81 research outputs found

    Is Gauss quadrature better than Clenshaw-Curtis?

    Get PDF
    We consider the question of whether Gauss quadrature, which is very famous, is more powerful than the much simpler Clenshaw-Curtis quadrature, which is less well-known. Seven-line MATLAB codes are presented that implement both methods, and experiments show that the supposed factor-of-2 advantage of Gauss quadrature is rarely realized. Theorems are given to explain this effect. First, following Elliott and O'Hara and Smith in the 1960s, the phenomenon is explained as a consequence of aliasing of coefficients in Chebyshev expansions. Then another explanation is offered based on the interpretation of a quadrature formula as a rational approximation of log((z+1)/(z1))\log((z+1)/(z-1)) in the complex plane. Gauss quadrature corresponds to Pad\'e approximation at z=z=\infty. Clenshaw-Curtis quadrature corresponds to an approximation whose order of accuracy at z=z=\infty is only half as high, but which is nevertheless equally accurate near [1,1][-1,1]

    Uniform and pointwise shape preserving approximation (SPA) by algebraic polynomials: an update

    Get PDF
    It is not surprising that one should expect that the degree of constrained (shape preserving) approximation be worse than the degree of unconstrained approximation. However, it turns out that, in certain cases, these degrees are the same. The main purpose of this paper is to provide an update to our 2011 survey paper. In particular, we discuss recent uniform estimates in comonotone approximation, mention recent developments and state several open problems in the (co)convex case, and reiterate that co-qq-monotone approximation with q3q\ge 3 is completely different from comonotone and coconvex cases. Additionally, we show that, for each function ff from Δ(1)\Delta^{(1)}, the set of all monotone functions on [1,1][-1,1], and every α>0\alpha>0, we have lim supninfPnPnΔ(1)nα(fPn)φαc(α)lim supninfPnPnnα(fPn)φα \limsup_{n\to\infty} \inf_{P_n\in\mathbb P_n\cap\Delta^{(1)}} \left\| \frac{n^\alpha(f-P_n)}{\varphi^\alpha} \right\| \le c(\alpha) \limsup_{n\to\infty} \inf_{P_n\in\mathbb P_n} \left\| \frac{n^\alpha(f-P_n)}{\varphi^\alpha} \right\| where Pn\mathbb P_n denotes the set of algebraic polynomials of degree <n<n, φ(x):=1x2\varphi(x):=\sqrt{1-x^2}, and c=c(α)c=c(\alpha) depends only on α\alpha

    Calibrating Option Pricing Models with Heuristics

    Get PDF
    Calibrating option pricing models to market prices often leads to optimisation problems to which standard methods (like such based on gradients) cannot be applied. We investigate two models: Heston’s stochastic volatility model, and Bates’s model which also includes jumps. We discuss how to price options under these models, and how to calibrate the parameters of the models with heuristic techniques.

    The Square Root Function of a Matrix

    Get PDF
    Having origins in the increasingly popular Matrix Theory, the square root function of a matrix has received notable attention in recent years. In this thesis, we discuss some of the more common matrix functions and their general properties, but we specifically explore the square root function of a matrix and the most efficient method (Schur decomposition) of computing it. Calculating the square root of a 2×2 matrix by the Cayley-Hamilton Theorem is highlighted, along with square roots of positive semidefinite matrices and general square roots using the Jordan Canonical Form
    corecore