4,304 research outputs found

    Interpretable Latent Spaces for Learning from Demonstration

    Get PDF
    Effective human-robot interaction, such as in robot learning from human demonstration, requires the learning agent to be able to ground abstract concepts (such as those contained within instructions) in a corresponding high-dimensional sensory input stream from the world. Models such as deep neural networks, with high capacity through their large parameter spaces, can be used to compress the high-dimensional sensory data to lower dimensional representations. These low-dimensional representations facilitate symbol grounding, but may not guarantee that the representation would be human-interpretable. We propose a method which utilises the grouping of user-defined symbols and their corresponding sensory observations in order to align the learnt compressed latent representation with the semantic notions contained in the abstract labels. We demonstrate this through experiments with both simulated and real-world object data, showing that such alignment can be achieved in a process of physical symbol grounding.Comment: 12 pages, 6 figures, accepted at the Conference on Robot Learning (CoRL) 2018, Zurich, Switzerlan

    Channel-Recurrent Autoencoding for Image Modeling

    Full text link
    Despite recent successes in synthesizing faces and bedrooms, existing generative models struggle to capture more complex image types, potentially due to the oversimplification of their latent space constructions. To tackle this issue, building on Variational Autoencoders (VAEs), we integrate recurrent connections across channels to both inference and generation steps, allowing the high-level features to be captured in global-to-local, coarse-to-fine manners. Combined with adversarial loss, our channel-recurrent VAE-GAN (crVAE-GAN) outperforms VAE-GAN in generating a diverse spectrum of high resolution images while maintaining the same level of computational efficacy. Our model produces interpretable and expressive latent representations to benefit downstream tasks such as image completion. Moreover, we propose two novel regularizations, namely the KL objective weighting scheme over time steps and mutual information maximization between transformed latent variables and the outputs, to enhance the training.Comment: Code: https://github.com/WendyShang/crVAE. Supplementary Materials: http://www-personal.umich.edu/~shangw/wacv18_supplementary_material.pd

    OptionGAN: Learning Joint Reward-Policy Options using Generative Adversarial Inverse Reinforcement Learning

    Full text link
    Reinforcement learning has shown promise in learning policies that can solve complex problems. However, manually specifying a good reward function can be difficult, especially for intricate tasks. Inverse reinforcement learning offers a useful paradigm to learn the underlying reward function directly from expert demonstrations. Yet in reality, the corpus of demonstrations may contain trajectories arising from a diverse set of underlying reward functions rather than a single one. Thus, in inverse reinforcement learning, it is useful to consider such a decomposition. The options framework in reinforcement learning is specifically designed to decompose policies in a similar light. We therefore extend the options framework and propose a method to simultaneously recover reward options in addition to policy options. We leverage adversarial methods to learn joint reward-policy options using only observed expert states. We show that this approach works well in both simple and complex continuous control tasks and shows significant performance increases in one-shot transfer learning.Comment: Accepted to the Thirthy-Second AAAI Conference On Artificial Intelligence (AAAI), 201

    Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

    Full text link
    Imitation learning has traditionally been applied to learn a single task from demonstrations thereof. The requirement of structured and isolated demonstrations limits the scalability of imitation learning approaches as they are difficult to apply to real-world scenarios, where robots have to be able to execute a multitude of tasks. In this paper, we propose a multi-modal imitation learning framework that is able to segment and imitate skills from unlabelled and unstructured demonstrations by learning skill segmentation and imitation learning jointly. The extensive simulation results indicate that our method can efficiently separate the demonstrations into individual skills and learn to imitate them using a single multi-modal policy. The video of our experiments is available at http://sites.google.com/view/nips17intentionganComment: Paper accepted to NIPS 201

    NewtonianVAE: Proportional Control and Goal Identification from Pixels via Physical Latent Spaces

    Get PDF
    Learning low-dimensional latent state space dynamics models has been a powerful paradigm for enabling vision-based planning and learning for control. We introduce a latent dynamics learning framework that is uniquely designed to induce proportional controlability in the latent space, thus enabling the use of much simpler controllers than prior work. We show that our learned dynamics model enables proportional control from pixels, dramatically simplifies and accelerates behavioural cloning of vision-based controllers, and provides interpretable goal discovery when applied to imitation learning of switching controllers from demonstration

    DeepVoxels: Learning Persistent 3D Feature Embeddings

    Full text link
    In this work, we address the lack of 3D understanding of generative neural networks by introducing a persistent 3D feature embedding for view synthesis. To this end, we propose DeepVoxels, a learned representation that encodes the view-dependent appearance of a 3D scene without having to explicitly model its geometry. At its core, our approach is based on a Cartesian 3D grid of persistent embedded features that learn to make use of the underlying 3D scene structure. Our approach combines insights from 3D geometric computer vision with recent advances in learning image-to-image mappings based on adversarial loss functions. DeepVoxels is supervised, without requiring a 3D reconstruction of the scene, using a 2D re-rendering loss and enforces perspective and multi-view geometry in a principled manner. We apply our persistent 3D scene representation to the problem of novel view synthesis demonstrating high-quality results for a variety of challenging scenes.Comment: Video: https://www.youtube.com/watch?v=HM_WsZhoGXw Supplemental material: https://drive.google.com/file/d/1BnZRyNcVUty6-LxAstN83H79ktUq8Cjp/view?usp=sharing Code: https://github.com/vsitzmann/deepvoxels Project page: https://vsitzmann.github.io/deepvoxels
    corecore