36,885 research outputs found

    Diverse Rule Sets

    Full text link
    While machine-learning models are flourishing and transforming many aspects of everyday life, the inability of humans to understand complex models poses difficulties for these models to be fully trusted and embraced. Thus, interpretability of models has been recognized as an equally important quality as their predictive power. In particular, rule-based systems are experiencing a renaissance owing to their intuitive if-then representation. However, simply being rule-based does not ensure interpretability. For example, overlapped rules spawn ambiguity and hinder interpretation. Here we propose a novel approach of inferring diverse rule sets, by optimizing small overlap among decision rules with a 2-approximation guarantee under the framework of Max-Sum diversification. We formulate the problem as maximizing a weighted sum of discriminative quality and diversity of a rule set. In order to overcome an exponential-size search space of association rules, we investigate several natural options for a small candidate set of high-quality rules, including frequent and accurate rules, and examine their hardness. Leveraging the special structure in our formulation, we then devise an efficient randomized algorithm, which samples rules that are highly discriminative and have small overlap. The proposed sampling algorithm analytically targets a distribution of rules that is tailored to our objective. We demonstrate the superior predictive power and interpretability of our model with a comprehensive empirical study against strong baselines

    Interpretable multiclass classification by MDL-based rule lists

    Get PDF
    Interpretable classifiers have recently witnessed an increase in attention from the data mining community because they are inherently easier to understand and explain than their more complex counterparts. Examples of interpretable classification models include decision trees, rule sets, and rule lists. Learning such models often involves optimizing hyperparameters, which typically requires substantial amounts of data and may result in relatively large models. In this paper, we consider the problem of learning compact yet accurate probabilistic rule lists for multiclass classification. Specifically, we propose a novel formalization based on probabilistic rule lists and the minimum description length (MDL) principle. This results in virtually parameter-free model selection that naturally allows to trade-off model complexity with goodness of fit, by which overfitting and the need for hyperparameter tuning are effectively avoided. Finally, we introduce the Classy algorithm, which greedily finds rule lists according to the proposed criterion. We empirically demonstrate that Classy selects small probabilistic rule lists that outperform state-of-the-art classifiers when it comes to the combination of predictive performance and interpretability. We show that Classy is insensitive to its only parameter, i.e., the candidate set, and that compression on the training set correlates with classification performance, validating our MDL-based selection criterion
    • …
    corecore