
 
 
 

NON-INTEGER ORDER DERIVATIVES  
 
 
 
 
 
 
 
 

A Thesis Submitted to  
the Graduated School of Engineering and Science of  

�zmir Institute of Technology  
in Partial Fulfillment of the Requirements for Degree of 

 
MASTER OF SCIENCE 

 
In Mathematics 

 
 
 
 

by 
Murat GÖKÇEN 

 
 
 
 
 
 
 

April 2007 
�ZM�R 

 



 ii 

We approve the thesis of  Murat GÖKÇEN 
 
 
                                                                                                               Date of Signature  
 
 
 
………………………………………… 09 April 2007    
Prof. Dr. Rıfat Mir KASIM  
Supervisor 
Department of Mathematics 
�zmir Institute of Technology 
 
 
 
 
………………………………………… 09 April 2007    
Prof. Dr. O�uz YILMAZ     
Department of Mathematics 
�zmir Institute of Technology 
 
 
 
 
………………………………………… 09 April 2007    
Prof. Dr. Rasim AL�ZADE 
Department of  Mechanical Engineering  
�zmir Institute of Technology 
 
 
 
 
………………………………………… 09 April 2007    
Prof. Dr. �smail HAKKI DURU 
Head of Department 
�zmir Institute of Technology 
 
 
 
 
 
 
 
 
 

…………………………………. 
Assoc. Prof. Dr. Barı� ÖZERDEM 

Dean of the Graduate School 

 



 iii 

ACKNOWLEDGMENTS 
 

 

Firstly I would like to thank my advisor Prof. Dr. Rıfat MirKASIM for his 

encouragement, inspiration and the great guidance. I would also like to thank Prof. Dr. 

Oktay PASHAEV for giving suggestions and teaching me lots of subject about my 

thesis. Also I would like to thank to my dear teacher �brahim KU�ÇUO�LU. Finally 

special thanks go to my friends Kadir Ç�YNEKL�, Füsun ALTINTA� for their helping. 

Of course I dont forget to thank to my family for their all supports. 

 



 iv 

ABSTRACT 
 

NON-INTEGER ORDER DERIVATIVES  

 

This thesis is devoted to integrals and derivatives of arbitrary order and 

applications of the described methods in various fields. This study intends to increase 

the accessibility of fractional calculus by combining an introduction to the mathematics 

with a review of selected recent applications in physics. It is described general 

definitions of fractional derivatives. This definitions are compared with their advantages 

and disadvantages. Fractional calculus concerns the generalization of differentiation and 

integration to non-integer (fractional) orders. The subject has a long mathematical 

history being discussed for the first time already in the correspondence of  G. W. 

Leibnitz around 1690. Over the centuries many mathematicians have built up a large 

body of mathematical knowledge on fractional integrals and derivatives. Although 

fractional calculus is a natural generalization of calculus, and although its mathematical 

history is equally long, it has, until recently, played a negligible role in physics. In the 

first chapter, Grünwald-Letnikov approache to generalization of the notion of  the 

differentation and integration are considered. In the second chapter, the Riemann –Liouville 

definition is given and it is compared with Grünwald-Letnikov definition. The last chapter, 

Caputo’s definition is given. In appendices,  two applications are given including 

tomography and solution of Bessel equation.  
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ÖZET 
 

TAM MERTEBEL� OLMAYAN TÜREVLER 

 

Bu tezde tam olmayan mertebeli türevler incelenmi� ve bunların uygulamaları 

üzerine birkaç örnek verilmi�tir. Üç bölüm halinde tam olmayan mertebeli türevlerin 

genel tanımları verilmi�tir. Bu tanımların birbirlerine göre avantaj ve dezavantajları 

tartı�ılmı�tır. Bu konunun Leibnizt’e uzanan detaylı bir geçmi�i vardır. Birçok ünlü 

matematikçi bu konu üzerinde çalı�mı�tır. Bu çalı�maların derlemesinden olu�an 

kullanılan kaynaklar tezin sonunda verilmi�tir. Çalı�manın birinci bölümünde 

bahsedilen türev tanımlarından ilki olan Grünwald-Letnikov tanımı verilmi�tir. �kinci 

bölümde Riemann-Liouville tanımı üzerinde çalı�ıldı. Üçüncü bölümde Caputo 

tanımından bahsedildi.Bu tanımla birlikte bütün verilen tanımlar kar�ıla�tırıldı. Daha 

sonra türevdeki en önemli özelliklerden biri olan Leibnitz kuralı ispatlandı. Ekler 

kısmında türev tanımlarında ihtiyaç duyulan Gamma fonksiyonlarının bazı özellikleri 

verildi. Ayrıca bu eklerde tomografi cihazında deneysel olarak daha iyi sonuç veren 

rasyonel mertebeli türev uygulaması ve Bessel denkleminin rasyonel mertebeli 

dönü�ümler kullanılarak çözümünü veren bazı çalı�malar da bulunmaktadır.  
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CHAPTER 1 
 

GRUNWALD-LETNIKOV FRACTIONAL DERIVATIVE 
 

1.1. Unification of Integer-order Derivatives and Integrals 

  

Let us consider a continuous function y=f(t). We write the well-known definition 

for the first-order derivative of the function f(t); 
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now let us consider generalizing the fractions in (1)-(4): 
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where p is an arbitrary integer number; n is also integer  
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for np ≤  we have 
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all coefficients in the numerator after ��
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Let us consider negative values of p. To denote the following expression is 

better: 
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and replacing p in (6) with –p we can write 
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where p is a positive integer number. 
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now let us consider particular cases; 

 

p=1 we have: 
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because ty →  as 0→h  
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to prove by induction let us write the function g 
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if we apply (24) to (23) and replacing of r by r-1 
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from a to t we obtain: 
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we see that the derivative of an integer order n and the p-fold integral of the continuous 

function f(t) are particular cases of the general expression 
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which represents the derivative of order m if p=m and m-fold integral if p=-m. This 

observation leads to the idea of a generalization of the notions of differentations and 

integration by allowing p in (27) to be an arbitrary real or even complex number. We 

will restrict our attention to real values of p.  

  

1.2. Integrals of Arbitrary Order 
 

Let us consider the case of p<0. For convenience let us replace p by –p in the 
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To prove the existance of the limit in (28) and to evaluate that limit we need the 

following theorem (A.V. Letnikov, [66] ): 

 

THEOREM 1.1 Let us take a sequence kβ , (k = 1,2, … ) and suppose that 
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Using subsequently (35), (34), (31) and (36) we obtain 
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Taking into account (38) and (39) and applying Theorem 1. 1 we have  
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f ′  is continuous in [a,b] 
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and f has m+1 continuous derivatives then 
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1.3. Derivatives of Arbitrary Order  
 

Let us evaluate the limit 
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=−��
	



��
�


−=

n

r

p
hh

rp

h

p
ta tfrhtf

r

p
htfD

atnhatnh 0

)(

00
)(lim)()1(lim)(  (43) 

 

where 

 

 �
=

− −��
	



��
�


−=

n

r

rpp
h rhtf

r

p
htf

0

)( )()1()(   (44) 

  

property of the binomial coefficients 

  

  ��
	



��
�



−
−
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��
�
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=��

	



��
�



1
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r

p

r

p

r

p
  (45) 
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n

r
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p
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r
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0 0

)( )(
1
1

)1()(
1

)1()(  
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−

=

−+−−
��
	



��
�
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−=+−��

	



��
�
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−+−��

	



��
�

 −
−

n

r

n

r

pnrprp afh
n

p
hrtf

r

p
hrhtf

r

p
h

0

1

0

1 )(
1

)1())1((
1

)1()(
1

)1(

 

 �
−

=

− −��
	



��
�

 −
−+

1n

0r

rp )rht(f
r

1p
)1(h ∆   (46) 
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 where we denote  

  

 ))1(()()( hrtfrhtfrhtf +−−−=−∆  

  

)( rhtf −∆  is the first-order backward difference of the function f )(τ  at the point  

 

rht −=τ . 

 

Applying (45) of the binomial coefficient m times, we obtain starting from (46) 
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r

p
hhafh

n

p
afh

n

p
tf  

 

)2(
3
3

)1()(
1
2

)1()(
1

)1( 221 hafh
n

p
hafh

n

p
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n

p pnpnpn +∆��
	



��
�



−
−

−++∆��
	



��
�



−
−
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��
�
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−= −−−−−  

 

 �
−

=

− −��
	



��
�
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−+
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0r

3rp )rht(f
r

3p
)1(h ∆   (47)  

          

 =… 
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=

+
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=

−−− −∆��
	



��
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�
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m
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r

rpkpkn rhtf
r
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0

1
1

0

)(
1

)1()(
1

)1(  (48) 

 

let us evaluate the limit of the k-th term in the first sum in (48): 

 

 
k

k
kpkpkpkn

h

kpkn

h h
khaf
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kn

n
kn

kn
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khafh

kn

kp
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1
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1
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−
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)1(lim)(

0

+∆
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→
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∞→

−−

∞→
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)1(

))(()(

++−Γ
−=

+−

kp
ataf kpk

  (49) 

 

)1(
1

)!()(
))...(2)(1(

lim)(
1

)1(lim
++−Γ

=
−−

+−++−++−=−��
	



��
�



−
−−

− +−∞→

−−

∞→ kpknkn
npkpkp

kn
kn

kp
kpn

kpkn

n

 

 1lim =�
	



�
�



−

−

∞→

kp

n kn
n

 

 

 )(
)(

lim )(

0
af

h
khaf k

k

k

h
=+∆

→
 

 

We can write easily the limit of the first sum in (48). 

To evaluate the limit of the second sum in (48) let us write it in the form  

 

 ( ) ( )�
−−

=
+

+
−+− −∆

��
	



��
�

 −−
++−Γ−

++−Γ

1

0
1

1 )(
)(.

1
1)1(

1
1 mn

r
m

m
pmpmr

h
rhtf

rhhr
r

mp
mp

mp
 (50) 

 

to apply Theorem 1. 1 we take  

 

 pmr
r r

r

mp
mp +−

��
	



��
�

 −−
++−Γ−=

1
)1()1(β  

 

 1

1

,
)(

)( +

+
− −∆=

m

m
pm

rn h
rhtf

rhhα  
n

at
h

−=  

 

Using (A1. 7) we verify that  

 

  1
1

)1()1(limlim =��
	



��
�

 −−
++−Γ−= +−

∞→∞→

pmr

rrr
r

r

mp
mpβ   (51) 

 

if m-p>-1 then 
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 � � �
−−

=

−−

=

+−
+

+
−

→∞→
−=−∆=

−=

1

0

1

0

)1(
1

1

0, .)()(
)(

)(limlim
mn

r

mn

r

t

a

mpm
m

m
pm

hrnn
dft

h
rhtf

rhh
atnh

τττα   (52) 

 

 

Taking into account (51) and (52) and applying Theorem 2. 1 we have that 

 

 �
−−

=

+−

→
−∆��

	



��
�

 −−
−

−=

1

0

1

0
)(

1
)1(lim

mn

r

mrp

h
rhtf

r

mp
h

atnh

 

 

  = τττ dft
mp

t

a

mpm
�

+−−
++−Γ

)()(
)1(

1 )1(   (53) 

 

Using (49) and (53) we obtain the limit (43): 

 

 � �
=

+−
+−

∞→
−

++−Γ
+

++−Γ
−==

−=

m

k

t

a

mpm
kpk

p
hh

p
ta dft

mpkp
ataf

tftfD
atnh 0

)1(
)(

)( )()(
)1(

1
)1(

))((
)(lim)( τττ  (54) 

 

The formula (54) has been obtained under the assumption that the derivatives 

),()( tf k  (k=1, 2, 3, … , m+1) are continuous in the closed interval [a, t] and that m is an 

integer number satisfying the condition m>p-1. The smallest possible value for m is 

determined by the inequality  

 

 m<p<m+1. 

 

1.4. Fractional Derivative of ν)( at −  

 

Let us evaluate the Grünwald-Letnikov fractional derivative )(tfD p
ta  of the 

power function  

 

 ν)()( attf −=  

  

Where ν  is a real number. 



 16 

Let us start by considering negative values of p, which means that we will start 

with the evaluation of the fractional integral of order –p. Let us use the formula (40): 

 

  � −−
−Γ

=− −−
t

a

pp

ta
dat

p
atD τττ νν )()(

)(
1

)( 1   (55) 

 

And suppose 1−>ν  for the convergence of the integral. Performing in (55) the 

substitution )( ata −+= ξτ  and then using the definition of beta function, we obtain: 

  

 �
−−−− −+−

−Γ
=−−

−Γ
=−

1

0

1 ))(1,(
)(

1
)1()(

)(
1

)( pppp

ta
atpB

p
dat

p
atD νννν νξξξ  

 

  ,)(
)1(

)1( pat
p

−−
+−Γ

+Γ= ν

ν
ν

 ( ).1,0 −>< νp   (56) 

 

Let us take .10 +≤≤≤ mpm  To apply the formula (54), we must require 

m>ν  for the convergence of the integral in (54). Then  

 

  � +

+
− −−

++−Γ
=−

t

a
m

m
pmp

ta
d

d
ad

t
mp

atD ,
)(

)(
)1(

1
)( 1

1

τ
τ
ττ

ν
ν   (57)  

 

Because all non-integral addends are equal to 0. 

  

Taking into account that  

 

11
1

1

)(
)1(

))()...(1(
)( −−−−

+

+

−
−

+Γ=−−+=− mm
m

m

a
m

am
d

ad νν
ν

τ
ν

ντννν
τ
τ

 

 

and performing the substitution )( ata −+= ξτ  we obtain: 

 

�
−−−− −

++−Γ−Γ
−++−+Γ=−−

++−Γ−Γ
+Γ=−

t

a

pmpmp

ta
at

mpm
mmpB

dat
mpm

atD ννν

ν
νντττ

ν
ν

)(
)1()(

),1()1(
)()(

)1()(
)1(

)( 1  
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  .)(
)1(

)1( pat
p

−−
++−Γ

+Γ= ν

ν
ν

  (58) 

 

 Noting that the expression (58) is formally identical to the expression (56) we 

can conclude that the Grünwald-Letnikov fractional derivative of the power function 
ν)()( attf −=  is given by the Formula  

 

  pp

ta
at

p
atD −−

++−Γ
+Γ=− νν

ν
ν

)(
)1(

)1(
)(   (59) 

 

 ( )1,0 −>< νp  or ( ).,10 mmpm >+≤≤≤ ν  

 

 We will return to Formula (59) for the Grünwald-Letnikov fractional derivative 

of the power function later, when we consider other approaches to fractional 

differentiation. 

 

1.5. Composition with Integral Order Derivatives 
 

 Noting that we have only one restriction for m in the formula (54), namely the 

condition m>p-1, let us write s instead of m and rewrite (54) 

 

 � �
=

+−
+−

−
++−Γ

+
++−Γ

−=
s

k

t

a

sps
kpk

p
ta dft

spkp
ataf

tfD
0

)1(
)(

)()(
)1(

1
)1(

))((
)( τττ   (60) 

 

In what follows we assume that m<p<m+1. 

Let us evaluate the derivative of integer order n of the fractional derivative of 

fractional order p in the form (60), where we take s ≥ m+n-1. The result is: 

 

 � �
=

++−−
+−−

=−
++−−Γ

+
++−−Γ

−=
s

k

t

a

np
ta

snps
knpk

p
tan

n

tfDdft
snpknp

ataf
tfD

dt
d

0

)1(
)(

).()()(
)1(

1
)1(

))((
))(( τττ   (61) 
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  )())(( tftf
dt
d

DD
np

ta

p

tan

n
+=   (62) 

 

Since s 1−+≥ nm  is arbitrary, let us take s=m+n-1. This gives: 

 

 � �
−+

=

+−−
+−−

+ −
−Γ

+
++−−Γ

−==
1

0

)(1
)(

)()(
)(

1
)1(

))((
)())((

nm

k

t

a

nmpm
knpk

np
ta

p
tan

n

dft
pmknp

ataf
tfDtfD

dt
d τττ   (63) 

 

Let us consider the reverse order of operations and evaluate the fractional 

derivative of order p of an integer-order derivative 
n

n

dt
tfd )(

. Using the formula (60) we 

obtain: 

 

 � �
=

++−
+−+

−
++−Γ

+
++−Γ

−=
s

k

t

a

snps
kpkn

n

n
p

ta dft
spkp

ataf
dt

tfd
D

0

)1(
)(

)()(
)1(

1
)1(

))((
)

)(
( τττ  (64) 

 

putting here s=m-1 we obtain: 

 

 �� +−−
−

=

+−+

−
−Γ

+
++−Γ

−=
t

a

nmpm
m

k

kpkn

n

n
p

ta dft
pmkp

ataf
dt

tfd
D τττ )()(

)(
1

)1(
))((

)
)(

( )(1
1

0

)(

  (65) 

 

and comparing (63) and (65) we arrive at the conclusion that  

 

 �
−

=

+−−

++−−Γ
−+=

1

0

)(

.
)1(

))((
)

)(
())((

n

k

knpk

n

n
p

ta
p

tan

n

knp
ataf

dt
tfd

DtfD
dt
d

  (66) 

 

The relationship (66) says that the operations 
n

n

dt
d

 and p
ta D  are commutative, that  

 

 ),(
)(

))(( tfD
dt

tfd
DtfD

dt
d np

tan

n
p

ta
p

tan

n
+=��

	



��
�


=   (67) 

 

 



 19 

only if at the lower terminal t=a of the fractional differentiation we have  

 

 ,0)()( =af k  (k=0, 1, 2, …, n-1)  (68) 

 

1.6. Composition with Fractional Derivatives 
  

Let us consider the fractional derivative of order q of a fractional derivative of 

order p: 

 

  )( p
ta

q
ta DD  

 

 Two cases will be considered separately: p<0 and p>0. The first cases means 

that depending on the sign of q-differetiation of order q>0 or integration of order –q>0 

is applied to the fractional integral of order –p>0. In the second case, the object of the 

outer operation is the fractional derivative of order p>0. 

 In both cases we will obtain an analogue of the well-known property of integer-

order differetiation: 

 

 
nm

nm

n

n

m

m

m

m

n

n

dt
tfd

dt
tfd

dt
d

dt
tfd

dt
d

+

+

== )(
)

)(
()

)(
(  

 

Case p<0 

 

Let us take q<0. Then we have: 

 

 �
−−−

−Γ
=

t

a

p
a

qp
ta

q
ta dfDt

q
tfDD τττ τ ))(()(

)(
1

))(( 1  
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−−−− −−

−Γ−Γ

t

a a

pq dfdt
pq

τ

ξξξτττ )()()(
)()(

1 11  
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 = � �
−−−− −−

−Γ−Γ

t

a

t
pq dtdf

pq ξ

τξττξξ 11 )()()(
)()(

1
 

 

  = �
+−−− =−

−−Γ

t

a

qp
ta

qp tfDdft
qp

)()()(
)(

1 1 ξξξ   (69) 

 

where the integral  

 

 ��
−−−−−−−−−−−−−− −

−−Γ
−Γ−Γ=−−=−−

1

0

111111 )(
)(
)()(

)1()()()( qppqqp
t

pq t
qp
pq

dzzztdt ξξτξττ
ξ

  

 

is evaluated with the help of the substitution )( ξξτ −+= tz  and the definition 

of the beta function. 

 Let us suppose that 0<n<q<n+1. Noting that q=(n+1)+(q-n-1), where q-n-1<0 

and using the formulas (62) and (69) we obtain: 

 

 { } { } )()())(())(( 1
1

1
1

1

1

tfDtfD
dt
d

tfDD
dt
d

tfDD qp
ta

nqp
tan

n
p

ta
nq

tan

n
p

ta
q
ta

+−−+
+

+
−−

+

+

=== (70) 

 

Combining (69) and (70) we conclude that if p<0, then for any real q 

 

 ).())(( tfDtfDD qp
ta

p
ta

q
ta

+=  

 

 Case p>0 

 

Let us assume that 0 1+<<≤ mpm . Then, according to formula (1. 54), we have  

 

  �� +−

=

+−

∞→
−

++−Γ
+

++−Γ
−==

−=

t

a

mpm
m

k

kpk
p

hh

p
ta dft

mpkp
ataf

tftfD
atnh

τττ )()(
)1(

1
)1(

))((
)(lim)( )1(

0

)(
)(   (71) 

 

Let us take q<0 and evaluate  
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 )).(( tfDD p
ta

q
ta  

 

Examining the right-hand side of (71) we see that the functions kpat +−− )(  have 

non-integrable singularities for k=0, 1, 2, …, m-1. Therefore , the derivative of real 

order p of )(tfD p
ta  exists only if  

 

  0)()( =af k  (k=0, 1, …, m-1)  (72) 

 

The integral in the right-hand side of (71) is equal to )(1 tfD mp
ta

−−  (the fractional 

integral of order –p+m+1 of the function f(t)). Therefore, under the conditions (72) the 

representation (71) of the p-th derivative of f(t) takes the following form: 

 

  ).(
)1(

))((
)( )1(1

)(

tfD
mp

ataf
tfD mmp

ta

mpm
p

ta
+−−

+−

+
++−Γ

−=   (73) 

 

we can find the derivative of order q<0 (the integral of order –q>0) of the derivative of 

order pgiven by (73): 

 

 � −+
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−++−−Γ
+
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a
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q
ta t
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  (74) 

 

because  
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a
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Taking into account the conditions (72) and the formula (71) we obtain  

 

  )())(( tfDtfDD qp
ta

p
ta

q
ta

+=   (75) 
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Let us take 10 +<<≤ nqn . Assuming that f(t) satisfies the conditions (72) and 

taking into account that q-n-1<0 and, therefore, the formula (75) can be used. We 

obtain: 

  

 { } { } )()())(())(( 11
1

1
1

1

1

tfDtfD
dt
d

tfDD
dt
d

tfDD qp
ta

np
tan

n
p

ta
nq

tan

n
p

ta
q
ta

+−−+
+

+
−−

+

+

===   (76)  

 

which is the same as (75). Therefore, we can conclude that if p<0, then the relationship 

(75) holds for arbitrary real q; if 0 1+<<≤ mpm  then the relitionship (75) holds also 

for arbitrary real q, if the function f(t) satisfies the conditions (72). 

Moreover, if 10 +<<≤ mpm  and 10 +<<≤ nqn  and the function f(t) 

satisfies the conditions 

  

  0)()( =af k  (k=0, 1, 2, …, r-1)  (77) 

 

where r=max(n, m), then the operators of fractional differentiation p
ta D  and q

ta D  

commute: 

 

  )())(())(( tfDtfDDtfDD qp
ta

q
ta

p
ta

p
ta

q
ta

+==   (78) 
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CHAPTER 2 
 

RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE 

DEFINITION 
 

 Manipulation with the Grünwald-Letnikov fractional derivatives defined a limit 

of a fractional-order backward difference is not convenient. (54) looks better because of 

the presense of the integral in it, what about the non-integral terms. To consider (54) as 

a particular case of the integro-differential expression 

 

  �
−+ −=

t

a

pmmp
ta dft

dt
d

tfD ,)()()()( 1 τττ  )1( +<≤ mpm .  (79) 

 

The expression (79) it is the most known definition of the fractional derivative; it 

is called the Riemann-Liouville definition. 

The expression (54), which has been obtained for the Grünwald-Letnikov 

fractional derivative under the assumption that the function f(t) must be m+1 times 

continuously differentiable, can be obtained from (79) under the same assumption by 

performing repeatedly integration by parts and differentiation. This gives  
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mpm
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  = ),(tfD p
ta  )1( +<≤ mpm .  (80) 

 

 If we consider a class of functions f(t) having m+1 continuous derivatives for 

0≥t , then the Grünwald-Letnikov definition (43) is equivalent to the Riemann-

Liouville dfinition (73). 

 From the pure mathematical point of view such a class of functions is norrow; 

however, this class of functions is very important for applications, because the character 

of the majority of dynamical processes is smooth enough and does not allow 

discontinuities. Understanding this fact is important for the proper use of the methods of 
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the fractional calculus in applications, especially because of the fact that the Riemann-

Liouville definition (73) provides an opportunity to weaken the conditions on the 

function f(t). Namely, it is enough to to require the integrability of f(t); then the integral 

(73) exists for t>a and can be differentiated m+1 times. The weak conditions on the 

function f(t) in (73) are necessary, for example. For obtaining the solution of the Abel 

integral equation. Let us look at how the Riemann-Liouville definition (73) appears as 

the result of the unification of the notions of integral-order integration and 

differentiation. 

 

2.1. Unification of Integer-order Derivatives and Integrals 
 

Let us suppose that the function f(τ ) is continuous and integrable in every finite 

interval (a, t); the function f(t) may have an integrable singularity of order r<1 at the 

point a=τ ; 
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a
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Then 

 

  �=−
t

a

dftf ττ )()()1(  (81) 

 

exists and has a finite value, namely equal to 0, as t →a. Performing the substitution 

)( atya −+=τ  and then denoting ,at −=ε we obtain  
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  (82) 

 

because r<1. Therefore we can consider the two-fold integral 
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Integration of (77) gives the three-fold integral of f(τ ): 
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by induction in the general case we have the Cauchy formula 
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Let us suppose that 1≥n  is fixed and take integer k 0≥ . We will obtain 
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where the symbol )0( ≥− kD k  denotes k iterated integrations. On the other hand, for a 

fixed 1≥n  and integer k ≥ n the (k-n)-th derivative of the function f(t) can be written as  
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where the symbol kD  ( 0≥k ) denotes k iterated differentiations. 

The formula (86) and (87) can be considered as particular cases of one of them 

namely (87), in which n ( 1≥n ) is fixed and the symbol kD  means k integrations if 

0≤k  and k differentiations if k>0. If k=n-1, n-2, …, then the formula (87) gives 

iterated integrals of f(t); for k=n it gives the function f(t); for k=n+1, n+2, … it gives 

derivatives of order k-n=1, 2, 3, … of the function f(t). 
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2.2. Integral of Arbitrary Order 
 

Let us start with the Cauchy formula (85) and replace the integer n in it by a real 

p>0 to extend the notion of n-fold integration on-integer values of n: 
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In (85) the integer n must satisfy the condition 1≥n  ; the corresponding 

condition for p is weaker: for the existence of the integral (88) we must have p>0. 

Also under certain reasonable assumptions 
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so we can put 
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 The proof of the relationship (89) is simple if f(t) has continuous derivatives for 

0≥t . In such case, integration by parts and the use of (A1. 3) gives  
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If f(t) is only continuous for ≥t a, then the proof of (89) is somewhat longer. In 

such case let us write )(tfD p
ta
−  in the form: 
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Let us consider the integral (92). Since f(t) is continuous, for every �>0 there 

exists �>0 such that 
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Then we have the following estimate of the integral (92): 
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and taking into account that 0→ε  as 0→δ  we obtain that for all 0≥p  
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Let us take an arbitrary ε >0 and choose δ such that  
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for all .0≥p  For this fixed δ we obtain the following estimate of the integral (91): 
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from which it follows that for fixed 0>δ  
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where ε  can be chosen as small as we possible. So, 
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and (89) holds if f(t) is continuous for at ≥ . 

 

 If f(t) is continuous for t a≥ , then integration of arbitrary real order defined by 

(88) has the following property: 
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we have  
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Obviously, we can interchange p and q, so we have 
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 One may note that the rule (100) is similar to well-known property of integer-

order derivatives: 
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2.3. Derivatives of Arbitrary Order  
  

 The representation (87) for the derivative of an integer order k-n provides an 

opportunity for extending the notion of differentiation on-integer order We can leave 

integer k and replace integer n with a real α  so that k-α >0. This gives  
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where the only substantial restriction for α  is 0>α , which is neccessary for the 

convergence of the integral in (102). This restriction , however, can be (without loss of 

generality) replaced with the narrower condition ;10 ≤< α  this can be shown with the 

help of the property (100) of the integrals of arbitrary real order and the definition 

(102). Denoting p=k-α  we can write (102) 
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If p=k-1, then we obtain a conventional integer-order derivative of order k-1: 
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Morover, using (90) we see that for p=k 1≥  and t>a 
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which means that for t>a the Riemann-Liouville fractional derivative (103) of order 

p=k>1 coincides with the conventional derivative of order k. 

Let us consider some properties of the Riemann-Liouville fractional derivatives. 

The first property of the Riemann-Liouville fractional derivative is that for p>0 and t>a 
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which means that the Riemann-Liouville fractional differentiation operator is a left 

inverse to the Riemann-Liouville fractional integration operator of the same order p. 

To prove the property (106), let us consider the case of integer p=n :1≥  
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Taking kpk <≤−1  and using the composition rule (94) for the Riemann-

Liouville fractional integrals we can write 

 

  )),(()( )( tfDDtfD p
ta

pk
ta

k
ta

−−−− =   (107) 

 

and therefore  

  

 { } ),())(())(())(( )( tftfD
dt
d

tfDD
dt
d

tfDD p
tak

k
p

ta
pk

tak

k
p

ta
p

ta === −−−−−  



 31 

and that’s proved. 

 As with conventional intefer-order differentiation and integration fractional 

differentiation and integration do not commute. If the fractional derivative 

)1(),( kpktfD p
ta <≤− , of a function f(t)is integrable , then  
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in fact, on the one hand we have  
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On the other hand, using (100) we obtain 
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The existence of all terms in (110) follows from the integrability of )(tfD p
ta  because 

of this condition the fractional derivatives )(tfD jp
ta

− (j=1, 2, …, k) are all bounded at t=a. 

Combining (109) and (110) ends the proof the relitionship (108). 

An important particular case, if 0<p<1, then  
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The property (106) is a particular case of a more general property  
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where we assume that f(t) is continuous and, if ,0≥≥ qp  that the derivative 

)(tfD qp
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−  exists.  

Two cases must be considered: 0≥≥ pq  or .0≥> qp  If ,0≥≥ pq  then using 

the properties (100) and (106) we obtain  
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Now let us consider the case p>q .0≥  Let us denote by m and n integers such 

that mpm <≤−≤ 10  and .0 nqpn <−≤≤ ( mn ≤ ). Then using the definition (103) 

and the property (100) we obtain  
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The above property (102) is a particular case of the more general property  
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 ( kqk <≤−≤ 10 ) 
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To prove the formula (115) we use property (100) ( pq ≤ ) or property (114) 

( pq ≥ ) and then property (108). This gives  
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2.4. Fractional Derivative of ν)( at −  

 

Let us evaluate the Riemann-Liouville fractional derivative )(tfD p
ta  of the 

power function  

 

 ( )νattf −=)(  (ν  is real) 

 

For this purpose let us assume that npn <≤−1  and recall that by the definition 

of the Riemann-Liouville derivative  
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Substituting into the formula (116) the fractional integral order pn −=α of this 

function, which we have evaluated in (56) 
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and we have 
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and the only restriction for f(t)= ν)( at −  is its integrability, namely .1−>ν  

 

2.5. Composition with Integer-order Derivatives 
 

Let us consider the n-th derivative of the Riemann-Liouville fractional derivative 

of real order p. Using the definition (102) of the Riemann-Liouville derivative we have: 
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and denoting p=k-α  we have  
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To consider the reversed order of operations, we must take into account that  
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and that  
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Using (120), (121) and (117) we have: 
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which is the same as the relitionship (66). 

Therefore, as in the case of the Grünwald-Letnikov derivatives, we see that the 

Riemann-Liouville fractional derivative operator p
ta D  commute with 
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only if at the lower terminal t=a of the fractional differentiation the function f(t) satisfies 

the coditions 
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2.6. Composition with Fractional Derivatives 

 

Let us turn to two fractional Riemann-Liouville derivative operators: 
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Using the definition of the Riemann-Liouville fractional derivative (98), the 

formula  (102) and the composition with integer-order derivatives (113) we have: 
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Interchanging p and q, we can write: 
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The comparison of the relationship (125) and (126) says that in the general case 

the Riemann-Liouville fractional derivative operators p
ta D  and q

ta D  dont commute, 

with only one exception: for qp ≠  we have 
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only if both sums in the right-hand sides of (125) and (126) vanish.We have to require 

the simultaneous fulfillment of the conditions  
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As will be shown below in section 2. 7, if f(t) has a sufficent number of 

continous derivatives, then the conditions (128) are equivalent to 
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where r=max(n, m). 
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2.7. Link to Grünwald-Letnikov Approach 
 

 There exists a link between the Riemann-Liouville and the Grünwald-Letnikov 

approaches to differentiation of arbitrary real order. The exact conditions of the 

equivalance of these two approaches are the following. Let us suppose that the function 

f(t) is (n-1)-times continuously differentiable in the interval [a, T] and that )()( tf n is 

integrable in [a, T]. Then for every p (0<p<n) the Riemann-Liouville derivative 

)(tfD p
ta  exists and coincides with the Grünwald-Letnikov derivative ),(tfD p

ta  and if 

0 ,1 nmpm ≤<≤−≤  then for a<t<T the following holds: 
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On the one hand the right-hand side of formula (133) is equal to the Grünwald-

Letnikov derivative ).(tfD p
ta  On the other hand, it can be written as 
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which after m integrations by parts takes the form of the Riemann-Liouville derivative 

)(tfD p
ta  
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The following particular case of the relationship (133) is important from the 

viewpoint of numerous applied problems. 

If f(t) is continuous and )(tf ′  is integrable in the interval [a, T], then for every p 

(0<p<1) both Riemann-Liouville and Grünwald-Letnikov derivatives exists and can be 

written in the form 
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the derivative given by the expression (134) is integrable. Another important 

property following from (133) is that the existence of the derivative of order p>0 

implies the existence of the derivative of order q for all q such that 0<q<p. 

 

 If for a given continuous function f(t) having integrable derivative the Riemann-

Liouville (Grünwald-Letnikow) derivative )(tfD p
ta exists and is integrable, then for 

every q such that (0<q<p) the derivative )(tfD q
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Noting that )(tg ′  is integrable and taking into account the formula (128) and the 

inequality 0<1+q-p<1 we conclude that the derivative )(1 tgD pq
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−+  exists and 

integrable. Then, using the property (114), we have: 
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The relitionship (127) between the Grünwald-Letnikov and the Riemann-

Liouville definitions also has another consequence which is important for the 

formulation of applied problems, manipulation with fractional derivatives and the 

formulation of physically meaningfull initial-value problems for fractional-order 

differential equations. 

  

 Under the same assumptions on the function f(t) (f(t) is (m-1)-times 

continuously differentiable and its m-th derivative is integrable in [a- T]) and on p (m-

1 ≤ p<m) the condition  
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is equivalent to the conditions  

 

  ).1,...,2,1,0(,0)()( −== mjaf j   (136) 

 

If the conditions (135) are fulfilled, then putting at →  in (133) we obtain (135). 

On the other hand, if the conditions (135) is fulfilled, the multiplying both sides of 

(127) subsequently by jpat −− )(  (j=m-1, m-2, …, 2, 1, 0) and taking the limits as at →  

we obtain 0)(,0)(,...,0)(,0)( )2()1( ==′== −− afafafaf mm  the conditions (136). 

Therefore, (135) holds iff (136) holds. 

From the equivalance of the conditions (135) and (136) it follows that if for 

some p>0 the p-th derivative of f(t) is equal to zero at the terminal t=a, then all 

derivatives of order q (0<q<p) are also equal to zero at t=a: 
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CHAPTER 3 
 

CAPUTO’S FRACTIONAL DERIVATIVES 
 

3.1. Caputo’s Fractional Derivative 
 

 Applied problems require definitions of fractional derivatives allowing the 

utilization of physically interpretable initial conditions, which contain .),(),( etcafaf ′  

The Riemann-Liouville approachleads to initial conditions containing the limit 

values of the Riemann-Liouville fractional derivatives at the lower terminal t=a, 
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where kb  (k=1, 2, …, n) are given constants. 

 In spite of the fact that initial value problems with such initial conditions can be 

solved mathematically, their solutions are practcally unless, because there is no known 

physical interpretation for such types of initial conditions. Here we observe a conflict 

between the well-established and polished mathematical theory and practical needs. A 

certain solution to this conflict was proposed by M. Caputo in his paper and in his book 

and recently by El-Sayed. Caputo’s definition can be written as 
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Under conditions on the function f(t), for n→α  the Caputo derivative becomes 

a conventional n-th derivative of the function f(t). Let us assume that nn <<−≤ α10  

and that the function f(t) has n+1 continuous bounded derivatives in [a, T] for every 

T>a. Then  
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This says that, similarly to the Grünwald-Letnikov and Riemann-Liouville 

approaches, the Caputo approach also provides an interpolation between integer-order 

derivatives. The main advantage of Caputo’s approach ism that the initial conditions for 

fractional differetial equations with Caputo derivatives take on the same form as for 

integer-order differential equations, contain the limit values of integer-order derivatives 

of unknown functions at the lower terminal t=a. The formula for the Laplace transform 

of the Riemann-Liouville fractional derivative is  
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whereas Caputo’s formula, for the Laplace transform of the Caputo derivative is  
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We see that the Laplace transform of the Riemann-Liouville fractional derivative 

allows utilization of initial conditions of the type (137) which can cause problems with 

their physical interpretation. On the contrary, the Laplace transform of the Caputo 

derivative allows utilitization of initial values of classical integer-order derivatives with 

known physical interpretation. The Laplace transform method is frequently used for 

solving applied problems. To choose the suitable Laplace transform formula, it is 

important to understand which type definition of fractional derivative must be used. 

Another difference between the Riemann-Liouville definition (103) and Caputo 

definition (138) is that the Caputo derivative of a constant is 0, whereas in the cases of a 

finite value of the lower terminal a the Riemann-Liouville fractional derivative of a 

constant C is not equal to 0, but 
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This fact led Ochmann and Makarov [67] to using the Riemann-Liouville 

definition with −∞=a , because, on the one hand, from the physical point of view they 

need the fractional derivative of a constant equal to zero and on the other hand formula 

(141) gives 0 if −∞→a . The pyhsical meaning of this step is that the starting time of 

the physical process is set to ∞− . In such a case transient effects can not be studied. 

However, taking a= ∞−  is the necessarry abstraction for the consideration of the steady-

state processes, for example for studying the response of the fractional-order dynamic 

system to the periodic input signal, wave propagation in viscoelastic materials. Putting 

−∞=a  in both definitions and requiring reasonable behaviour of f(t) and its derivatives 

for −∞→t , we arrive at the same formula  
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 (n-1< n<α ) which shows that for the study of steady-state dynamical process 

the Riemann-Liouville definition and Caputo definition must give the same results. 

There is also another diifference between the Riemann-Liouville and the Caputo 

approaches, which we would like to mention here and which seems to be important for 

applications. Namely, for the Caputo derivative we have  
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while for the Riemann-Liouville derivative  
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The interchange of the differentiation operators in formulas (143) and (144) is 

allowed under different conditions: 
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 ,0)0()( =sf  s=n, n+1, … , m (m=0, 1, 2, … ; n-1< n<α ) 
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 ,0)0()( =sf  s=0, 1, 2, …, m (m=0, 1, 2, … ; n-1< n<α ). 

 

We see that contrary to the Riemann-Liouville approach, in the case of the 

Caputo derivative there are no restrictions on the values ).1,...,1,0(),0()( −= nsf s  

 

3.2. The Leibnitz Rule For Fractional Derivatives 
 

 Let us take two functions, )(tϕ  and )(tf , and start with the known Leibnitz 

rule for evaluating the n-th derivative of the product )()( tftϕ : 
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Let us now take the right-hand side the formula (147) and replace the integer 

parameter n with the real-valued parameter p. This means that the integer-order 

derivative )()( tf kn−  will be replaced with the Grünwald-Letnikov fractional-order 

derivative ).(tfD kp
ta

−  Denoting  
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let us evaluate the sum (148). 

First, let us suppose that p=q<0. Then we have also p-k=q-k<0 for all k, and 

according to (40) 
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Taking into account the reflection formula (A1. 16) for the gamma function, we 

have  
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and, therefore, the expression (151) takes form: 
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Using the Taylor theorem we can write 
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and therefore we obtain  
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where  
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Let us consider the case of p>0. Our first step is to show that the evaluation of 

)(tp
nΩ can be reduced to the evaluation of q

nΩ  for a certain negative q. 

 Taking into account that ∞=Γ )0(  we have to put  

 

 0
1

1
=��

	



��
�



−
−p

 

 

and using the known property of the binomial coefficients 
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we can write  

 

 ��
=

−−

=
��
	



��
�



−
−

+��
	



��
�

 −
=Ω

n

k

kp
ta

kkp
ta

k
n

k

p
n tfDt

k

p
tfDt

k

p
t

1

)()(

0

).()(
1
1

)()(
1

)( ϕϕ  (158) 



 46 

 

Replacing k with k+1 in the second sum gives  
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which can be written as  
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Adding and subtracting the expression  
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Or 
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The relationship (163) says that the evaluation of )(tp
nΩ can be reduced to the 

evaluation of ).(1 tp
n

−Ω  Repeating this procedure we can reduce the evaluation of 

)0)(( >Ω ptp
n  to evaluation of ).0)(( <Ω qtq

n  
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 Let us suppose that 0<p<1. Then p-1<0, and according to (156) we have  
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To combine (164) and (165), we have to differentiate (164) with respect to t. 

Taking into account that  
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and that  
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(n-p>0), we obtain  
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and the substitution of this expression into (163) gives  
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which has the same form as (156).  

Using mathematical induction we can prove that the relationship (168) holds for 

all p such that p+1<n. 

 The relationship (168) gives, in fact, the rule for the fractional differentiation of 

the product of two functions. This rule is a generalization of the Leibnitz rule for 
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integer-order differentiation, so it is convenient to preserve Leibnitz’s name also in the 

case of fractional differentiation. 

 The Leibnitz rule for fractional differentiation is the following. If )(τf  is 

continuous in  

[a, t] and )(τϕ has n+1 continuous derivatives in [a, t], then the fractional derivative of 

the product )()( tftϕ  is given by  
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where 1+≥ pn  and 
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 The sum in (169) can be considered as a partial sum of an infinite series and 

)(tR p
n as a remainder of that series. 

Performing two subsequent changes of integration variables, first 

)( τςτξ −+= t  and then )( ata −+= ητ  we obtain the following expression for 
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from which it follows that 

 



 49 

 0)(lim =
∞→

tR p
nn

 

 

If )(τf and )(τϕ along with all its derivatives are continuous in [a, t]. Under this 

condition the Leibnitz rule for fractional differentiation takes the form: 
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The Leibnitz rule (172) is useful for the evaluation of fractional derivatives of a 

function which is a product of a polynomial and a function with known fractional 

derivative. 

 To justify the above operations on )(tR p
n we have to show that )(tR p

n has a finite 

value for p>0. The function 
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gives an infinite expression 
0
0

 for .t=τ  To find the limit we can use the L’Hospital 

rule. Differentiating the numerator and the denominator with respect to τ  we obtain  
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which again gives an indefinite expression 
0
0

 for .t=τ  However, if ,1+≤< mpm  

then applying the L’Hospital rule m+2 times we will obtain 1)( −−− mpt τ  in the 

denominator ( giving infinity for t=τ ), while the numerator will consist of the terms 

containing the multipliers of the form  
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which vanish as t→τ  if n>k. k cannot be greater than m+2, so we can take 

2+≥ mn and the function (173) will tend to 0 for t→τ . This means that the integral 

in (170) exists in the classical sense even for p>-1. 

 Taking into account the link between the Grünwald-Letnikov fractional 

derivatives and the Riemann-Liouville ones we see that under the above conditions on 

f(t) and )(tϕ the Leibnitz rule (172) holds also for Riemann-Liouville derivatives. 

 

3.3. Examples 
 

Example 1 

 

Let’s apply Leibnitz rule in Grünwald Letnikov definition 
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Example 2 

 

Let us take derive Dirac Delta function in order of ½. We will use Caputo’s 

Definition. 
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Integrating by part 
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CONCLUSION 
 

 The goal of this study is to analyze the basic concept of fractional calculus. In 

the first chapter Grünwald-Letnikov Definition has given. In the second chapter and the 

third chapter The Riemann-Liouville Definition and Caputo’s Definition has given. 

After every definition this definitions are dissued. In the appendices some application 

has given about fractional derivatives. Interest in fractional calculus for many years was 

purely mathematic and it is not hard to see why. Only the very basic concepts regarding 

the fractional order calculus were addressed here, and yet it is evident that the study 

fractional calculus opens the mind to entirely new branches of thought. It fills in the 

gaps of traditional calculus in ways that as of yet, no one completely understands.  But 

the goal of this study is not only to expose the reader to the basic concepts of fractional 

calculus, but also to whet his/her appetite with some appendices.  
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APPENDIX A 
 

THE GAMMA FUNCTIONS 
 

 One of the basic functions of the fractional calculus is Euler’s gamma function 

	(z), which generalizes the factorial n! and allows n to take also non-integer and even 

complex values.  

 The gamma function 	(z) is defined by the integral  

  

 	(z)= �
∞

−−

0

1 ,dtte zt   (A1. 1) 

 

Which converges in the right half of the complex plane Re(z)>0. Indeed, we 

have  
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The expression in the square bracket in (A1. 2) is bounded for all t; convergence 

at infinity is provided by te− , and for the convergence at t=0 we must have x=Re(z)>1. 

 One of the basic properities of the gamma function is that it satisfies the 

following functional equation: 

 

  zz =+Γ )1( )(zΓ ,  (A1. 3) 

 

 This can be shown easily by integrating by parts:  
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 Clearly, ( ) 11 =Γ  and, 
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  … … …. 

  ( ) ( ) !)!1.(.1 nnnnnn =−=Γ=+Γ . 

  

Also the gamma function has simple poles at points z=-n, (n=0, 1, 2, …). 

 To show this, let us write the definition (A1. 1) in the form: 
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The first integral in (A1. 4) can be evaluated by using the series expansion for 

the exponential function . If Re(z)=x>0 (z is in the right half-plane), then 

Re(z+k)=x+n>0 and 0=+kxt (t=0). Therefore, 
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 The second integral defines an entire function of the complex variable z. Let us 

write, 

  

 ( ) ( )
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1 1

log11 .)( dtedttez ttzztϕ   (A1. 5) 

  

 The function ( ) ( ) ttze −− log1  is a continuous function of z and t for arbitrary z and t ≥ 1. 

If t ≥ 1 (log(t) ≥ 0), then it is an entire function of z . let us consider an arbitrary 

bounded closed domain D in the complex plane and denote 0x =
Dx∈

max Re(z). Then we 

have, 
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So, the integral (A1. 5) converges uniformly in D and the function ϕ (z) is 

regular in D and differentiation under the integral in (A1. 5) is allowed. Because the 

domain D has been chosen arbitrarily, we conculude that the the function ϕ (z) has the 

above properities in the whole complex plane. Therefore, ϕ (z) is an entire function 

allowing differentiation under the integral. 
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 and )(zΓ has only simple poles at the points z=-n, n=0, 1, 2, … 

 

The gamma function can be represented by the limit  
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To prove (A1. 7) let us introduce the following function 
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we obtain 
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 Also another representations of the gamma function; 
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 Integrating by parts we showed: 
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if n is positive integer, 
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so that 
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The integration variable t in the definition of the gamma function (A1. 1) is 

real.If t is complex, the function ( ) ( ) dte ttz −− log1  has a branch point t=0. Cutting the 

complex plane (t) along the real semi-axis from t=0 to t= ∞  makes this function single-

valued. Therefore, according to Cauchy’s Theorem, the integral 
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has the same value for any contour C running around the point t=0 with both ends at 

+ ∞ . 

 Let us consider the contour C consisting of the part of the upper edge (+ ),ε∞ of 

the cut, the circle εC of radiusε  with the centre at t=0 and the part of the lower cut edge 

( ),+∞ε . 

 Taking log(t) to be real on the upper cut edge,  
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Figure 1.1. Contour C 
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Therefore, 
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The integral along εC  tends to zero as .0→ε  Taking into account that ε=t  

on εC  and denoting 
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Where M is independent of t, we obtain; 

 

 =≤ ��
−−−− dttedtte

C

zt

C

zt

εε

11
�� ==≤ −−−−−

εε

εππεεε
C

xxxtty

C

z MMdtMdtet 22.. 11)arg(1  

 

 � =−−

→
ε

ε
C

zt dtte 0lim 1

0
 

 

 � � �
∞+

+∞
−−−−−−− +=

C

ztizztzt dtteedttedtte
0

0

1)1(211 .π  

 

Using (A1.1) 
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The function 12 −ize π  has its zeros at the points z=0, ,...2,1
−−
++  

The points z=1, 2, … are not the poles of )(zΓ , because in this case the function 

1−− zt te  is single-valued and regular in the comlex plane (t) and according to Cauchy’s 

theorem 
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C

zt dtte 01 . 

 

If z=0, -1, -2, … then the function 1−− zt te  is not an entire function of t and the 

integral of it along the contour C is not equal to zero. Therefore, the points z=0, -1, -2, 

… are the poles of )(zΓ . According to the principle of analytic continuation, the 

integral representation (A1. 21) holds not only for Re(z)>0, as assumed at the 

beginning, but in the whole complex plane (z). 

 Let us write representation of 1/ )(zΓ . We will replace z by 1-z in the formula 

(A1. 21) 
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and then perform the substitution t = ieπτ = -τ . The transformation t= πτ ie  corresponds 

to the anticloclwise rotation of the complex plane by which the upper cut edge in t-plane 

goes over into the lower cut edge in τ - plane (extending from 0 to - ∞ ). The contour C 

will be transformed to Hankel’s contour Ha shown in Fig.1.2 
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ϕ=−π

Y

O

Hα
 

 

Figure 1.2. The Hankel contour H� 

 

Taking into account the relationships (A1. 9) and … we obtain 
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Therefore, we have the following integral representation for reciprocal gamma 

function: 
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Let us denote by ),( ϕεγ  )0,0( πϕε ≤<> the contour consisting of the 

following three parts; 

 

 arg ;, ετϕτ ≥−=  

 

 ;,arg ετϕτϕ =≤≤−  

 

 arg ετϕτ ≥= ,  
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The contour is traced so that argτ  is non-decreasing. It is shown in Fig1. 2 

The contour ),( ϕεγ  divides the complex plane τ  into two domains, which we 

denote by ),( ϕε−G  and ),( ϕε+G , lying on the left and on the right side of the contour 

),( ϕεγ  

If 0< ,πϕ <  then both ),( ϕε−G  and ),( ϕε+G  are infinite domains. If πϕ = , 

then ),( ϕε−G  becomes a circle ετ <  and ),( ϕε+G becomes a complex plane 

excluding the circle ετ < and the line πϕ =arg . 

Let us show that instead of integrating along Hankel’s contour Ha in (A1. 12) we 

can integrate along the contour ),( ϕεγ ,where πϕπ <<
2
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Figure 1.3. Contour �(�,�) 
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Let us consider the contour ( ++++ DCBA ) shown in Fig 1. 3 Using the Cauchy 

theorem for contour gives: 
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On the arc ( ++ BA ) we have R=τ  and 
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Figure 1.4. Transformation of the contour H� to the contour y(�,�) 
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Taking R ∞→  in (A1. 14) and using (A1. 15) we obtain: 
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Using (A1. 16) and (A1. 17) 
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APPENDIX B 
 

FRACTIONAL DERIVATIVES, SPLINES AND 

TOMOGRAPHY 
 

Splines are made up of polynomials and are esentially as easy to manipulate. 

The term "spline" is used to refer to a wide class of functions that are used in 

applications requiring data interpolation and/or smoothing. Splines may be used for 

interpolation and/or smoothing of either one-dimensional or multi-dimensional data. 

Spline functions for interpolation are normally determined as the minimizers of suitable 

measures of roughness (for example integral squared curvature) subject to the 

interpolation constraints. Smoothing splines may be viewed as generalizations of 

interpolation splines where the functions are determined to minimize a weighted 

combination of the average squared approximation error over observed data and the 

roughness measure. For a number of meaningful definitions of the roughness measure, 

the spline functions are found to be finite dimensional in nature, which is the primary 

reason for their utility in computations and representation. For the rest of this section, 

we focus entirely on one-dimensional, polynomial splines and use the term "spline" in 

this restricted sense. 

A (univariate, polynomial) spline is a piecewise polynomial function. In its most 

general form a polynomial spline RbaS →],[:  consists of polynomial 

pieces RttP iii →+ ],[: 1 , where 

 

 btttta kk =<<<<= −− 1210 ... .  

 

That is, 

 

 100 ),()( ttttPtS <≤=  

 

 210 ),()( ttttPtS <≤=  
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 122 ),()( −−− ≤≤= kkk ttttPtS . 

 

The given k values ti are called knots. The vector ),...,( 10 −= kttt is called a knot 

vector for the spline. If the knots are equidistantly distributed in the interval [a,b] we say 

the spline is uniform, otherwise we say it is non-uniform. 

If the polynomial pieces on the subintervals 

  

 2,...,0],,[ 1 −=+ kitt ii  

 

all have degree at most n, then the spline is said to be of degree n≤  (or of order n+1). 

If irCS ∈ in a neighborhood of ti, then the spline is said to be of smoothness (at 

least) irC  at ti. That is, the two pieces Pi − 1 and Pi share common derivative values 

from the derivative of order 0 (the function value) up through the derivative of order ri. 

Or stated differently, the two adjacent polynomial pieces connect with loss of 

smoothness of (at most) ji, defined by ri = n − ji. (Expressing the connectivity as a "loss 

of smoothness" is reasonable, since if S were a simple polynomial throughout a 

neighborhood of ti, it would have smoothness Cn at ti, and you would expect to lose 

smoothness in order to break a polynomial apart into pieces.) A vector ),...,( 20 −= krrr  

such that the spline has smoothness irC  at ti for 0 < i < k − 1 is called a smoothness 

vector for the spline. 

Given a knot vector t, a degree n, and a smoothness vector r for t, one can 

consider the set of all splines of degree n≤  having knot vector t and smoothness vector 

r. Equipped with the operation of adding two functions (pointwise addition) and taking 

real multiples of functions, this set becomes a real vector space. This spline space is 

commonly denoted by )(tS r
n . 

In the mathematical study of polynomial splines the question of what happens 

when two knots, say ti and ti+1, are moved together has an easy answer. The 

polynomial piece Pi(t) disappears, and the pieces Pi−1(t) and Pi+1(t) join with the sum 

of the continuity losses for ti and ti+1. That is, 

 

 ][)( 1
1

+
−− =∈ +

ii
jjn ttCtS ii  



 72 

This leads to a more general understanding of a knot vector. The continuity loss 

at any point can be considered to be the result of multiple knots located at that point, 

and a spline type can be completely characterized by its degree n and its extended knot 

vector 

 

 btttttta kkk =<==<<=<= −−− 122110 .........  

 

where ti is repeated ji times for 2,...,1 −= ki . 

A parametric curve on the interval [a,b] 

 

 ],[,)(),()( battYtXtG ∈>=<  

 

is a spline curve if both X and Y are splines of the same degree with the same extended 

knot vectors on that interval. 

Examples 

Suppose the interval [a,b] is [0,3] and the subintervals are [0,1), [1,2), and [2,3]. 

Suppose the polynomial pieces are to be of degree 2, and the pieces on [0,1) and [1,2) 

must join in value and first derivative (at t=1) while the pieces on [1,2) and [2,3] join 

simply in value (at t=2). This would define a type of spline S(t) for which 

 

 10,41)()( 2
0 <≤−+−== ttttPtS  

  

 21,2)()( 1 <≤== tttPtS  

  

 32,2)()( 2
2 <≤+−== ttttPtS  

 

would be a member of that type, and also 

 

 10,22)()( 2
0 <≤−−== tttPtS  

 

 21,61)()( 2
1 <≤+−== ttttPtS  
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 32,21)()( 2
2 <≤−+−== ttttPtS  

 

would be a member of that type. (Note: the polynomial piece 2t is quadratic, since it can 

be written 2t + 0t2. Any polynomial of one degree is trivially a polynomial of higher 

degree simply by this trick of adding appropriate powers with zero coefficients.) The 

extended knot vector for this type of spline would be 0,1,2,3-. 

The simplest spline has degree 0. It is also called a step function. The next most 

simple spline has degree 1. It is also called a linear spline. The corresponding 

parametric curve having linear spline components X(t) and Y(t) just a polygon. 

A common spline is the natural cubic spline of degree 3 with continuity C2. The 

word "natural" means that the second derivatives of the spline polynomials are set equal 

to zero at the endpoints of the interval of interpolation 

 

 . 0)()( =′′=′′ bSaS  

 

This forces the spline to be a straight line outside of the interval, while not 

disrupting its smoothness. 

One operation that is especially simple to implement is differentiation. It has the 

same effect on splines as it has on polynomials: it reduces the degree by one. The 

derivative of a B-spline of degree n is given by 

 

 )
2
1

()
2
1

()()( 111 −−+=∆= −−− xxxxD nnnn ββββ  

 

Where ∆  is denotes the central finite difference operator. The implication of this 

differentiation Formula is that one can calculate spline derivatives simply by applying 

finite differences to the B-spline coefficients of the representation. Thus, with splines, 

one has an exact equivalence between finite diffrences and differentation and not just an 

approximate one as is usually the case in numerical analysis. This is a property that can 

be exploited advatageously for implementing differential signal processing operators[6]. 

The main difficulty with fractional derivatives is that the derivatives of polynomials (or 

splines) are no-longer polynomial when the order of differetiation in non-integer. This 

forces us to consider the enlarged family of fractional splines [7]; these are reviewed in 
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Section 2. In Section 3, it is presented that the differentiation rules fort he fractional 

splines and shown that this family is closed under fractional differentiation: specifically, 

the γ  th derivative of a fractional spline of degree α  is a fractional spline of degree α -

γ , where α  and γ  are not necessarily integer. Finally, in Section 4, it is indicated how 

these results are useful for improving the implementation of the filtered backprojection 

(FBP) algorithm for tomographic reconstruction [4, 5]. 

In this section, it is defined the fractional splines and summarized the main 

properties of their basic constituents: the fractional B-splines. For more details, refer to 

[7]. The purest examples of fractional splines of degree α  are the one-sided and 

rectified power functions, x
α
+  and 

α
*x , which both exhibit one singularity of order 

α (Hölder exponent) at the origin. The one-sided power function is defined by: 

 

  
�
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�
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=+ otherwise

xx
x ,0

0,α
α  (A2. 1) 

 

 For N∉α , its Fourier transform is .)/()1( 1++Γ αωα i  

 

 The second symmetric type, ,
*

α
x  is defined as the function whose fourier 

transform is ./)1(
1++Γ αωα For α  non-even, it is a (rectified) power function; 

otherwise, it has an  additional logarithmic factor: 
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 By analogy with the classical B-splines, one consructs the fractional casual B-

splines by taking the (α +1)-fractional difference of the one-sided power function 
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Where �
−=+Γ dxu ex

xu)1(  is Euler’s gamma function. 1+
+∆α  is the (α +1)-

fractional difference operator; it is a convolution operator whose transfer function is  
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−=−=∆  (A2. 4) 

 

The fractional B-splines are in L2
 for α >

2
1− . They are compactly supported 

for α  integer; otherwise, they decay like 
( )2+− α

x  (cf. [7], Theorem3.1). The Fourier 

domain equivalent of (A2. 3) is  
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It is constructed the symmetric B-splines by taking (α +1)-symmetric fractional 

differences of the rectified power function: 
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Where 
αωα i

fourier

e−−↔∆ 1*  is the symmetric fractional difference operator. Similar 

to their casual counterparts, these functions are not compactly supported either unless n 

is odd, in which case they coincide with the traditional polynomial B-splines. When α  

is not odd. They decay like 
)2( +− α

x  and their asymptotic form is available [7]. The 

Fourier counterpart of (A2. 6) is simply  
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Note that the expansion coefficients on the right hand side of (A2. 3) and (A2. 6) 

are generalized versions of the binomials. They are both compatible with the following 

extended definition: 

 

 
)1()1(
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  (A2. 8) 

 

Where the gamma function replaces the factorials encountered in the standart 

Formula when u and v are both integer. The coefficients in (A2. 6) are re-centered 

version given by 
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 In most general terms, fractional splines maybe defined as linear combinations 

of shifted fractional power functions or fractional B-splines. As in the polynomial case, 

it is usually more advantageous to use the second type of representation. The fractional 

B-splines have all the good properties of the conventional B-splines, except that they 

lack compact support when α  is not an integer. In particular, they form a Riesz basis 

which ensures that B-spline representation is stable numerically. Thus, if we consider 

the basic integer grid, we may represent a fractional spline signal by its B-spline 

expansion 

 

 �
∈

−=
zk

kxkcxs )()()( αβ   (A2. 10) 

 

Where it is used the generic notation )(xαβ  to specify any one of the fractional 

B-splines )).(),(( * xorx αα ββ+  What this means that a fractional spline signal s(x) with 

knots at the integers is unambiguously characterized through its B-spline coefficients 

c(k), zk ∈  (discrete/continuous representiation). The representation is one-to-one there 

is exactly one coefficient c(k) by sample value s(k). Note that this spline representation 

is compatible which the traditional model used in signal processing for it can be shown 

that the signal (A2. 10) converges to a bandlimited function as the order of the spline 
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increases [1]. It is considered two versions of fractional derivatives which can be 

defined in the Fourier domain. The first type, which is compatible with Liouville’s 

definition [2], is given by 

 

 )(ˆ)()( ωω γγ fixf
fourier

D ↔   (A2. 11)  

 

Where �
−= dxexff xiωω )()(ˆ  denotes the Fourier transform of f(x) and where 

)arg( ziezz γγγ =  with i= 1−  and arg(z) ],[ ππ−∈ . 

 

The second type of derivative, which is a symmetrized version of first, is defined 

by  

 

 )(ˆ)(* ωω γγ fxfD
fourier

↔   (A2. 12) 

 

Note that the first type agrees with the usual definition of the derivative when α  

is integer, while the second one only does when α  is even. 

 The general B-spline differentiation rules are  

 

  )()( xxD γαγαγ ββ −
+++ ∆=   (A2. 13) 

 

  )()( **** xxD γαγαγ ββ −∆=   (A2. 14) 

 

Where γD  and γ
*D  are defined by (A2. 11) and (A2. 12). This is established in 

the fourier domain. For instance, to obtain (A2. 14) , (A2. 7) is substituted in (A2. 12) 

and rewritten the fourier transform of )(** xD αγ β as 
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Let us now indicate how these rules can be applied to obtain the fractional 

derivative of the spline signal in (A2. 10). Taking the fractional derivative and 

interchanging the order of summation, 
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zk

kxkc )())(*( γαγ β , )())(*( kdkc =∆γ  (A2. 15) 

 

Where it has been moved the fractional difference operator into the discrete 

domain. Thus, the B-spline coefficient d(k) of )(xsDα  are obtained by convolving the 

c(k)’s with the digital filter γ∆  whose frequency response is γω )1( je−−  or 
γωje−−1 , 

depending on the type of derivative. 

 The mathematical basis fort he standart filtered backprojection tomographic 

reconstruction algorithm is the following identity ])3.[)(( 2
2 cfRLf ∈∀  

 

  { })(),(),( ** tpKRyxKRfRyxf θ==   (A2. 16) 

 

With t=(x,y).
→
θ  where S∈=

→
)sin,(cos θθθ  is the unit that specifies the 

direction of the projection: 
→→→→

�� −= xdtxxftp
R

).()()( 2 θδθ  is Radon transform of f  and *R  is the so-called 

backprojection operator; is the adjoint of the Radon or projection operator R. The right 

hand side of (A2. 16) provides the filtered backprojection solution fort he recovery of 

the function ),( yxf  from its projection data )(tpθ .  

 The algorithm proceeds in two steps. First, each projection )(tpθ  is filtered 

continuously with the ramp or Ram-Lak fitler [4]; the crucial observation here is that 

the filtering operator K is proportional to our fractional derivative ω↔*D ; i.e., 

.*
1)2( DK −= π  Second, the filtered projections are projected back onto the image and 

averaged according to the Formula 
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  (A2. 17) 

 

With .).,(
→

= θyxt  The reconstruction Formula (A2. 16) is exact provided that 

one treats the projection data )(tpθ  as a continum both in terms of t and θ . In 

practice, however, one has only Access to a finite number of projection at the angles iθ , 

and the continuous average in (A2. 17) is usually replaced by the discrete one on the 

right. The error can be assumed to be negligible provided that the number of projections 

N is sufficient.  

 

 In this method, it is assumed that the projection data at angle θ  is a fractional 

spline of degree α :  
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After symmetric differentiation (ramp filter), it is found that 
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** )kt()k(d)t(pD α
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Where the d(k) are obtained by applying the symmetric finite difference to the 

c(k) (cf.(15)). Thus, we have an explicit continuous representation of the filtered 

projection which can then be directly plugged into (A2. 17). 

 

 In practice. We are given the sampled values of the projection )(kpθ  and the 

first step is to determined the B-spline coefficients c(k) such that the spline model 

interpolates these values exactly. This can be done by digital filtering. Combining both 

filters together (interpolation and ramp-filter), getting 

 

  d(k)=( ))(** kph θ )  (A2. 20) 
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where *h  is the digital fitler whose transfer function is  
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�n the implementation, we select α  even (typ. 2=α or 4) such that the basis 

functions in (A2. 19) are polynomial B-splines that are compactly supported. This 

allows us to use the spline model (A2. 19) to our full advantage in the backprojection 

part of the algorithm (A2. 17). The digital filtering part of the algorithm (A2. 20) is 

implemented in the fourier domain since the filter *h  has infinite support. The 

interesting aspect of the algorithm is that, once we have selected the spline model (A2. 

18), all other aspects of the computation are exact. �n particular, the discretization of the 

ramp filter is achieved implicitly through (A2. 21). 

 The fractional splines offer the same conceptual case for dealing with fractional 

derivatives as the polynomial splines do with derivatives. �n the B-spline domain, 

fractional differentiation gets translated into simple fractional finite differences. This 

spline calculus provides a general tool fort he discretization and implementation of 

fractional derivative operators. The Ram-Lak filter, which plays a crucial role in 

tomography, corresponds to our symmetric differential operator ω↔*D . It is an non-

local operator that can be implemented exactly provided that one has a spline 

representation of the projection data. �t is proposed a modification of the standart FBP 

algorithm that takes advantage of this property. �t is found that working with splines is 

also beneficial fort he back-projection part of the reconstruction process.  
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APPENDIX C 
 

SOLUTION OF BESSEL EQUATION 
 

 The modified Bessel equation, which differs only in the sign of the third term, 

and which arises in a number of diffusion problems, is equally amenable to the 

approach considered here. 

The equation 
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  (A3. 1) 

 

is a form of Bessel’s equation. As is the rule for second-order differential equations, its 

general solution is a combination of two linearly independent solutions w1 and w2 of x, 

each of which depends on the parameter �. The usual method of solving (1) is via an 

infinite series approach, but we shall demonstrate how differentiation procedures lead to 

a ready solution in terms of elementary functions. We start by making either of the 

substitutions 
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=ω   (A3. 2) 

 

where � denotes the nonnegative square root of �2, so that equation (1) is transformed to 
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We next assume that for every function u that satisfies (3) there exists a 

differintegrable function f, related to u by the equation 
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Moreover, use of equation 
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where n

n

dx
d

 effects ordinary n-fold differentiation and n is an integer chosen so large 

that q- n < 0, permits the combination of the equations (3) and (4) to give 
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Application of the Leibnitz rule allows the rewriting of equation (6) as 
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wherein the parameter � is no longer present as a coefficient. We next plan to 

decompose the operators, thus 

 

 0
2
3}{

2
1

2
1

2
1

2
1

2

2

2
1

2
1

=+−
±

±

±

±

±

±

ν

ν

ν

ν

ν

ν

dx

fd
dx
df

dx

d
dx

xfd

dx

d
  (A3. 8) 

 

an equation directly convertible to 
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by the action of the 
ν

ν
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d
 operator. Equations (8) and (7) are equivalent to each other 

if and only if 
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whereas (9) and (8) are equivalent if 
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Conversion of equation (9) to the canonical form 
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is straightforward, whereby it follows that the two possible candidate functions f are 

 

 )2sin(1 xf =  and )2cos(2 xf =  

 

We must now inquire which, if either, of these candidate functions satisfies the 

requirements (10), (11), and (12), which we assumed held during our derivation. 

Because 
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it is evident that f2 fails to meet requirement (10) or (11) and must be rejected. However, 

f1 passes these tests. The requirement 
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one part of (12), is met by function 
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for all values of � (recall that we restricted � to negative values), while the other part, 
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is met by f1 for all � values except the nonnegative integers. Returning to equation (4) 

then, we conclude that the function 
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is a solution to equation (3) then for all � values, and that 
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is another solution when � is not an integer. Our sought solutions to the original Bessel 

equation are thus 
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The problem is now completely solved, except that a second solution is needed 

for integer � values. Our technique cannot reveal this second solution. The relationship 

of w1 and w2 to the conventional notation for Bessel functions is Simply 
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