4,244 research outputs found

    Fractionally Predictive Spiking Neurons

    Full text link
    Recent experimental work has suggested that the neural firing rate can be interpreted as a fractional derivative, at least when signal variation induces neural adaptation. Here, we show that the actual neural spike-train itself can be considered as the fractional derivative, provided that the neural signal is approximated by a sum of power-law kernels. A simple standard thresholding spiking neuron suffices to carry out such an approximation, given a suitable refractory response. Empirically, we find that the online approximation of signals with a sum of power-law kernels is beneficial for encoding signals with slowly varying components, like long-memory self-similar signals. For such signals, the online power-law kernel approximation typically required less than half the number of spikes for similar SNR as compared to sums of similar but exponentially decaying kernels. As power-law kernels can be accurately approximated using sums or cascades of weighted exponentials, we demonstrate that the corresponding decoding of spike-trains by a receiving neuron allows for natural and transparent temporal signal filtering by tuning the weights of the decoding kernel.Comment: 13 pages, 5 figures, in Advances in Neural Information Processing 201

    Composite fermion wave functions as conformal field theory correlators

    Full text link
    It is known that a subset of fractional quantum Hall wave functions has been expressed as conformal field theory (CFT) correlators, notably the Laughlin wave function at filling factor Μ=1/m\nu=1/m (mm odd) and its quasiholes, and the Pfaffian wave function at Μ=1/2\nu=1/2 and its quasiholes. We develop a general scheme for constructing composite-fermion (CF) wave functions from conformal field theory. Quasiparticles at Μ=1/m\nu=1/m are created by inserting anyonic vertex operators, P1m(z)P_{\frac{1}{m}}(z), that replace a subset of the electron operators in the correlator. The one-quasiparticle wave function is identical to the corresponding CF wave function, and the two-quasiparticle wave function has correct fractional charge and statistics and is numerically almost identical to the corresponding CF wave function. We further show how to exactly represent the CF wavefunctions in the Jain series Μ=s/(2sp+1)\nu = s/(2sp+1) as the CFT correlators of a new type of fermionic vertex operators, Vp,n(z)V_{p,n}(z), constructed from nn free compactified bosons; these operators provide the CFT representation of composite fermions carrying 2p2p flux quanta in the nthn^{\rm th} CF Landau level. We also construct the corresponding quasiparticle- and quasihole operators and argue that they have the expected fractional charge and statistics. For filling fractions 2/5 and 3/7 we show that the chiral CFTs that describe the bulk wave functions are identical to those given by Wen's general classification of quantum Hall states in terms of KK-matrices and ll- and tt-vectors, and we propose that to be generally true. Our results suggest a general procedure for constructing quasiparticle wave functions for other fractional Hall states, as well as for constructing ground states at filling fractions not contained in the principal Jain series.Comment: 26 pages, 3 figure

    Physics of fractional imaging in biomedicine

    Get PDF
    Medical imaging is a rapidly evolving sub-ïŹeld of biomedical engineering as it considers novel approaches to visualizing biological tissues with the general goal of improving health. Medical imaging research provides improved diagnostic tools in clinical settings and thereby assists in the development of drugs and other therapies. Data acquisition and diagnostic interpretation with minimum error are important technical aspects of medical imaging. The image quality and resolution are critical in visualization of the internal aspects of patient’s body. Although a number of user-friendly resources are available for processing image features, such as enhancement, colour manipulation and compression, the development and refinement of new processing methods is still a worthwhile endeavour. In this article we aim to highlight the role of fractional calculus in imaging with the aid of a variety of practical examples

    Non-integer order derivatives

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2007Includes bibliographical references (leaves: 53-57)Text in English; Abstract: Turkish and Englishvii, 85 leavesThis thesis is devoted to integrals and derivatives of arbitrary order and applications of the described methods in various fields. This study intends to increase the accessibility of fractional calculus by combining an introduction to the mathematics with a review of selected recent applications in physics. It is described general definitions of fractional derivatives. This definitions are compared with their advantages and disadvantages. Fractional calculus concerns the generalization of differentiation and integration to non-integer (fractional) orders. The subject has a long mathematical history being discussed for the first time already in the correspondence of G. W. Leibnitz around 1690. Over the centuries many mathematicians have built up a large body of mathematical knowledge on fractional integrals and derivatives. Although fractional calculus is a natural generalization of calculus, and although its mathematical history is equally long, it has, until recently, played a negligible role in physics. In the first chapter, GrĂŒnwald-Letnikov approache to generalization of the notion of the differentation and integration are considered. In the second chapter, the Riemann Liouville definition is given and it is compared with GrĂŒnwald-Letnikov definition. The last chapter, Caputo.s definition is given. In appendices, two applications are given including tomography and solution of Bessel equation

    Applications of equivalent representations of fractional- and integer-order linear time-invariant systems

    Get PDF
    Nicht-ganzzahlige - fraktionale - Ableitungsoperatoren beschreiben Prozesse mit GedĂ€chtniseffekten, deshalb werden sie zur Modellierung verschiedenster PhĂ€nomene, z.B. viskoelastischen Verhaltens, genutzt. In der Regelungstechnik wird das Konzept vor allem wegen des erhöhten Freiheitsgrades im Frequenzbereich verwendet. Deshalb wurden in den vergangenen Dekaden neben einer Verallgemeinerung des PID-Reglers auch fortgeschrittenere Regelungskonzepte auf nicht-ganzzahlige Operatoren erweitert. Das GedĂ€chtnis der nicht-ganzzahligen Ableitung ist zwar essentiell fĂŒr die Modellbildung, hat jedoch Nachteile, wenn z.B. ZustĂ€nde geschĂ€tzt oder Regler implementiert werden mĂŒssen: Das GedĂ€chtnis fĂŒhrt zu einer langsamen, algebraischen Konvergenz der Transienten und da eine numerische Approximation ist speicherintensiv. Im Zentrum der Arbeit steht die Frage, mit welchen Maßnahmen sich das Konvergenzverhalten dieser nicht ganzzahligen Systeme beeinflussen lĂ€sst. Es wird vorgeschlagen, die Ordnung der nicht ganzzahligen Ableitung zu Ă€ndern. ZunĂ€chst werden Beobachter fĂŒr verschiedene Klassen linearer zeitinvarianter Systeme entworfen. Die Entwurfsmethodik basiert dabei auf einer assoziierten Systemdarstellung, welche einen Differenzialoperator mit höherer Ordnung verwendet. Basierend auf dieser Systembeschreibung können Beobachter entworfen werden, welche das GedĂ€chtnis besser mit einbeziehen und so schneller konvergieren. Anschließend werden ganzzahlige lineare zeitinvariante Systeme mit Hilfe nicht-ganzzahliger Operatoren dargestellt. Dies ermöglicht eine erhöhte Konvergenz im Zeitintervall direkt nach dem Anfangszeitpunkt auf Grund einer unbeschrĂ€nkten ersten Ableitung. Die periodische Löschung des so eingefĂŒhrten GedĂ€chtnisses wird erzielt, indem die nicht ganzzahlige Dynamik periodisch zurĂŒckgesetzt wird. Damit wird der algebraischen Konvergenz entgegen gewirkt und exponentielle StabilitĂ€t erzielt. Der Reset reduziert den Speicherbedarf und induziert eine unterlagerte zeitdiskrete Dynamik. Diese bestimmt die StabilitĂ€t des hybriden nicht-ganzzahligen Systems und kann genutzt werden um den Frequenzgang fĂŒr niedrige Frequenzen zu bestimmen. So lassen sich Beobachter und Regler fĂŒr ganzzahlige System entwerfen. Im Rahmen des Reglerentwurfs können durch den Resets das Verhalten fĂŒr niedrige und hohe Frequenzen in gewissen Grenzen getrennt voneinander entworfen werden.Non-integer, so-called fractional-order derivative operators allow to describe systems with infinite memory. Hence they are attractive to model various phenomena, e.g. viscoelastic deformation. In the field of control theory, both the higher degree of freedom in the frequency domain as well as the easy generalization of PID control have been the main motivation to extend various advanced control concepts to the fractional-order domain. The long term memory of these operators which helps to model real life phenomena, has, however, negative effects regarding the application as controllers or observers. Due to the infinite memory, the transients only decay algebraically and the implementation requires a lot of physical memory. The main focus of this thesis is the question of how to influence the convergence rates of these fractional-order systems by changing the type of convergence. The first part is concerned with the observer design for different classes of linear time-invariant fractional-order systems. We derive associated system representations with an increased order of differentiation. Based on these systems, the observers are designed to take the unknown memory into account and lead to higher convergence rates. The second part explores the representation of integer-order linear time-invariant systems in terms of fractional-order derivatives. The application of the fractional-order operator introduces an unbounded first-order derivative at the initial time. This accelerates the convergence for a short time interval. With periodic deletion of the memory - a reset of the fractional-order dynamics - the slow algebraic decay is avoided and exponential stability can be achieved despite the fractional-order terms. The periodic reset leads to a reduced implementation demand and also induces underlying discrete time dynamics which can be used to prove stability of the hybrid fractional-order system and to give an interpretation of the reset in the frequency domain for the low frequency signals. This concept of memory reset is applied to design an observer and improve fractional-order controllers for integer-order processes. For the controller design this gives us the possibility to design the high-frequency response independently from the behavior at lower frequencies within certain limits
    • 

    corecore