5 research outputs found

    Interpreting Latent Variables in Factor Models via Convex Optimization

    Get PDF
    Latent or unobserved phenomena pose a significant difficulty in data analysis as they induce complicated and confounding dependencies among a collection of observed variables. Factor analysis is a prominent multivariate statistical modeling approach that addresses this challenge by identifying the effects of (a small number of) latent variables on a set of observed variables. However, the latent variables in a factor model are purely mathematical objects that are derived from the observed phenomena, and they do not have any interpretation associated to them. A natural approach for attributing semantic information to the latent variables in a factor model is to obtain measurements of some additional plausibly useful covariates that may be related to the original set of observed variables, and to associate these auxiliary covariates to the latent variables. In this paper, we describe a systematic approach for identifying such associations. Our method is based on solving computationally tractable convex optimization problems, and it can be viewed as a generalization of the minimum-trace factor analysis procedure for fitting factor models via convex optimization. We analyze the theoretical consistency of our approach in a high-dimensional setting as well as its utility in practice via experimental demonstrations with real data

    Information Theoretic Study of Gaussian Graphical Models and Their Applications

    Get PDF
    In many problems we are dealing with characterizing a behavior of a complex stochastic system or its response to a set of particular inputs. Such problems span over several topics such as machine learning, complex networks, e.g., social or communication networks; biology, etc. Probabilistic graphical models (PGMs) are powerful tools that offer a compact modeling of complex systems. They are designed to capture the random behavior, i.e., the joint distribution of the system to the best possible accuracy. Our goal is to study certain algebraic and topological properties of a special class of graphical models, known as Gaussian graphs. First, we show that how Gaussian trees can be used to determine a particular complex system\u27s random behavior, i.e., determining a security robustness of a public communication channel characterized by a Gaussian tree. We show that in such public channels the secrecy capacity of the legitimate users Alice and Bob, in the presence of a passive adversary Eve, is strongly dependent on the underlying structure of the channel. This is done by defining a relevant privacy metric to capture the secrecy capacity of a communication and studying topological and algebraic features of a given Gaussian tree to quantify its security robustness. Next, we examine on how one can effectively produce random samples from such Gaussian tree. The primary concern in synthesis problems is about efficiency in terms of the amount of random bits required for synthesis, as well as the modeling complexity of the given stochastic system through which the Gaussian vector is synthesized. This is done through an optimization problem to propose an efficient algorithm by which we can effectively generate such random vectors. We further generalize the optimization formulation from Gaussian trees to Gaussian vectors with arbitrary structures. This is done by introducing a new latent factor model obtained by solving a constrained minimum determinant factor analysis (CMDFA) problem. We discuss the benefits of factor models in machine learning applications and in particular 3D image reconstruction problems, where our newly proposed CMDFA problem may be beneficial

    High-dimensional discriminant analysis and covariance matrix estimation

    Get PDF
    Statistical analysis in high-dimensional settings, where the data dimension p is close to or larger than the sample size n, has been an intriguing area of research. Applications include gene expression data analysis, financial economics, text mining, and many others. Estimating large covariance matrices is an essential part of high-dimensional data analysis because of the ubiquity of covariance matrices in statistical procedures. The estimation is also a challenging part, since the sample covariance matrix is no longer an accurate estimator of the population covariance matrix in high dimensions. In this thesis, a series of matrix structures, that facilitate the covariance matrix estimation, are studied. Firstly, we develop a set of innovative quadratic discriminant rules by applying the compound symmetry structure. For each class, we construct an estimator, by pooling the diagonal elements as well as the off-diagonal elements of the sample covariance matrix, and substitute the estimator for the covariance matrix in the normal quadratic discriminant rule. Furthermore, we develop a more general rule to deal with nonnormal data by incorporating an additional data transformation. Theoretically, as long as the population covariance matrices loosely conform to the compound symmetry structure, our specialized quadratic discriminant rules enjoy low asymptotic classification error. Computationally, they are easy to implement and do not require large-scale mathematical programming. Then, we generalize the compound symmetry structure by considering the assumption that the population covariance matrix (or equivalently its inverse, the precision matrix) can be decomposed into a diagonal component and a low-rank component. The rank of the low-rank component governs to what extent the decomposition can simplify the covariance/precision matrix and reduce the number of unknown parameters. In the estimation, this rank can either be pre-selected to be small or controlled by a penalty function. Under moderate conditions on the population covariance/precision matrix itself and on the penalty function, we prove some consistency results for our estimator. A blockwise coordinate descent algorithm, which iteratively updates the diagonal component and the low-rank component, is then proposed to obtain the estimator in practice. In the end, we consider jointly estimating large covariance matrices of multiple categories. In addition to the aforementioned diagonal and low-rank matrix decomposition, it is further assumed that there is some common matrix structure shared across the categories. We assume that the population precision matrix of category k can be decomposed into a diagonal matrix D, a shared low-rank matrix L, and a category-specific low-rank matrix Lk. The assumption can be understood under the framework of factor models --- some latent factors affect all categories alike while others are specific to only one of these categories. We propose a method that jointly estimates the precision matrices (therefore, the covariance matrices) --- D and L are estimated with the entire dataset whereas Lk is estimated solely with the data of category k. An AIC-type penalty is applied to encourage the decomposition, especially the shared component. Under certain conditions on the population covariance matrices, some consistency results are developed for the estimators. The performances in finite dimensions are shown through numerical experiments. Using simulated data, we demonstrate certain advantages of our methods over existing ones, in terms of classification error for the discriminant rules and Kullback--Leibler loss for the covariance matrix estimators. The proposed methods are also applied to real life datasets, including microarray data, stock return data and text data, to perform tasks, such as distinguishing normal from diseased tissues, portfolio selection and classifying webpages

    Relationships Among Dimensions of Information System Success and Benefits of Cloud

    Get PDF
    Despite the many benefits offered by cloud computing’s design architecture, there are many fundamental performance challenges for IT managers to manage cloud infrastructures to meet business expectations effectively. Grounded in the information systems success model, the purpose of this quantitative correlational study was to evaluate the relationships among the perception of information quality, perception of system quality, perception of service quality, perception of system use, perception of user satisfaction, and net benefits of cloud computing services. The participants (n = 137) were IT cloud services managers in the United States, who completed the DeLone and McLean ISS authors’ validated survey instrument. The multiple regression finding were signification, F(5, 131) = 85.16, p \u3c .001, R2 = 0.76. In the final model, perception of information quality (β = .188, t = 2.844, p \u3c .05), perception of service quality (β = .178, t = 2.102, p \u3c .05), and perception of user satisfaction (β = .379, t = 5.024, p \u3c .001) were statistically significant; perception of system quality and perception of system use were not statistically significant. A recommendation is for IT managers to implement comprehensive customer evaluation of the cloud service(s) to meet customer expectations and afford satisfaction. The implications for positive social change include decision-makers in healthcare, human services, social services, and other critical service organizations better understand the vital predictors of attitude toward system use and user satisfaction of customer-facing cloud-based applications
    corecore