (10).

Now, we verify that the difference bi − ai = i where i 6= m gives the values

1, 2, . . . , 8s exactly once. 1 = (12s− t−2)− (12s− t−3) is a difference of bi−ai, and

occurs in row (3). 3 = (12s−1)−(12s−4) is a difference of bi−ai, and occurs in row (4).

The difference (16s−3−r)−(8s−3+r) = 8s−2r for 0 6 r 6 4s−t−1 in row (1) gives

the numbers 2t+2, 2t+4, . . . , 8s. The difference (12s+ t−3−r)− (12s− t−1+r) =

2t − 2r − 2 for 0 6 r 6 t − 4 in row (2) gives the numbers 6, 8, . . . , 2t − 2. The

difference (12s − 1 − r) − (4s − 2 + r) = 8s + 1 − 2r for 1 6 r 6 2 in row (5) gives

the numbers 8s − 3, 8s − 1. The difference (6s − 3 − 2r) − (2s + 2r) = 4s − 3 − 4r

for 0 6 r 6 s − 2 in row (7) gives the numbers 5, 9, . . . , 4s − 3. The difference
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(6s − 2 − 2r) − (2s + 3 + 2r) = 4s − 4r − 5 for 0 6 r 6 s − 3 in row (8) gives

the numbers 7, 11, . . . , 4s − 5. The difference (8s − 4 − r) − (1 + r) = 8s − 2r − 5

for 0 6 r 6 2s − 3 in row (11) gives the numbers 4s − 1, 4s − 3, . . . , 8s − 5. We

find that 2 = (2s + 1) − (2s − 1) is a difference of bi − ai, and occurs in row (9).

We have (16s − 1) − (12s) = 4s − 1 is a difference of bi − ai, and occurs in row (6).

4 = (4s+2)−(4s−2) is a difference of bi−ai, and occurs in row (10). The verification

is complete. Therefore, the construction above yields hooked near-Skolem sequences.

Now we provide the known construction that is given by Shalaby in [28] for the

same case when n ≡ 0(mod 8).

For m = 2, by Lemma 2(ii)(b) given in [28], the existence of the Skolem sequence

(1, 1) provides solutions for all the cases of n > 8.

For n > m > 2, let n = 8s, m = 2t, the required construction is:
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row numbers i ai bi

(1) 8s− 2r 1 + r 8s− r + 1 0 6 r 6 4s− t− 1
(2) 2t− 2− 2r 4s− t + r + 3 4s + t− r + 1 0 6 r 6 t− 3
(3) 1 4s− t + 1 4s− t + 2
(4) 8s + 1− 2r 4s + r 12s + 1− r 1 6 r 6 2
(5) 4s− 1 4s + 3 8s + 2
(6) 4s− 2r − 3 10s + 1 + r 14s− r − 2 0 6 r 6 2s− 3
(7) 8s− 4r − 5 8s + 4 + 2r 16s− 2r − 1 0 6 r 6 s− 2
(8) 2 14s− 1 14s + 1
(9) 8s− 4r − 7 8s + 2r + 3 16s− 2r − 4 0 6 r 6 s− 2

Table 3.5: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

The construction above yields hooked near-Skolem sequences of order n and defect

m. We conclude that Table 3.3.4 and Table 3.3.5 are disjoint. To check the disjoint-

ness, we observe that most of the even numbers occupy the positions 1, . . . , n− 10 in

Table 3.3.5. In Table 3.3.4 they occupy the positions n− 3, . . . , n + 1, and therefore,

they do not occupy the same positions in Table 3.3.5. Most of the odd numbers oc-

cupy the positions 2n−14, . . . , 2n−1 in Table 3.3.5, and the two largest odd numbers

occupy the positions n−7 and n−6. Most of the odd numbers in Table 3.3.4 occupy

the positions 1, . . . , n − 4, so they do not occupy the same positions in Table 3.3.5.

The two largest odd numbers in Table 3.3.4 occupy the positions n − 9 and n − 8.

The pair for element 1 appears in the positions n − 9 and n − 8 in Table 3.3.5. In
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Table 3.3.4, the pair of element 1 appears in the positions 2n− 14 and 2n− 13. Thus

both of the sequences are disjoint.

Case 2: n ≡ 1(mod 8).

For hooked near-Skolem sequences with m = 2 and m = 4, we use the reverse of the

Langford sequence in [36] when d = 4s + 2, s > 1, t > 2s + 1 (t is odd numbers

only). This gives the solutions for all of the cases when n > 17. We add the sequence

(5, 1, 1, 3, 4, 5, 3, 0, 4) when m = 2 and the sequence (5, 3, 1, 1, 3, 5, 2, 0, 2) when m = 4.

We provide the cases of n = 9.

For n = 9 and m = 2, we have (8, 4, 1, 1, 7, 4, 6, 9, 8, 5, 3, 7, 6, 3, 5, 0, 9).

For n = 9 and m = 4, we have (8, 1, 1, 2, 7, 2, 6, 9, 8, 5, 3, 7, 6, 3, 5, 0, 9).

For n = 9 and m = 6, we have (4, 2, 7, 2, 4, 5, 8, 9, 3, 7, 5, 3, 1, 1, 8, 0, 9).

For n = 9 and m = 8, we have (6, 4, 2, 7, 2, 4, 6, 9, 3, 5, 7, 3, 1, 1, 5, 0, 9).

For all n > m > 4 and n > 9, let n = 8s + 1 and m = 2t. The required construction

is.
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row numbers i ai bi

(1) 8s− 2r 8s− 1 + r 16s− 1− r 0 6 r 6 4s− t− 1
(2) 1 12s− t− 1 12s− t
(3) 2t− 2− 2r 12s− t + 1 + r 12s + t− 1− r 0 6 r 6 t− 4
(4) 4s + 1− 4r 2s− 1 + 2r 6s− 2r 0 6 r 6 s− 1
(5) 4s− 1− 4r 2s + 2 + 2r 6s + 1− 2r 0 6 r 6 s− 2
(6) 2 2s− 2 2s
(7) 4 4s− 1 4s + 3
(8) 8s + 1− 2r 4s + r 12s + 1− r 0 6 r 6 1
(9) 8s− 3− 2r r + 1 8s− 2− r 0 6 r 6 2s− 4
(10) 3 12s− 1 12s + 2
(11) 4s + 3 12s− 2 16s + 1

Table 3.6: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

Case 3: n ≡ 2(mod 8).

For a hooked near-Skolem sequence with m = 3, we use the reverse of the Langford

sequence in [36] when d = 4s − 1, s > 2, t > 2s (t is odd numbers only). This

gives the solutions for all of the cases when n > 26. We then add the sequence

(1, 1, 4, 5, 6, 2, 4, 2, 5, 0, 6). By using the same case of the reverse of the Langford

sequence when m = 1, the solutions of all the cases of n > 10 are given but t in this

case takes even numbers only. We add the sequence (2, 0, 2) to the reverse of the

Langford sequence. We provide all cases of n = 10 and n = 18.

For n = 10 and m = 3, we have (6, 1, 1, 4, 8, 9, 6, 4, 10, 7, 5, 2, 8, 2, 9, 5, 7, 0, 10).
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For n = 10 and m = 5, we have (10, 8, 6, 1, 1, 9, 7, 4, 6, 8, 10, 4, 3, 7, 9, 3, 2, 0, 2).

For n = 10 and m = 7, we have (4, 8, 6, 10, 4, 1, 1, 9, 6, 8, 5, 3, 6, 10, 3, 5, 9, 0, 6).

For n = 10 and m = 9, we have (7, 5, 3, 10, 8, 3, 5, 7, 6, 1, 1, 4, 8, 10, 6, 4, 2, 0, 2).

For n = 18 and m = 1, we have,

(3, 4, 8, 3, 10, 4, 6, 18, 16, 14, 8, 2, 6, 2, 10, 17, 15, 13, 11, 9, 7, 5, 12, 14, 16, 18, 5, 7, 9, 11,

13, 15, 17, 0, 12).

For n = 18 and m = 3, we have,

(3, 12, 10, 3, 2, 6, 2, 18, 16, 14, 4, 6, 10, 12, 4, 17, 15, 13, 11, 9, 7, 1, 1, 14, 16, 18, 8, 7, 9, 11,

13, 15, 17, 0, 8).

For n = 18 and m = 5, we have,

(18, 16, 14, 12, 10, 8, 6, 4, 17, 15, 13, 4, 6, 8, 10, 12, 14, 16, 18, 11, 1, 1, 9, 13, 15, 17, 2, 7, 2,

3, 11, 9, 3, 0, 7).

For n = 18 and m = 7, we have,

(10, 1, 1, 3, 5, 8, 3, 18, 16, 5, 10, 12, 2, 8, 2, 17, 15, 13, 11, 9, 14, 6, 4, 12, 16, 18, 4, 6, 9, 11, 13,

15, 17, 0, 14).

For n = 18 and m = 9, we have,

(7, 12, 10, 1, 1, 6, 4, 7, 18, 16, 4, 6, 10, 12, 8, 17, 15, 13, 11, 2, 14, 2, 8, 5, 3, 16, 18, 3, 5, 11, 13,

15, 17, 0, 14).

For n = 18 and m = 11, we have,
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(12, 2, 6, 2, 10, 1, 1, 18, 6, 4, 14, 8, 12, 4, 10, 17, 15, 13, 16, 8, 9, 7, 5, 3, 14, 18, 3, 5, 7, 9, 13, 15,

17, 0, 16).

For n = 18 and m = 13, we have,

(1, 1, 12, 10, 2, 6, 2, 18, 4, 8, 14, 6, 4, 10, 12, 17, 15, 8, 16, 11, 9, 7, 5, 3, 14, 18, 3, 5, 7, 9, 11, 15,

17, 0, 16).

For n = 18 and m = 15, we have,

(6, 10, 12, 2, 8, 2, 6, 1, 1, 16, 14, 10, 8, 4, 12, 17, 18, 4, 13, 11, 9, 7, 5, 3, 14, 16, 3, 5, 7, 9, 11, 13,

17, 0, 18).

For n = 18 and m = 17, we have,

(2, 10, 2, 12, 1, 1, 8, 6, 4, 16, 14, 10, 4, 6, 8, 12, 18, 15, 13, 11, 9, 7, 5, 3, 14, 16, 3, 5, 7, 9, 11, 13,

15, 0, 18).

For all n > m > 3 and n > 18, let n = 8s + 2 and m = 2t + 1, the required

construction is:
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row numbers i ai bi

(1) 8s− 2r + 1 8s + r 16s + 1− r 0 6 r 6 4s− t− 1
(2) 1 12s− t 12s− t + 1
(3) 2t− 1− 2r 12s− t + 2 + r 12s + t + 1− r 0 6 r 6 t− 3
(4) 4s− 2 2s + 1 6s− 1
(5) 3 2s− 1 2s + 2
(6) 4 2s 2s + 4
(7) 2 2s + 3 2s + 5
(8) 8s− 4− 2r 1 + r 8s− 3− r 0 6 r 6 2s− 3
(9) 4s− 2− 2r 4s + 2 + r 8s− r 1 6 r 6 2
(10) 4s− 8− 2r 2s + 6 + r 6s− 2− r 0 6 r 6 2s− 7
(11) 8s + 4− 2r 4s− 1 + r 12s + 3− r 1 6 r 6 3
(12) 4s 12s + 3 16s + 3

Table 3.7: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

Case 4: n ≡ 3(mod 8). For hooked near-Skolem sequences with m = 3 and

m = 1, we use the reverse of the Langford sequence in [36], d = 4s, s > 1, and t > 2s

(t is even numbers only). This gives the solutions for all the cases when n > 11.

We add the sequence (1, 1, 2, 0, 2) when m = 3 and the sequence (2, 3, 2, 0, 3) when

m = 1, to the reverse of the Langford sequence. We provide the remaining cases of

n = 11.

For n = 11 and m = 5, we have (6, 4, 2, 8, 2, 4, 6, 11, 9, 7, 10, 8, 3, 1, 1, 3, 7, 9, 11, 0, 10).

For n = 11 and m = 7, we have (6, 9, 3, 5, 8, 3, 6, 10, 5, 11, 9, 4, 8, 1, 1, 4, 2, 10, 2, 0, 11).
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For n = 11 and m = 9, we have (6, 7, 2, 8, 2, 4, 6, 11, 7, 4, 10, 8, 5, 3, 1, 1, 3, 5, 11, 0, 10).

For n = 11 and m = 11, it is a hooked Skolem sequences of order 10 which is existed

by O’Keefe [24].

For all n > m > 3, n > 11, let n = 8s + 3 and m = 2t + 1, the required construction

is:
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row numbers i ai bi

(1) 8s− 2r + 3 2 + r 8s + 5− r 0 6 r 6 4s− t
(2) 1 4s− t + 3 4s− t + 4
(3) 2t− 1− 2r 4s− t + 5 + r 4s + t + 4− r 0 6 r 6 t− 3
(4) 4s + 2 1 4s + 3
(5) 8s + 4− 2r 4s + 3 + r 12s + 7− r 1 6 r 6 3
(6) 2 10s + 2 10s + 4
(7) 8s− 4− 4r 8s + 2r + 7 16s + 3− 2r 0 6 r 6 s− 2
(8) 4s− 2r 10s + 5 + r 14s + 5− r 0 6 r 6 2s− 2
(9) 3 16s + 2 16s + 5
(10) 8s− 4r − 6 8s + 6 + 2r 16s− 2r 0 6 r 6 s− 3

Table 3.8: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

Case 5: n ≡ 4(mod 8). For a hooked near-Skolem sequence with m = 2, we use

the reverse of the Langford sequence in [36] when d = 4s + 1, s > 1, t > 2s + 1 (t is

even numbers). This gives the solutions for all the cases when n > 20. We add the

sequence (4, 1, 1, 3, 4, 0, 3) to the reverse of the Langford sequence. We provide the

remaining case of n = 12.

For n = 12 and m = 2, we have,

(5, 1, 1, 3, 11, 5, 3, 7, 12, 10, 8, 6, 4, 9, 7, 11, 4, 6, 8, 10, 12, 0, 9).

For n = 12 and m = 4, we have,

(2, 5, 2, 1, 1, 11, 5, 7, 12, 10, 8, 6, 3, 9, 7, 3, 11, 6, 8, 10, 12, 0, 9).
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For n = 12 and m = 6, we have,

(7, 3, 9, 11, 3, 1, 1, 7, 12, 10, 8, 9, 4, 2, 11, 2, 4, 5, 8, 10, 12, 0, 5).

For n = 12 and m = 8, we have,

(6, 4, 2, 9, 2, 4, 6, 7, 12, 10, 5, 11, 9, 3, 7, 5, 3, 1, 1, 10, 12, 0, 11).

For n = 12 and m = 10, we have,

(9, 5, 2, 4, 2, 7, 5, 4, 12, 9, 8, 11, 7, 6, 3, 1, 1, 3, 8, 6, 12, 0, 11).

For n = 12, m = 12, it is a hooked Skolem sequence of order 11 which is existed by

O’Keefe [24].

For n > m > 2 and n > 12, let n = 8s + 4 and m = 2t, the required construction is:
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row numbers i ai bi

(1) 8s + 4− 2r 8s + r 16s + 4− r 0 6 r 6 4s− t + 1
(2) 1 12s− t + 2 12s− t + 3
(3) 2t− 2− 2r 12s− t + 4 + r 12s + t + 2− r 0 6 r 6 t− 3
(4) 2 16s + 5 16s + 7
(5) 8s− 2r + 5 4s + r 12s + 5− r 1 6 r 6 3
(6) 3 2s + 1 2s + 4
(7) 8s− 3− 4r 1 + 2r 8s− 2− 2r 0 6 r 6 s− 1
(8) 8s− 5− 4r 4 + 2r 8s− 1− 2r 0 6 r 6 s− 1
(9) 4s− 7− 4r 2s + 6 + 2r 6s− 1− 2r 0 6 r 6 s− 3
(10) 4s− 5− 4r 2s + 3 + 2r 6s− 2− 2r 0 6 r 6 s− 3
(11) 4s− 3 2 4s− 1

Table 3.9: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

Case 6: n ≡ 5(mod 8). For a hooked near-Skolem sequence with m = 2, we use

the reverse of the Langford sequence in [36] when d ≡ 2(mod 4), d = 4s + 2, s > 1,

t > 2s + 1 (t takes even numbers only). This gives the solutions for all the cases of

n > 21. We add the sequence (5, 1, 1, 3, 4, 5, 3, 0, 4) to the reverse of the Langford

sequence. We provide the remaining cases of n = 5 and n = 13.

For n = 5 and m = 2, we have (5, 1, 1, 3, 4, 5, 3, 0, 4).

For n = 5 and m = 4, we have (5, 3, 1, 1, 3, 5, 2, 0, 2).

For n = 13 and m = 2, we have

(9, 5, 3, 13, 11, 3, 5, 1, 1, 9, 12, 10, 8, 6, 4, 11, 13, 7, 4, 6, 8, 10, 12, 0, 7). For all n > m > 2
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row numbers i ai bi

(1) 8s + 4− 2r 8s + r + 2 16s + 6− r 0 6 r 6 4s− t + 1
(2) 1 12s + t + 3 12s + t + 4
(3) 2t− 2− 2r 12s− t + 4 + r 12s + t + 2− r 0 6 r 6 t− 3
(4) 2 16s + 7 16s + 9
(5) 8s− 2r + 7 4s + r − 2 12s + 5− r 1 6 r 6 3
(6) 3 6s 6s + 3
(7) 8s− 1− 4r 1 + 2r 8s− 2r 0 6 r 6 s− 1
(8) 8s− 3− 4r 4 + 2r 8s + 1− 2r 0 6 r 6 s− 2
(9) 4s− 3− 4r 2s + 1 + 2r 6s− 2− 2r 0 6 r 6 s− 2
(10) 4s− 1− 4r 2s + 2 + 2r 6s + 1− 2r 0 6 r 6 s− 2
(11) 4s + 1 2 4s + 3

Table 3.10: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

and n > 5, let n = 8s + 5 and m = 2t, the required construction is Table 3.10:

Case 7: n ≡ 6(mod 8). For hooked near-Skolem sequences with m = 3 and m = 1,

we use the reverse of the Langford sequence in [36] when d = 4s − 1, s > 2, t > 2s

(t is even numbers only). This gives the solutions for all of the cases when n >

22. We add the sequence (5, 1, 1, 4, 6, 5, 2, 4, 2, 0, 6) when m = 3 and the sequence

(2, 5, 2, 4, 6, 3, 5, 4, 3, 0, 6) when m = 1 to the reverse of the Langford sequence. We

provide all of the cases when n = 6 and n = 14.

For n = 6 and m = 3, we have (2, 6, 2, 5, 1, 1, 4, 6, 5, 0, 4).

For n = 6 and m = 5, we have (3, 6, 4, 3, 1, 1, 4, 6, 2, 0, 2).
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For n = 14 and m = 3, we have

(4, 6, 1, 1, 4, 14, 12, 6, 2, 8, 2, 13, 11, 9, 7, 5, 10, 8, 12, 14, 5, 7, 9, 11, 13, 0, 10).

For n = 14 and m = 5, we have

(6, 4, 1, 1, 14, 4, 6, 8, 13, 11, 9, 7, 14, 10, 3, 8, 12, 3, 7, 9, 11, 13, 2, 10, 2, 0, 14).

For n = 14 and m = 7, we have

(3, 14, 5, 3, 6, 1, 1, 5, 10, 8, 6, 13, 11, 9, 12, 14, 4, 8, 10, 2, 4, 2, 9, 11, 13, 0, 12).

For n = 14 and m = 9, we have

(1, 1, 10, 6, 3, 14, 12, 3, 8, 6, 13, 11, 10, 4, 7, 5, 8, 4, 12, 14, 5, 7, 11, 13, 2, 0, 2).

For n = 14 and m = 11, we have

(1, 1, 2, 6, 2, 8, 4, 12, 10, 6, 4, 13, 14, 8, 9, 7, 5, 3, 10, 12, 3, 5, 7, 9, 13, 0, 14).

For n = 14 and m = 13, we have

(6, 10, 8, 4, 14, 12, 6, 4, 1, 1, 8, 10, 11, 9, 7, 5, 3, 12, 14, 3, 5, 7, 9, 11, 2, 0, 2).

For all n, m where n > m > 3 and n > 14, when n = 8s + 6 and m = 2t + 1, the

required construction is:
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row numbers i ai bi

(1) 8s + 5− 2r r + 2 8s + 7− r 0 6 r 6 4s− t + 1
(2) 1 4s− t + 4 4s− t + 5
(3) 2t− 1− 2r 4s− t + 6 + r 4s + t + 5− r 0 6 r 6 t− 3
(4) 2 10s + 4 10s + 6
(5) 8s− 2r + 8 4s + r + 3 12s + 11− r 1 6 r 6 3
(6) 3 16s + 8 16s + 11
(7) 8s− 4r 8s + 9 + 2r 16s + 9− 2r 0 6 r 6 s− 2
(8) 8s− 2− 4r 8s + 8 + 2r 16s + 6− 2r 0 6 r 6 s− 3
(9) 4s + 4− 2r 10s + 7 + r 14s + 11− r 0 6 r 6 2s
(10) 4s + 6 1 4s + 7

Table 3.11: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

Case 8: n ≡ 7(mod 8). For hooked near-Skolem sequences with m = 3 and

m = 1, we use the reverse of the Langford sequence in [36] when d ≡ 0(mod 4),

d = 4s, s > 2, t > 2s (t is even numbers only). This gives the solutions for all of

the cases when n > 23. We add the sequence (6, 1, 1, 4, 5, 7, 6, 4, 2, 5, 2, 0, 7) when

m = 3 and the sequence (6, 4, 7, 5, 3, 4, 6, 3, 5, 7, 2, 0, 2) when m = 1 to the reverse of

the Langford sequence. We provide all of the cases when n = 7 and n = 15.

For n = 7 and m = 3, we have (6, 1, 1, 4, 5, 7, 6, 4, 2, 5, 2, 0, 7).

For n = 7 and m = 5, we have (3, 6, 7, 3, 4, 1, 1, 6, 4, 7, 2, 0, 2).

For n = 7, m = 7, it is a hooked Skolem sequence of order 6 which is existed by
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O’Keefe [24].

For n = 15 and m = 3, we have

(4, 1, 1, 6, 4, 14, 12, 10, 2, 6, 2, 15, 13, 11, 9, 7, 5, 10, 12, 14, 8, 5, 7, 9, 11, 13, 15, 0, 8).

For n = 15 and m = 5, we have

(10, 8, 6, 4, 1, 1, 14, 4, 6, 8, 10, 15, 13, 11, 9, 7, 12, 2, 3, 2, 14, 3, 7, 9, 11, 13, 15, 0, 12).

For n = 15 and m = 7, we have

(3, 1, 1, 3, 4, 2, 14, 2, 4, 10, 8, 15, 13, 11, 9, 6, 12, 5, 8, 10, 14, 6, 5, 9, 11, 13, 15, 0, 12).

For n = 15 and m = 9, we have

(11, 4, 2, 6, 2, 4, 8, 12, 10, 6, 15, 13, 11, 14, 8, 7, 5, 3, 10, 12, 3, 5, 7, 11, 13, 15, 0, 14).

For n = 15 and m = 11, we have

(6, 8, 1, 1, 4, 9, 6, 14, 4, 8, 10, 15, 13, 2, 9, 2, 12, 7, 15, 3, 10, 14, 3, 5, 7, 13, 15, 0, 12).

For n = 15 and m = 13, we have

(3, 6, 4, 3, 1, 1, 4, 6, 8, 12, 10, 15, 11, 9, 14, 2, 8, 2, 7, 5, 10, 12, 9, 11, 5, 7, 15, 0, 14).

For n = 15 and m = 15, it is a hooked Skolem sequence of order 14 which is existed

by O’Keefe [24].

For all n > m > 3 and n > 15, let n = 8s + 7 and m = 2t + 1. For n = 23 only used

lines (∗), and then added the following (i, j) pairs: (24, 36), (25, 29), (26, 40), (27, 43),

(28, 34), (33, 41), (35, 38), (37, 39),(22, 45), (21, 42). The required construction is:
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row numbers i ai bi

(1) ∗8s− 2r + 3 1 + r 8s− r + 4 0 6 r 6 4s− t
(2) ∗1 4s− t + 2 4s− t + 3
(3) ∗2t− 1− 2r 4s− t + 4 + r 4s + t + 3− r 0 6 r 6 t− 3
(4) 2 14s + 9 14s + 11
(5) ∗8s− 2r + 8 4s + r + 1 12s + 9− r 1 6 r 6 3
(6) 3 14s + 7 14s + 10
(7) ∗4s + 2 4s + 5 8s + 7
(8) 4s− 6− 4r 10s + 2r + 11 14s + 5− 2r 0 6 r 6 s− 3
(9) 8s− 4r 8s + 2r + 11 16s + 11− 2r 0 6 r 6 s− 1
(10) 4s− 4 8s + 8 12s + 4
(11) 8s− 2− 4r 8s + 2r + 10 16s + 8− 2r 0 6 r 6 s− 2
(12) 4 14s + 4 14s + 8
(13) 4s− 4r − 8 10s + 2r + 10 14s− 2r + 2 0 6 r 6 s− 4
(14) 4s− 2 10s + 8 14s + 6
(15) 4s 8s + 9 12s + 9
(16) ∗8s + 7− 2r 8s + 6− r 16s + 13− 3r 0 6 r 6 1

Table 3.12: A construction of disjoint hooked near-Skolem sequences of order n and
defect m

This completes the proof of Theorem 3.3.5. ¥
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Chapter 4

Disjoint Langford sequences

4.1 Introduction

The study of constructing Langford sequences was introduced in 1958, when Langford

[17] observed that his son had arranged colored blocks into three colored pairs (red,

blue, and yellow), with one block between the red pair, two blocks between the blue

pair, and three blocks between the yellow pair. He wrote the result as (3, 1, 2, 1, 3, 2)

or (4, 2, 3, 2, 4, 3), and these sequences are known as Langford sequences of order 3

and defect d = 2.

Brouwer and Germa in 1976 [4], partitioned the set {1, 2, . . . , 2n} into n pairs

(ai, bi) such that n numbers bi − ai, 1 6 i 6 n, are all the integers in the set {d, d +
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1, . . . , d + n− 1}.

In 1959, Priday [25] and Davies [11] completely solved the case when d = 2.

They called such sequences Langford when they do not contain hooks. Furthermore,

Davies solved the problem of partitioning the set {1, 2, . . . , 2n − 1, 2n + 1} so that

the differences (ai, bi) exhaust the set {2, 3, . . . , n + 1}, and he called such sequences

hooked Langford.

It is shown in [4] that the necessary conditions for {d, d + 1, . . . , d + n− 1} to be

Langford sequences are:

(i) n > 2d− 1; and

(ii) n ≡ 0 or 1(mod 4) for d odd, n ≡ 0 or 3(mod 4), for d even. These conditions

are also shown to be sufficient for d = 3 and d = 4. The conditions are shown to be

sufficient for n > 2d− 1(mod 4) when n is odd.

In 1981, Simpson [36] established sufficiency for all even values of n satisfying

(i) and he produced two theorems for (hooked) Langford sequences. He provided

four tables of construction for Langford sequences of order n with defect d and five

tables of construction for hooked Langford sequences of order n with defect d (see

reference [36]).

A k-extended Langford sequence of defect d and length n is a sequence

(l1, l2, . . . , l2n+1) in which lk is an empty position that occurs in anywhere in the
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sequence and filled by 0, and each other element of the sequence comes from the set

{d, d + 1, . . . , d + n − 1}. Each j ∈ {d, d + 1, . . . , d + n − 1} occurs exactly twice

in the sequence, and the two occurrences are separated by exactly j − 1 elements.

A hooked k-extended Langford sequence of defect d and length n is a partition of

{1, . . . , 2n + 2} \ {2, k} (where 2 is the second position in the sequence includes the

hook that is also filled by 0) into differences {d, d + 1, . . . , d + n − 1}. For example,

we have (2, 5, 2, 4, 0, 3, 5, 4, 3) a 5-extended Langford sequence of defect 2 and length

4. It is clearly to see that the empty position 0 is the extension k = 5. We also have

(5, 0, 4, 0, 3, 5, 4, 3) a hooked 4-extended Langford sequence of defect 3 and length 3.

The extension k = 4 and the hook occurs at the second.

In 1998, Linek and Jiang [20] produced several constructions for (hooked)-

extended Langford sequences with small defects for d = 2 and 3.

In 2003, Linek and Mor [18] considered the problem of constructing (hooked)-

extended Langford sequences with large defects. They derived the necessary condi-

tions for the existence of extended Langford sequences for d > 4 and all possible k

extensions, but with a finite number of lengths n and differences Di where i = 0, 1,

and 2.

Two sequences have n pairs in common if n distinct entries occur in the same

positions in the sequences. In 2012, Shalaby and Silvesan [32] checked the reverse
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sequences of all the known constructions of Langford sequences in [36], [4], and [18],

to determine whether they are reverse-disjoint sequences or have pairs in common.

They produced a table that shows the intersection between Langford sequences and

their reverse sequences. In the references [32] and [35], they used the known Langford

sequences given in [36], [4], and [18] and (hooked) Skolem sequences to construct two

new Skolem sequences of order n with 0, 1, . . . , n−3 and n pairs in common. Moreover,

they used these results and introduced triple systems with blocks in common for

λ = 2, 3 and 4.

Shalaby and Silvesan [35] used Skolem sequences and Langford sequences to pro-

duce the fine structure of a CTS(v, 2) for v ≡ 1, 3(mod 6), v 6= 9, and a CTS(v, λ)

for v ≡ 1, 7(mod 24) and λ = 3, 4.

4.2 Known results for disjoint Langford sequences

In this section, we present the known theorems of disjoint Langford sequences, begin-

ning with the work of Shalaby and Silvesan [32]. When Shalaby and Silvesan reversed

all the known constructions of Langford sequences, they found that some sequences

are disjoint and some have pairs in common, and they tabulated the results. Baker

and Shalaby [2] proved the existence of reverse-disjoint Langford sequences of order
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n with defect 2 and produced the following lemma. (See reference [2] for the proof).

Lemma 4.2.1 [2] For n ≡ 0, 1(mod 4), there exists a reverse-disjoint Langford

sequence of order n with d = 2.

Example 4.2.1 Let L = (4, 2, 3, 2, 4, 3) be a Langford sequence of order 3 with d = 2,

and let
←
L= (3, 4, 2, 3, 2, 4) be its reverse and it is also a Langford sequence of order 3

and defect 2. We notice that L and
←
L are disjoint, so L is a reverse-disjoint Langford

sequence.

Shalaby and Silvesan [32] found that the reverses of the known constructions

given in [36], [18] and [4] yield two disjoint Langford sequences with a finite number

of exceptions. They arranged the results they found in Table 4.1 given in [32].

We represent Table 4.1 given in [32], the last column of the table includes the

complete reference for the instructions (reference, theorem number or table number,

row number).
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n d Pairs in common Reference
1 4t 4s 1 if s ≡ 1 (mod 3) [36], 1(11)

s ≥ 1 1 if s ≡ 2 (mod 3) [36], 1(12)
t ≥ 2s 0 if s ≡ 0 (mod 3) [36], 1
4s + 1 0 if s ≡ 1, 2 (mod 3) [36], 1
s ≥ 1 2 if s ≡ 0 (mod 3) [36], 1(11), (12)

t ≥ 2s + 1
4s + 2 1 if s ≡ 0, 2 (mod 3) [36], 1(14)
s ≥ 1 3 if s ≡ 1 (mod 3) [36], 1(11), (12), (14)

t ≥ 2s + 1
4s− 1 0 if s = 1 or 2 [36], 1
s ≥ 1 s− 2 if s ≡ 2 (mod 3) [36], 1(8)
t ≥ 2s s ≥ 5

s− 1 if s ≡ 0, 1 (mod 3) [36], 1(8), (12)
s ≥ 3

2 4t 2t− e 2 if e ≡ 1 (mod 3) [4], 3(3), (4)
t ≥ 2e + 1 0 if e ≡ 0, 2 (mod 3)

3 2d− 1 d ≥ 2 0 [4], 2
(mod 4) d even

d ≥ 3 0 if n 6= 2d− 1 [4], 2
d odd 1 if n = 2d− 1 [4], 2(4)

4 2d 0 (mod 6) 1 [18] 1d, (4)
2 (mod 6) 1 [18] 1d, (3)
4 (mod 6) 0 [18] 1d

5 2d− 1 0 (mod 3) 0, 1 if d = 3 [18], 0a and [4], 2
0, 1, 2 if d ≥ 6 [18], 0a and [4], 2

1 (mod 3) 0, 1, 2 if d ≥ 4 [18], 0a and [4], 2
2 (mod 3) 0 if d = 2 [18], 0a and [4], 2

0, 1, 3 if d = 5 [18], 0a and [4], 2
0, 1, 2, 3 if d ≥ 8 [18], 0a and [4], 2

Table 4.1: The number of pairs in common between Langford sequences and their
reverses
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In [34], Shalaby and Silvesan used Langford sequences adjoined with (hooked)

Skolem sequences to produce cyclic triple systems of order (6n + 1) denoted by

CTS(6n+1). For example, consider a Skolem sequence of order 4, and adjoin it with

a Langford sequence of order 12 and defect 5. We take the same Skolem sequence of

order 4, and adjoin it with the reverse-disjoint Langford sequence of order 12 and de-

fect 5. This gives two Skolem sequences of order 16 with four pairs in common. From

this example, we can construct a cyclic triple system with base blocks of the forms

{{0, i, bi + n}(mod 6n + 1)} for i = 1, 2, . . . , n, and {{0, ai + n, bi + n}(mod 6n + 1)}

for i = 1, 2, . . . , n, for each Skolem sequence. We have two cyclic TS(6n + 1) with

four repeated base blocks, two cyclic TS(6n + 1) with three repeated base blocks, or

two cyclic TS(6n + 1) with two repeated base blocks.

We demonstrate an example that shows two disjoint cyclic STS(6n + 1) by using

a Skolem sequence of order n and a Langford sequences of order n with defect d.

Example 4.2.2 Let A = (12, 10, 8, 6, 11, 9, 7,−,−, 6, 8, 10, 12, 7, 9, 11) be a sequence

of order 12 and defect 7 formed by even and odd numbers and some free spaces

in the middle of the sequence. We fit in these two spaces, a Skolem sequence of

order 1, S1 = (1, 1). We attach a Langford sequence of defect 2 and order 4,

L = (5, 2, 4, 2, 3, 5, 4, 3) to the right of the sequence A and S1 = (1, 1). Thus, we

obtain a Skolem sequence of order 12 as well as pairs (ai, bi) for i = 1, 2, . . . , 12.
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S = (12, 10, 8, 6, 11, 9, 7, 1, 1, 6, 8, 10, 12, 7, 9, 11, 5, 2, 4, 2, 3, 5, 4, 3), the pairs are (8, 9),

(18, 20), (21, 24), (19, 23), (17, 22), (4, 10), (7, 14), (3, 11), (6, 15), (2, 12), (5, 16), and

(1, 13).

We consider the base blocks of the following forms:

1.{{0, ai + n, bi + n}(mod 6n + 1)} for i = 1, 2, . . . , n, so we obtain: {0, 20, 21},

{0, 30, 32}, {0, 33, 36}, {0, 31, 35}, {0, 29, 34}, {0, 16, 22}, {0, 19, 26}, {0, 15, 23},

{0, 18, 27}, {0, 14, 24}, {0, 17, 28}, {0, 13, 25}; and

2.{{0, i, bi + n}(mod 6n + 1)} for i = 1, 2, . . . , n, so we obtain: {0, 1, 21}, {0, 2, 32},

{0, 3, 36}, {0, 4, 35}, {0, 5, 34}, {0, 6, 22}, {0, 7, 26}, {0, 8, 23}, {0, 9, 27}, {0, 10, 24},

{0, 11, 28}, {0, 12, 25}. We observe that all the non-zero elements exist as differences

twice in Z6n+1. We develop each base block we obtained (mod 6n + 1).

Thus, we obtain two disjoint cyclic STS(6n + 1).

Shalaby and Silvesan [32] modified Table 0a given in [18] by moving the pair

n = 2d− 1 from the end of the sequence to the beginning and called such sequences

modified Langford sequences. They arrived at two different disjoint Langford se-

quences of order 2d−1 using the Langford sequence from [20], Table 0a, and the mod-

ified Langford sequence. They found one pair in common if d = 5 or d ≡ 1(mod 3),

where d 6= 4, and two pairs in common if d = 4 or d ≡ 0, 2(mod 3), where d 6= 5 using

the modified Langford sequence, and the Langford sequence from [4].
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Example 4.2.3 Let L = (11, 13, 7, 9, 6, 12, 10, 8, 5, 7, 6, 11, 9, 5, 13, 8, 10, 12) and L
′
=

(10, 11, 12, 13, 5, 6, 7, 8, 9, 5, 10, 6, 11, 7, 12, 8, 13, 9) be two Langford sequences of defect

5 and order 9. Both sequences are not disjoint because there is one pair in common.

The pair is (8, 16).

Example 4.2.4 Let L = (7, 9, 6, 10, 8, 4, 5, 7, 6, 4, 9, 5, 8, 10)

and L
′
= (7, 8, 9, 10, 4, 5, 6, 7, 4, 8, 5, 9, 6, 10) be two Langford sequences of defect 4

and order 7. The sequences are not disjoint because there are two pairs in common.

The pairs are (1, 8) and (4, 14).

Similarly, there is one pair in common if d = 3 or d = 4. There are no pairs in

common if d ≡ 0, 2(mod 3), d 6= 3 and there are two pairs in common if d ≡ 1(mod 3),

d 6= 4. Shalaby and Silvesan found three pairs in common for d ≡ 2(mod 3), d > 5,

by taking the modified Langford sequence and the reverse of the Langford sequence

from [18].

Shalaby and Silvesan [33] produced two more tables that give pairs in common

between Langford sequences and their reverses. They added the pair (1, 1) to the be-

ginning or at the end of a Langford sequence L
n≡2d−1(mod 4)
d (see reference [4], Theorem

2). The Langford sequence with the pair (1, 1) appearing at the end of the sequence

is denoted by Ln
d(1, 1), and the Langford sequence with the pair (1, 1) appearing at

the beginning of the sequence is denoted by (1, 1)Ln
d . For example, we attach the pair
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(1, 1) at the beginning or at the end of a Langford sequence (4, 2, 3, 2, 4, 3) of order 3

and defect 2, and we obtain a Skolem sequence (1, 1, 4, 2, 3, 2, 4, 3) of order 4 that is

a reverse-disjoint sequence. We also attach the pair (1, 1) at the beginning or at the

end of a Langford sequence (5, 2, 4, 2, 3, 5, 4, 3) of order 4 and defect 2, and we obtain

a Skolem sequence (1, 1, 5, 2, 4, 2, 3, 5, 4, 3) of order 5 that is not a reverse-disjoint

sequence.
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We will represent this in a table given in [33], showing the number of pairs in

common between Ln
d(1, 1) and their reverses.

n d Sequence Pairs in common Reference
1 1 9 Ln

d(1, 1) 0 [4], 2
(mod 4)

2 4t 4s + 1 (1, 1)Ln
d 2 if s = 1 [36], 1, (8), (13)

s ≥ 1 3 if s = 2 [36], 1, (8)(11)
t ≥ 2s + 1 s + 2 if s ≡ 2 (mod 3) [36], 1

s ≥ 5 (8), (11), (12)
s if s ≡ 0, 1 (mod 3) [36], 1, (8)

s ≥ 3
Ln

d(1, 1) 2 if s ≡ 1 (mod 3) [36], 1
s ≥ 4 (11), (12)

0 otherwise [36], 1
3 2d + 3 2 (mod 4) Ln

d(1, 1) 0 [4], 2
d 6= 2

Table 4.2: The number of pairs in common between Ln
d with (1, 1) appended and

their reverses

Shalaby and Silvesan [33] presented similar arguments for the case of hooked

Langford sequences. They attached the triple (2, 0, 2) to the sequence, so 0 can take

the position of the hook. They reversed the obtained sequence and checked whether

the sequences are disjoint or have pairs in common. The hooked Langford sequence

with the triple (2, 0, 2) is denoted by hLn
d ∗ (2, 0, 2). For example, we attach the triple

(2, 0, 2) to a hooked Langford sequence (9, 5, 3, 7, 8, 3, 5, 4, 6, 9, 7, 4, 8, 0, 6) of order 7

and defect 3. We obtain a Langford sequence (9, 5, 3, 7, 8, 3, 5, 4, 6, 9, 7, 4, 8, 2, 6, 2) of

order 8 and defect 2.
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We will represent this in a table given in [33], showing the number of pairs in

common between hLn
d ∗ (2, 0, 2) and their reverses.
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n d r Pairs in common Reference
1 2d + 1 + 4r 3 0 1 [36], 2(5)

r ≥ 1 0 [36], 2
4 0 2 [36], 2, (5)(10∗)

r ≥ 1 0 [36], 2
d even, d ≥ 6 r = 0 1 [36], 2, (5)

r = 1 1 [36], 2, (10)
r ≥ 2 0 [36], 2

d odd, d ≥ 5 r = 0 1 [36], 2, (5)
r ≥ 1 0 [36], 2

2 2d + 1 0 (mod 6) 1 [18], 2A, (2)
4 (mod 6) 1 [18], 2A, (5)

d 6= 4
2 (mod 6) 0 [18], 2A

3 4t + 2 4s 1 if s = 2 [36], 2, (11)
t− 2s = r 2 if s ≡ 2 (mod 3) [36], 2, (14), (16)

r ≥ 0 s ≥ 5
0 if s ≡ 0, 1 (mod 3) [36], 2

4s + 2 2 if s ≡ 2 (mod 3) [36], 2, (14), (17)
t− 2s− 1 = r 0 if s ≡ 0, 1 (mod 3) [36], 2

r ≥ 0 s 6= 1
1 if s = 1 [36], 2, (11)

4s + 3 0 if s ≡ 1 (mod 3) [36], 2
t− 2s− 1 = r 1 if s ≡ 0 (mod 3) [36], 2, (17)

r ≥ 0 s 6= 0
1 if s ≡ 2 (mod 3) [36], 2, (14)

s 6= 0
0 if s = 0 [36], 2

4s + 1 3 if s = 2 [36], 2, (9), (13), (16)
t− 2s ≥ 0 2 if s = 3 [36], 2, (9)

s− 1 if s ≡ 1 (mod 3) [36], 2, (9), (14)
s if s ≡ 0, 2 (mod 3) [36], 2, (9), (16)

s ≥ 5

Table 4.3: The number of pairs in common between hLn
d ∗ (2, 0, 2) and their reverses
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We show examples for the case that includes one pair in common and the case that

includes two pairs in common by attaching the pair (2, 0, 2) to a hooked Langford

sequence of order n and defect d.

Example 4.2.5 We first form a hooked Langford sequence of order 7 and defect 3

hL = (8, 5, 7, 9, 3, 6, 5, 3, 8, 7, 4, 6, 9, 0, 4). We attach the triple (2, 0, 2) at the end

of the sequence. We obtain L = (8, 5, 7, 9, 3, 6, 5, 3, 8, 7, 4, 6, 9, 2, 4, 2), a Langford

sequence of order 8 and defect 2. When we reverse this sequence, we obtain
←
L=

(2, 4, 2, 9, 6, 4, 7, 8, 3, 5, 6, 3, 9, 7, 5, 8) a Langford sequence of order 8 and defect 2. It

is clear to see that L and
←
L sequences are not disjoint because there is one pair in

common, the pair (4, 13).

Example 4.2.6 Let L = (5, 8, 4, 9, 7, 5, 4, 3, 6, 8, 3, 7, 9, 2, 6, 2)

and
←
L= (2, 6, 2, 9, 7, 3, 8, 6, 3, 4, 5, 7, 9, 4, 8, 5) be two Langford sequences of defect 2

and order 8. These sequences are not disjoint because there are two pairs in common.

The pairs are (4, 13) and (5, 12).

4.3 Previous unpublished results

In this section, we prove four cases for two disjoint Langford sequences of order n

and defect d, (d > 2) and four cases for two disjoint hooked Langford sequences of
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order n and defect d, note that these cases are not seen in the literature. We show

that two cases, of the four cases for two disjoint Langford sequences, provide two

disjoint Langford sequences by modifying Simpson’s approach (Theorem 1, Case 2

and Case 4 in [36]). We also show that the another two cases yield two disjoint

Langford sequences with finite exceptions. Following these results, we produce four

cases for two disjoint hooked Langford sequences of order n and defect d with finite

exceptions by applying three steps for each case. Now, we present Theorems 1 and 2

given in [36].

Theorem 4.3.1 [36] Necessary and sufficient conditions for the sequence {d, d +

1, . . . , d + n− 1} to be a Langford sequence are:

1. n > 2d− 1; and

2. n ≡ 0 or 1(mod 4) for d odd, n ≡ 0 or 3(mod 4), for d even.

Theorem 4.3.2 [36] Necessary and sufficient conditions for the sequence {d, d +

1, . . . , d + n− 1} to be a hooked Langford sequence are:

3. n(n + 1− 2d) + 2 > 0; and

4. n ≡ 2 or 3(mod 4) for d odd, n ≡ 2 or 1(mod 4), for d even.

Now, we prove four cases of Langford sequences of order n and defect d.

Case 1: We use tables similar to those in [4]. For d ≡ 2(mod 4), let n = 4t and
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suppose d = 4s + 2, s > 1, t > 2s + 1. The required construction yields disjoint

Langford sequences with Langford sequences given in Theorem 1, Case 2 in [36].
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Row numbers ai bi bi − ai 0 6 j 6
(1) 2t− 3s− j 2t + s + 3 + j 4s + 3 + 2j t− 2s− 2
(2) t− 2s + 1− j 3t + s + 2 + j 2t + 3s + 1 + 2j t− 2s− 1
(3) 6t− j 6t + 3s + 3 + j 3s + 3 + 2j t− 2s− 2
(4) 5t− s− j 7t + 2s + 2 + j 2t + 3s + 2 + 2j t− 2s− 2
(5) 5t− s + 1 7t + s + 2 2t + 2s + 1
(6) 2t + 1− j 4t + 2 + j 2t + 1 + 2j s− 1
(7) 4t− s + 2 + j t + s + 4 + 2j 2t + 2s + 2 + j s− 2
(8) 3t + 2− j 5t + 2 + j 2t + 2j s
(9) 3t + s + 1− j 7t + s + 3 + j 4t + 2 + 2j s− 2
(10) t− s + 1− j 5t− s + 2 + j 4t + 1 + 2j s− 1
(11) 2t− 3s + 1 + j 6t− s + 3 + 2j 4t + 2s + 2 + j 2s− 1
(12) 2t + 2 + j 6t− s + 2 + 2j 4t− s + j s− 1
(13) 2t + s + 2 6t + 3s + 2 4t + 2s
(14) 2t− s + 1 6t + s + 2 4t + 2s + 1
(15) 1 4t + 1 4t

Table 4.4: A construction of disjoint Langford sequences of order n and defect d
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Rows (7) and (9) are omitted for s = 1. Rows (1), (3), and (4) are omitted when

t = 2s + 1. This construction yields Langford sequences of order n and defect d. We

observe that this construction is disjoint with the construction of Theorem 1, Case 2

given in [36], because we take the last element that occurs at the end of the sequence

and place it at the beginning. Thus, every position in the sequence will shift by one

position to the right.

Case 2: Let n = 4t and suppose d = 4s + 1, s > 1, t > 2s + 1. The required

construction yields disjoint Langford sequences with Langford sequences given in

Theorem 1, Case 4 in [36].
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Row numbers ai bi bi − ai 0 6 j 6
(1) 2t− 3s− j 2t + s + 2 + j 4s + 2 + 2j t− 2s− 2
(2) t− 2s + 1− j 3t + s + 2 + j 2t + 3s + 1 + 2j t− 2s− 1
(3) 6t− s− j 6t + 3s + 1 + j 4s + 1 + 2j t− 2s− 1
(4) 5t− s + 1− j 7t + 2s + 1 + j 2t + 3s + 2j t− 2s− 1
(5) 2t + 2− j 4t + 2 + j 2t + 2j s− 1
(6) 4t− s + 2 + j 6t + s + 3 + 2j 2t + 2s + 1 + j s− 2
(7) 3t− j 5t + 1 + j 2t + 1 + 2j s− 1
(8) 3t + s− j 7t + s + 1 + j 4t + 1 + 2j s− 1
(9) t− s− j 5t− s + 2 + j 4t + 2 + 2j s− 2
(10) 2t− 3s + 1 + j 6t− s + 2 + 2j 4t + 2s + 1 + j 2s− 1
(11) t− s + 1 3t + s + 1 2t + 2s
(12) 2t + 3 + j 6t− s + 3 + 2j 4t− s + j s− 2
(13) 2t− s + 2 6t− s + 1 4t− 1
(14) 2t− s + 1 6t + s + 1 4t + 2s
(15) 1 4t + 1 4t

Table 4.5: A construction of disjoint Langford sequences of order n and defect d
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We omit rows (6), (9) and (12) when s = 1 and row (1) for t = 2s + 1. This

construction yields Langford sequences of order n and defect d. We also observe that

this construction is disjoint with the construction of Theorem 1, Case 4 given in [36],

because we place the last element of the sequence at the beginning so that every

position in the sequence will shift by one position to the right.

The sequences of Theorem 1, Case 1 and Case 3 given in [36] are not reverse-

disjoint, and the existence of two disjoint Langford sequences for all admissible orders

is still open for debate. We also demonstrate other new constructions by forming

Langford sequences of order n and defect d and adjoining them with the Langford

sequences Theorem 1, Case 1 and Case 3 given in [36]. This produces Langford

sequences that are disjoint with those sequences in Theorem 1, Case 1 and Case 3

given in [36].

Case 3: Let n = 4t + 3 and suppose d ≡ 0(mod 4), d = 4s, s > 1, t > 8s − 1. The

following construction yields disjoint Langford sequences of order n and defect d.
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Row numbers ai bi bi − ai 0 6 j 6
(1) 8s + t + 1− j 13s + 3t + 1 + j 5s + 2t + 2j t− 8s + 2
(2) t + 11s− j 5t + 3s + 6 + j 4t− 8s + 6 + 2j 3s− 2
(3) 2t + 3s + 2 + j 6t + s + 6 + 2j 4t− 2s + 4 + j 6s− 2
(4) 2t + 9s + 1 6t + s + 5 4t− 8s + 4
(5) 2t + 12s + 1− j 4t + 8s + 3 + j 2t− 4s + 2 + 2j 3s− 1
(6) 2t + 12s + 2 + j 6t + s + 7 + 2j 4t− 11s + 5 + j 3s− 2
(7) 3t + 7s + 2 5t + 3s + 5 2t− 4s + 3
(8) 3t + 10s− j 5t + 6s + 5 + j 2t− 4s + 5 + 2j 3s− 3
(9) 3t + 12s + 1− j 7t + 5s + 5 + j 4t− 7s + 4 + 2j 3s− 1
(10) 4t + 5s + 4 + j 6t + 7s + 5 + 2j 2t + 2s + 1 + j 3s− 2
(11) 5t + 3s + 4− j 7t + 8s + 5 + j 2t + 5s + 1 + 2j t− 8s + 1
(12) 6t + s + 4− j 6t + 13s + 3 + j 12s− 1 + 2j t− 8s + 1
(13) 2t + 3s + 1− j 2t + 15s + 1 + j 12s + 2j t− 8s
(14) 1 + j 12s− 2− j 12s− 3− 2j 4s− 2
(15) 4s + j 16s− 2− j 12s− 2− 2j 4s− 1

Table 4.6: A construction of disjoint Langford sequences of order n and defect d
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Row (13) is omitted for t = 8s− 1. For the above construction, we simply form a

Langford sequence of order n with d = 4s and n = 8s − 1, s > 1. For example, we

have (9, 7, 5, 10, 8, 6, 4, 5, 7, 9, 4, 6, 8, 10) is a Langford sequence with n = 7, d = 4.

We use a known Langford sequence of order n given in [36] with d = 4s−1, s > 3,

t > 2s. We combine the sequence we formed with the known sequence given in [36],

which results in a Langford sequence that is disjoint with the Langford sequence in

Theorem 1, Case 1 given in [36].

Case 4: Let n = 4t + 1 and suppose d = 4s − 1, s > 1, t > 8s − 3. The following

construction yields disjoint Langford sequences of order n and defect d.
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Row numbers ai bi bi − ai 0 6 j 6
(1) 8s + t− 2− j 13s + 3t− 3 + j 5s + 2t− 1 + 2j t− 8s + 3
(2) t + 11s− 3− j 5t + 3s + 3 + j 4t− 8s + 6 + 2j 3s− 2
(3) 2t + 3s + 1 + j 6t + s + 4 + 2j 4t− 2s + 3 + j 6s− 4
(4) 2t + 12s− 4− j 4t + 8s− 1 + j 2t− 4s + 3 + 2j 3s− 2
(5) 2t + 6s + 3 + j 6t + s + 3 + 2j 4t− s + j 3s− 2
(6) 2t + 15s− 4 6t + 13s− 3 4t− 2s + 1
(7) 3t + 7s 5t + 3s + 2 2t− 7s + 2
(8) 3t + 10s− 2− j 5t + 6s + 2 + j 2t− 4s + 4 + 2j 3s− 3
(9) 3t + 13s− 4− j 7t + 5s + 1 + j 4t− 8s + 5 + 2j 3s− 3
(10) 4t + 5s + 1 + j 6t + 7s + 1 + 2j 2t + 2s + j 3s− 3
(11) 5t + 3s + 1− j 7t + 8s− 1 + j 2t + 5s− 2 + 2j t− 8s + 3
(12) 2t + 3s− j 2t + 15s− 3 + j 12s− 3 + 2j t− 8s + 2
(13) 6t + s + 2− j 6t + 13s− 2 + j 12s− 4 + 2j t− 8s + 2
(14) 1 + j 12s− 5− j 12s− 6− 2j 4s− 3
(15) 4s− 1 + j 16s− 6− j 12s− 5− 2j 4s− 2

Table 4.7: A construction of disjoint Langford sequences of order n and defect d
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Rows (12), and (13) are to be omitted when t = 8s − 3. We form a Langford

sequence of order n with d = 4s − 1 and n = 8s − 3, s > 1. For example, we have

(6, 4, 7, 5, 3, 4, 6, 3, 5, 7), which is a Langford sequence with n = 5, d = 3.

We use a known Langford sequence of order n given in [36] with d = 4s, s > 5,

t > 2s. We adjoin the sequence we formed with the known sequence given in [36],

yielding a Langford sequence that is disjoint with a Langford sequence shown in

Theorem 1, Case 3 given in [36].

Similarly, we produced four cases for hooked Langford sequences of order n and

defect d (d > 2), by adjoining hooked Langford sequences of order n and defect d with

the Langford sequences given in Theorem 1 in [36]. This produced hooked Langford

sequences of order n and defect d that are disjoint with the known hooked Langford

sequences given in Theorem 2 in [36].

We produced hooked Langford sequences in the case that n ≡ 3(mod 4) for d odd,

and n ≡ 1(mod 4) for d even.

Case 1. We obtain a disjoint hooked Langford sequence of order n = 4t− 1, defect

d = 4s− 1 and t > 8s− 1 by applying the following three steps.

Step 1: We form a hooked Langford sequence of order n and defect d, where d =

4s− 1, s > 1, and n = 8s− 1.

For example, if we form a hooked Langford sequence of order 7 and defect 3, we
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obtain (9, 7, 5, 3, 8, 6, 3, 5, 7, 9, 4, 6, 8, 0, 4).

Step 2: We use a Langford sequence of order n and defect d given in [36], where

d = 4s + 2, s = 3e− 1, e > 1, t > 2s + 1.

One example is given by (17, 23, 21, 26, 27, 28, 29, 25, 13, 11, 18, 19, 24, 14, 12, 10, 22, 17,

16, 20, 11, 13, 15, 21, 23, 10, 12, 14, 18, 26, 19, 27, 25, 28, 16, 29, 24, 15, 22, 20).

Step 3: We combine Step 1 and Step 2, and adjoin the hooked Langford sequence,

which we formed with the one given in Step 2. We place the sequence in Step 1 at

the end of the sequence in Step 2.

Case 2: We obtain a disjoint hooked Langford sequence of order n = 4t + 5, defect

d = 4s and t > 8s by applying the following three steps.

Step 1: We form a hooked Langford sequence of order n and defect d, where d = 4s,

s > 1, and n = 8s + 1.

For example, if we form a hooked Langford sequence of order n = 9 and defect d = 4,

we obtain (12, 10, 8, 6, 4, 11, 9, 7, 4, 6, 8, 10, 12, 5, 7, 9, 11, 0, 5).

Step 2: We use a Langford sequence of order n and defect d given in [36], where

d = 4s + 1, s = 3e, e > 1, and t > 2s + 1. For example,

(24, 32, 30, 20, 35, 36, 37, 38, 39, 40, 34, 27, 18, 16, 14, 25, 26, 19, 17, 15, 33, 31, 29, 20,

24, 21, 22, 28, 14, 16, 18, 23, 30, 32, 15, 17, 19, 13, 27, 35, 25, 36, 26, 37, 34, 38, 21, 39, 22,
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40, 13, 29, 31, 33, 23, 28).

Step 3: We combine Step 1 and Step 2, and adjoin the hooked Langford sequence,

which we formed with the one given in Step 2. We place the sequence in Step 1 at

the end of the sequence in Step 2.

Case 3: We obtain a disjoint hooked Langford sequence of order n = 4t + 7, defect

d = 4s + 1 and t > 8s + 1 by applying the following three steps.

Step 1: We form a hooked Langford sequence of order n and defect d, where d =

4s + 1, s > 1, and n = 8s + 1.

For example, if we form a hooked Langford sequence of order n = 11 and defect d = 5,

we obtain (15, 13, 11, 9, 7, 5, 14, 12, 10, 8, 5, 7, 9, 11, 13, 15, 6, 8, 10, 12, 14, 0, 6).

Step 2: We use a Langford sequence of order n and defect d given in [36], where

d = 4s, s = 3e + 1, e > 1, and t > 2s. For example,

(28, 40, 38, 36, 34, 41, 42, 43, 44, 45, 46, 47, 32, 21, 19, , 17, 29, 30, 31, 32, 39, 16, 22, 20,

18, 37, 35, 33, 28, 24, 25, 26, 17, 19, 21, 23, 27, 16, 34, 36, 38, 40, 18, 20, 22, 29, 41, 30,

42, 31, 43, 32, 44, 24, 45, 25, 46, 26, 47, 39, 33, 35, 37, 27).

Step 3: We combine Step 1 and Step 2, and adjoin the hooked Langford sequence,

which we formed with the one given in Step 2. We place the sequence in Step 1 at

the end of the sequence in Step 2.

Case 4: We obtain obtain a disjoint hooked Langford sequence of order n = 4t + 13,
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defect d = 4s + 2 and t > 8s + 2 by applying the following three steps.

Step 1: We form a hooked Langford sequence of order n and defect d, where d =

4s + 2, s > 1, and n = 8s + 5.

For example, if we form a hooked Langford sequence of order n = 13 and

defect d = 6, we obtain

(18, 16, 14, 12, 10, 8, 6, 17, 15, 13, 11, 9, 6, 8, 10, 12, 14, 16, 18, 7, 9, 11, 13, 15, 17, 0, 7).

Step 2: We use a Langford sequence of order n and defect d given in [36], where

d = 4s− 1, s = 3e + 1, e > 1, and t > 2s. For example,

(35, 33, 48, 46, 44, 42, 50, 51, 52, 53, 54, 55, 56, 57, 58, 40, 28, 26, 24, 22, 20, 36, 37, 38, 39,

21, 27, 25, 23, 49, 47, 45, 43, 41, 33, 35, 29, 30, 31, 32, 20, 22, 24, 26, 28, 34, 21, 42, 44, 46,

48, 23, 25, 27, 19, 40, 50, 36, 51, 37, 52, 38, 53, 39, 54, 29, 55, 30, 56, 31, 57, 32, 58, 19, 41,

43, 45, 47, 49, 34).

Step 3: We combine Step 1 and Step 2, and adjoin the hooked Langford sequence,

which we formed with the one in Step 2. We place the sequence in Step 1 at the end

of the sequence in Step 2.

The following table presents the cases that we produced for disjoint (hooked)

Langford sequences.
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Row numbers n d Pairs in common
(1) 4t 4s + 2, s > 1, t > 2s + 1 disjoint
(2) 4t 4s + 1, s > 1, t > 2s + 1 disjoint
(3) 4t + 3 4s, s > 1, t > 8s− 1 disjoint, n > 8d− 1
(4) 4t + 1 4s− 1, s > 1, t > 8s− 3 disjoint, n > 7d− 1
(5) 4t− 1, t > 8s− 1 d = 4s− 1, s > 1 disjoint
(6) 4t + 5, t > 8s d = 4s, s > 1 disjoint
(7) 4t + 7, t > 8s + 1 d = 4s + 1, s > 1 disjoint
(8) 4t + 13, t > 8s + 2 d = 4s + 2, s > 1 disjoint

Table 4.8: A construction for disjoint (hooked) Langford sequences
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Chapter 5

Applications

5.1 Introduction

Let K be a set of positive integers and let λ be a positive integer. A pairwise balanced

design (PBD(v, K, λ) or (K, λ)-PBD) of order v with block sizes from K is a pair

(V , B′), where V is a finite set of cardinality v and B′ is a family of subsets (blocks)

of V that satisfies two properties:

1. If B ∈ B′, then | B |∈ K;

2. Each pair of elements of V occurs together in exactly λ of the blocks B′. The

integer λ is the index of the PBD. The notations PBD(v, K) and K-PBD of

order v are often used when λ = 1.
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For example, {1, 2, 4},{2, 3, 5},{3, 4, 6},{5, 6, 1},{4, 5},{2, 6},{1, 3} form a PBD

(6, {2, 3}, 1). A PBD (v) is cyclic if its automorphism group contains a full cycle

of length v. A PBD (v) is simple if it does not have repeated blocks.

A group divisible design is an ordered triple (P,G, B) where P is a finite set, G

is a collection of sets called groups that partition P , and B is a set of subsets called

blocks of P . A GDD of order v is cyclic if its automorphism group contains a full

cycle of length v. A GDD is simple if it does not have repeated blocks.

(P,G∪B) is a PBD. The number of |P | is the order of the group divisible design.

So a group divisible design is a PBD with distinguished set of blocks, now called

groups, which partition P . If a group divisible design has all groups of the same

size, say g, and all blocks of the same size, say k, then we will refer to this design

as a GDD(g, k). For example, let V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} be a

set of 14 elements. We obtain a GDD (2, 4) of order 14 that is a simple and a

cyclic. The groups are {{i, 7 + i}|1 6 i 6 7}, and the blocks are {{i, 1 + i, 4 +

i, 6 + i}|1 6 i 6 14} (mod 14). We cyclically develop the base blocks for the groups

and the blocks to obtain 14 blocks with no repetition. So, we have the following

groups: {1, 8},{2, 9},{3, 10},{4, 11},{5, 12},{6, 13},{7, 14}. We also have the blocks

{1, 2, 5, 7},{2, 3, 6, 8},{3, 4, 7, 9},{4, 5, 8, 10},{5, 6, 9, 11},{6, 7, 10, 12},{7, 8, 11, 13},

{8, 9, 12, 14},{9, 10, 13, 1},{10, 11, 14, 2},{11, 12, 1, 3},{12, 13, 2, 4},{13, 14, 3, 5},
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{14, 1, 4, 6}.

In the paper by Meszka and Rosa [22], near-Skolem sequences were used to de-

termine cubic circulants as leaves, that we will define in next section, by finding the

difference triples and the union of base blocks.

5.2 Definitions

In this section, we present examples and known definitions of a simple cyclic pairwise

balanced design and a simple cyclic group divisible design. We also present several

known definitions that we need in this chapter.

Definition 5.2.1 A partial triple system of order v, denoted by PTS (v), is a set V

of v elements, and there is a collection B of 3-subsets of V , called triples or blocks

such that every 2-subset of V is contained in, at most, one triple of B.

Definition 5.2.2 The leave of a partial triple system is a graph (V, E) where E is

the set of unordered pairs not appearing in a triple of B.

Example 5.2.1 Let V = (1, 2, 3, 4, 5, 6) be a partial triple system of order 6. We

have B = {{1, 3, 4}, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}}, which is a block of 3-subsets of V .

The leave graph in this case is {1, 2},{3, 5},{4, 6}.
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Definition 5.2.3 A cubic graph is a graph in which all vertices have a degree of

three.

A cubic graph is a 3-regular graph (regular graph means all the vertices have the

same number of neighbors).

Example 5.2.2 The Petersen graph is a well-known example of a cubic graph. It

has ten vertices and each vertex must have three edges.

Remark 5.2.1 Let X be a graph, and x, y be the vertices of X. Therefore, X is

then a complement of the graph X with the same vertex set as X. Where x and y are

not adjacent in X, they are adjacent in X.

Definition 5.2.4 A cubic circulant (2n; s, n) is a cubic graph, the vertices of which

are labelled Z2n, and its edges are {x, y} if and only if min(|x− y|, 2n− |x− y|) = s

or n such that s ∈ {1, 2, . . . , n− 1}.

5.3 Examples of the use of near-Skolem sequences

and disjoint Langford sequences

Shalaby and Silvesan [34] proved that there are two cyclic Steiner triple systems of

order 6n + 1 intersecting in 0, 1, 2, . . . , n base blocks, denoted by Intc(6n + 1), and
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there are two cyclic Steiner triple systems of order 6n+3 intersecting in 1, 2, . . . , n+1

base blocks, which are in common, and denoted by Intc(6n + 3).

Theorem 5.3.1 [34]: Intc(6n + 1) = {0, 1, 2, . . . , n}.

Theorem 5.3.2 [34]: Intc(6n + 3) = {1, 2, . . . , n + 1}.

Example 5.3.1 Let S = (3, 4, 2, 3, 2, 4, 1, 1, 12, 10, 8, 6, 13, 11, 9, 7, 5, 6, 8, 10, 12, 5, 7, 9,

11, 13) be a Skolem sequence of order 13, where S consists of a Skolem sequence of

order 4, that is attached with a Langford sequence of order 9 and defect 5. We can

construct two cyclic Steiner triple systems of order 6n + 1, which have repeated base

blocks in common.

First, we obtain the pairs (ai, bi) from S, where (bi−ai) = i for all i = 1, 2, . . . , n.

We then take the base blocks of the forms:

1.{{0, ai + n, bi + n} (mod 6n + 1), i = 1, 2, . . . , j} together with the base blocks

{{0, i, bi + n} (mod 6n + 1), i = j + 1, . . . , n};

2. {{0, ai +n, bi +n} (mod 6n+1), i = 1, 2, . . . , n}. The pairs are (7, 8), (3, 5), (1, 4),

(2, 6), (17, 22), (12, 18), (16, 23), (11, 19), (15, 24), (10, 20), (14, 25), (9, 21), (13, 26).

We take the following base blocks (mod 79) for i = 1, 2, 3, 4 and underline the repeated

blocks:

1.{0, 20, 21},{0, 16, 18},{0, 14, 17},{0, 15, 19} combined with the base blocks
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{0, 5, 35},{0, 6, 31},{0, 7, 36},{0, 8, 32},{0, 9, 37},{0, 10, 33},{0, 11, 38},{0, 12, 34},

{0, 13, 39} (mod 79) for j = 5, . . . , 13;

2.{0, 20, 21},{0, 16, 18},{0, 14, 17},{0, 15, 19},{0, 30, 35},{0, 25, 31},{0, 29, 36},

{0, 24, 32},{0, 28, 37},{0, 23, 33},{0, 27, 38},{0, 22, 34},{0, 26, 39} (mod 79)

for i = 1, . . . , 13.

From this example, we obtain a cyclic Steiner triple system of order 79 with 4

repeated base blocks. We repeat this process when j = 1, . . . , n to obtain two cyclic

Steiner triple systems of order 79 with j base blocks in common.

Meszka and Rosa [22] considered cubic leaves on 10, 12, 16, 18 and 22 vertices

of partial triple systems. They showed some examples of cubic graphs as leaves,

and determined a cubic circulant graph as a leave by using some sequences such as

extended Skolem sequences and near-Skolem sequences. (For more information, see

reference [22]).

Theorem 5.3.3 [22]

Let G = C(n; s, n
2
), be a cubic circulant graph and let

1. n ≡ 4 or 22(mod 24) and s ≡ 1(mod 2);

2. n ≡ 10 or 16(mod 24) and s ≡ 0(mod 2);

3. n ≡ 6 or 12(mod 24) and s ≡ 1(mod 2); and
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4. n ≡ 0 or 18(mod 24) and s ≡ 0(mod 2), s 6= n
3
.

Then G is a leave.

Proof [22] We will only demonstrate the case that uses near-Skolem sequences, as

it is directly applicable to this proof. Let n ≡ 22(mod 24), n = 24t + 22, t > 0.

According to reference [29], a near Skolem sequence S = (s1, s2, . . . , s8t+6) of order

4t + 4 and defect s exists for all odd s, 1 6 s 6 4t + 3 where s ∈ {1, 3, . . . , 4t + 3}.

Each k ∈ {1, 2, . . . , 4t + 4} \ {s} forms the difference triple (k, 4t + 4 + i, 4t + 4 + j)

provided si = sj = k. The union of orbits of triples {0, k, 4t + 4 + i + k} (mod n),

where k ∈ {1, 2, . . . , 4t + 4} \ {s}, is a decomposition of C(n; s, n
2
) (where C(n; s, n

2
)

is the complement of C(n; s, n
2
)) into triples for each odd s ∈ {1, 3, . . . , 4t + 3}.¥

Example 5.3.2 Let S = (14, 12, 3, 4, 2, 3, 2, 4, 8, 6, 20, 18, 16, 12, 14, 6, 8, 10, 19, 17, 15,

13, 11, 9, 7, 1, 1, 10, 16, 18, 20, 7, 9, 11, 13, 15, 17, 19) be a near-Skolem sequence of order

4t + 4 = 20 where t = 4 and defects s ∈ {1, 3, . . . , 4t + 3}, and in this example s = 5.

Each k ∈ {1, 2, . . . , 20} \ {5} forms the difference triple (k, 4t + 4 + i, 4t + 4 + j)

provided si = sj = k. We take the base blocks of the form {0, k, 4t + 4 + i + k}

(mod 24t + 22 = 118), k ∈ {1, 2, . . . , 20} \ {5} and we check the differences in

Z118. The pairs (ai, bi) for i = 1, 2, . . . , 20 are (1, 15),(2, 14),(3, 6),(4, 8),(5, 7),(9, 17),

(10, 16),(11, 31),(12, 30),(13, 29),(18, 28),(19, 38), (20, 37),(21, 36),(22, 35),

(23, 34), (24, 33),(25, 32),(26, 27).
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The base blocks are {0, 14, 35},{0, 12, 34},{0, 3, 26},{0, 4, 28},{0, 2, 27},{0, 8, 37},

{0, 6, 36},{0, 20, 51},{0, 18, 50},{0, 16, 49},{0, 10, 48},{0, 19, 58},{0, 17, 57},{0, 15, 56},

{0, 13, 55},{0, 11, 54},{0, 9, 53},{0, 7, 52},{0, 1, 47}.

Now, we observe that all the non-zero elements exist in Z118 as differences twice,

except for the element n
2

= 59 and the defect of s = 5. We conclude that the

union of the short orbits of this triple {0, k, 4t + 4 + i + k} (mod 24t + 22), where

k ∈ {1, 2, . . . , 20} \ {5}, is a decomposition of C(118; 5, 59) into triples for each

s ∈ {1, 3, . . . , 19}.
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Chapter 6

Conclusions and open questions

In this thesis, we have discussed the disjointness for Skolem-type sequences such as

(hooked) Skolem sequences, (hooked) near-Skolem sequences, and (hooked) Lang-

ford sequences. We represented previous results from the literature, as well as new

constructions for sufficiency for some of the Skolem-type sequences.

In Chapter 1, we introduced the topic and some known applications for disjoint-

ness for some of the Skolem-type sequences. In Chapter 2, we discussed several

disjoint results of (hooked) Skolem sequences and we also discussed the known re-

sults of (hooked) Skolem sequences and (hooked) Rosa sequences. We plan to discuss

some constructions, that are also not seen in the literature, of disjoint (hooked) Rosa

sequences in a separate study. In Chapter 3, we discussed eight new cases for dis-
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joint hooked near-Skolem sequences, and added small cases for disjoint near-Skolem

sequences.

In Chapter 4, we provided four cases for two disjoint Langford sequences of order

n only when d = 4s + 2 and d = 4s + 1. For d = 4s and d = 4s − 1 we constructed

two disjoint Langford sequences of order n and defect d by adjoining the known

Langford sequences of order n and defect d to the Langford sequences of order n and

defect d, which we formed. This solution satisfies condition two given in Theorem

4.3.1, but only satisfies condition one given in Theorem 4.3.1 when n > 8d − 1 for

Case 3 and when n > 7d − 1 for Case 1. We provided four cases for two disjoint

hooked Langford sequences of order n and defect d. We found that that condition

three in Theorem 4.3.2 is satisfied with finite exceptions of n, and condition four

given in Theorem 4.3.2 is completely satisfied. Therefore, we did not find cases yield

two disjoint (hooked) Langford sequences for all admissible orders and all admissible

defects, so this question remains open. Thus, our main objective for a future research

is to find solutions for all of the remaining cases for two disjoint (hooked) Langford

sequences of order n, as well as all admissible defects. We also provided the known

constructions for two disjoint (hooked) Langford sequences.

Some questions that remain open regarding this topic are as follows:

1. Complete the solution for all remaining cases for disjoint (hooked) Langford

114



sequences of order n and all admissible defects.

2. Find applications for disjoint (hooked) Langford sequences of order n and defect

m.

3. Find applications for disjoint (hooked) near-Rosa sequences of order n and

defect m.

4. Find disjoint constructions for (hooked) near-Rosa sequences of order n and

defect m for all admissible defects.

5. Find additional applications for disjoint (hooked) near-Skolem sequences of or-

der n and defect m if possible.

6. Find additional disjoint constructions for (hooked) near-Skolem sequences of

order n and defect m.

7. Construct hooked m-near Langford sequences of order n and defect d.
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