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Abstract

Calibrating option pricing models to market prices often leads to optimisation
problems to which standard methods (like such based on gradients) cannot be
applied. We investigate two models: Heston’s stochastic volatility model, and
Bates’s model which also includes jumps. We discuss how to price options under
these models, and how to calibrate the parameters of the models with heuristic
techniques.

1 Introduction

Implied volatilities obtained by inverting the Black–Scholes–Merton (bsm) model vary
systematically with strike and maturity; this relationship is called the volatility sur-
face. Different strategies are possible for incorporating this surface into a model. We
can accept that volatility is not constant across strikes and maturities, and directly
model the volatility surface and its evolution. With this approach we assume that a
single underlier has different volatilities; but still, it is the approach that is mostly used
in practice. An alternative is to model the option prices such that the bsm-volatility
surface is obtained, for instance by including locally-varying volatility (Derman and
Kani, 1994; Dupire, 1994), jumps, or by making volatility stochastic. In this paper, we
look into models that follow the latter two approaches, namely the models of Heston
(1993) and Bates (1996).

As so often in finance, the success of the bsm model stems not so much from its
empirical quality, but from its computational convenience. This convenience comes
in two flavours. Firstly, we have closed-form pricing equations (the Gaussian distribu-
tion function is not available analytically, but fast and precise approximations exist).
Secondly, calibrating the model requires only one parameter to be determined, the
volatility, which can be readily computed from market prices with Newton’s method
or another zero-finding technique. For the Heston and the Bates model, both tasks be-
come more difficult. Pricing requires numerical integration, and calibration requires
to find five and eight parameters instead of only one for bsm.

In this paper, we will look into the calibration of these models. Finding parame-
ters that make the models consistent with market prices means solving a non-convex

∗Both authors gratefully acknowledge financial support from the eu Commission through mrtn-ct-
2006-034270 comisef; they would like to thank Benoı̂t Guilleminot for many discussions on the subject.
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optimisation problem. We suggest to use optimisation heuristics, more specifically
we show that Differential Evolution and Particle Swarm Optimisation are both able to
give good solutions to the problem. The paper is structured as follows: In Section 2

we discuss how to price options under the Heston and the Bates model. Fast pricing
routines are important since the suggested heuristics are computationally intensive;
hence to obtain calibration results in a reasonable period of time, we need to be able
to evaluate the objective function (which requires pricing) speedily. Section 3 details
how to implement the heuristics for a calibration problem, Section 4 discusses several
computational experiments and their results. Section 5 concludes.

2 Pricing with the characteristic function

There are several generic approaches to price options. The essence of bsm is a no-
arbitrage argument; it leads to a partial differential equation that can be solved nu-
merically or, in particular cases, even analytically. A more recent approach builds on
the characteristic function of the (log) stock price. European options can be priced by
the following equation (Bakshi and Madan, 2000; Schoutens, 2003):

C0 = e−qτS0Π1 − e−rτXΠ2 (1)

where C0 is the call price today (time 0), S0 is the spot price of the underlier, and X is
the strike price; r and q are the riskfree rate and dividend yield; time to expiration is
denoted τ. The Πj are calculated as

Π1 =
1

2
+

1

π

∫ ∞

0
Re

(

e−iω log(X)φ(ω − i)

iωφ(−i)

)

dω , (2a)

Π2 =
1

2
+

1

π

∫ ∞

0
Re

(

e−iω log(X)φ(ω)

iω

)

dω . (2b)

We define Π∗
j ≡ π(Πj − 1/2) for the integrals in these equations. The symbol φ stands

for the characteristic function of the log stock price; the function Re(·) returns the real
part of a complex number. For a given φ we can compute Π1 and Π2 by numerical
integration, and hence obtain option prices from Equation (1).

2.1 Black–Scholes–Merton

In a bsm world, the stock price St under the risk-neutral measure follows

dSt = (r − q)Stdt +
√

vStdzt (3)

where z is a Wiener process (Black and Scholes, 1973). The volatility
√

v is constant.
The well-known pricing formula for the bsm call is given by

C0 = e−qτS0 N(d1)− Xe−rτ N(d2) (4)

with

d1 =
1√
vτ

(

log

(
S0

X

)

+

(

r − q +
v

2

)

τ

)

(5a)

d2 =
1√
vτ

(

log

(
S0

X

)

+

(

r − q − v

2

)

τ

)

= d1 −
√

vτ (5b)
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and N(·) the Gaussian distribution function.
Given the dynamics of S, the log price sτ = log(Sτ) follows a Gaussian distribution

with sτ ∼ N
(
s0 + τ(r − q − 1

2 v), τv
)
, where s0 is the natural logarithm of the current

spot price. The characteristic function of sτ is given by

φbsm(ω) = E(eiωsτ)

= exp

(

iωs0 + iωτ(r − q − 1

2
v) +

1

2
i2ω2vτ

)

= exp

(

iωs0 + iωτ(r − q)− 1

2
(iω + ω2)τv

)

. (6)

Inserting (6) into Equation (1) should, up to numerical precision, give the same result
as Equation (4).

2.2 Merton’s jump–diffusion model

Merton (1976) suggested to model the underlier’s movements as a diffusion with
occasional jumps; thus we have

dSt = (r − q − λµJ)Stdt +
√

vStdzt + JtStdNt . (7)

Nt is a poisson counting process, with intensity λ; the Jt is the random jump size
(given that a jump occurred). In Merton’s model the log-jumps are distributed as

log(1 + Jt) ∼ N
(

log(1 + µJ)−
σ2

J

2
, σ2

J

)

.

The pricing formula is the following (Merton, 1976, p. 135):

C0 =
∞

∑
n=0

e−λ′τ(λ′τ)n

n!
C′

0(rn,
√

vn) (8)

where λ′ = λ(1 + µJ) and C
′
0 is the bsm formula (4), but the prime indicates that C

′
0

is evaluated at adjusted values of r and v:

vn = v +
nσ2

J

τ

rn = r − λµJ +
n log(1 + µJ)

τ

The factorial in Equation (8) may easily lead to an overflow (Inf), but it is benign
for two reasons. Firstly, we do not need large numbers for n, a value of about 20 is
well-sufficient. Secondly (if we insist on large n), software packages like Matlab or R

will evaluate 1/Inf as zero, hence the summing will add zeros for large n. (Numerical
analysts prefer to replace n! by exp(∑n

i=1 log i) since this leads to better accuracy for
large n. Again, for Merton’s model this is not needed.) Depending on the implemen-
tation, working with large values for n may still lead to a warning or an error, and
so interrupt a computation. In R for instance, the handling of such a warning will
depend on the options setting:
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1 > options () $warn

2 [1] 0

This is the standard setting. Computing the factorial for a large number will result in
a warning; the computation continues.

1 > factorial(200)

2 [1] Inf

3 Warning message:

4 In factorial(200) : value out of range in ’gammafn ’

But with warn set to two, any warning will be transformed into an error. Thus:

1 > options(warn =2)

2 > factorial(200)

3 Error in factorial(200) :

4 (converted from warning) value out of range in ’gammafn ’

and our computation breaks. We may want to safeguard against such possible errors:
we can for instance replace the function call factorial(n) by its actual calculation
which produces:

1 > options(warn =2)

2 > exp( sum(log (1:200)) )

3 [1] Inf

4 > prod (1:200)

5 [1] Inf

Or even simpler, as in Matlab’s implementation of factorial, we can check the given
value of n; if it is too large, we have it replaced by a more reasonable value.

The characteristic function of Merton’s model is given by

φMerton = eA+B (9)

where

A = iωs0 + iωτ(r − q − 1

2
v − µJ) +

1

2
i2ω2vτ

B = λτ

(

exp

(

iω log(1 + µJ)−
1

2
iωσ2

J − ω2σ2
J

)

− 1

)

,

see Gatheral (2006, ch. 5). The A-term in φMerton corresponds to the bsm dynamics
with a drift adjustment to account for the jumps; the B-term adds the jump compo-
nent. Like in the bsm case, we can compare the results from Equation (1) with those
obtained from Equation (8).

2.3 The Heston model

Under the Heston (1993) model the stock price S and its variance v are described by

dSt = rStdt +
√

vtStdz
(1)
t (10a)

dvt = κ(θ − vt)dt + σ
√

vtdz
(2)
t . (10b)

The long-run variance is denoted θ, mean reversion speed is κ and σ is the volatility-
of-volatility. The Wiener processes z(·) have correlation ρ. For σ → 0, the Heston
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dynamics approach those of bsm. A thorough discussion of the model can be found
in Gatheral (2006). The characteristic function of the log-price in the Heston model
looks as follows, see Albrecher et al. (2007).

φHeston = eA+B+C (11)

where

A = iωs0 + iω(r − q)τ

B =
θκ

σ2

(

(κ − ρσiω − d)τ − 2 log

(
1 − ge−dτ

1 − g

))

C =

v0

σ2

(

κ − ρσiω − d
)(

1 − e−dτ
)

1 − ge−dτ

d =
√

(ρσiω − κ)2 + σ2(iω + ω2)

g =
κ − ρσiω − d

κ − ρσiω + d

With only five parameters (under the risk-neutral probability), the Heston model is
capable of producing a volatility smile, see Figure 1.

2.4 The Bates Model

This model, described in Bates (1996), adds jumps to the dynamics of the Heston
model. The stock price S and its variance v are described by

dSt = (r − q − λµJ)Stdt +
√

vtStdz
(1)
t + JtStdNt

dvt = κ(θ − vt)dt + σ
√

vtdz(2) .

Nt is poisson count process with intensity λ, hence the probability to have a jump of
size one is λdt. Like in Merton’s model, the logarithm of the jump size Jt is distributed
as a Gaussian, ie,

log(1 + Jt) = N
(

log(1 + µJ)−
σ2

J

2
, σ2

J

)

.

The characteristic function becomes (Schoutens et al., 2004):

φBates = eA+B+C+D (12)
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(a) The base case: S = 100, r = 2%, q = 2%,
√

v0 = 30%,
√

θ = 30%, ρ = 0,
κ = 1, σ = 30%.
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(b) σ = 70%: short-term smile (the position of the kink is controlled by ρ); often
we need substantial volatility-of-volatility
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(c) ρ = −0.5: skew (a positive correlation induces positive slope).
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(d) v0 = 35%, θ = 25%: term structure is determined by the difference between
current and long-run variance, and κ.

Figure 1: Heston model: re-creating the implied volatility surface.
The graphics show the bsm implied volatilities obtained from prices under the Heston model.
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with

A = iωs0 + iω(r − q)τ

B =
θκ

σ2

(

(κ − ρσiω − d)τ − 2 log

(
1 − ge−dτ

1 − g

))

C =

v0

σ2

(

κ − ρσiω − d
)(

1 − e−dτ
)

1 − ge−dτ

D = −λµJiωτ + λτ

(

(1 + µJ)
iωe

1
2 σ2

J iω(iω−1) − 1

)

d =
√

(ρσiω − κ)2 + σ2(iω + ω2)

g =
κ − ρσiω − d

κ − ρσiω + d

Since the jumps are assumed independent, the characteristic function is the product
of φHeston with the function for the jump part (D). Figure 2 shows that adding jumps
makes it easier to introduce curvature into the volatility surface, at least for short
maturities.

2.5 Integration schemes

Sample Matlab programs for pricing under the different models are given in the Ap-
pendix and can be downloaded from http://comisef.eu. The programs use Matlab’s
quad function, an adaptive algorithm based on Simpson’s rule; it is reliable but slow.
The pricing can be accelerated by precomputing a fixed number of nodes and weights
under the given quadrature scheme. We use a Gauss–Legendre rule, see Davis and
Rabinowitz (2007), Trefethen (2008), and the Appendix; we experimented with alter-
natives like Gauss–Lobatto as well, but no integration scheme was clearly dominant
over another, given the required precision of our problem (there is no need to com-
pute option prices to eight decimals). Thus, in what follows, we do not use quad, but
compute nodes and weights, and directly evaluate the integrals in Equations (2).

To test our pricing algorithms, we first investigate the bsm model and Merton’s
jump–diffusion model. For these models, we can compare the solutions obtained from
the classical formulæ with those from integration. Furthermore, we can investigate
several polar cases: for Heston with zero volatility-of-volatility we should get bsm

prices; for Bates with zero volatility-of-volatility we should obtain prices like under
Merton’s jump diffusion (and of course Bates with zero volatility-of-volatility and no
jumps should again give bsm prices).

As an example of these tests, we compare here results from Equation (4) with
results from Equation (1). The integrands in Equations (2) are well-behaved for bsm,
see Figure 3 in which we plot Π∗

j = π(Πj − 1/2). The functions start to oscillate for

options that are far away from the money, increasingly so for low volatility and short
time to maturity. This is shown in the left panel of Figure 4, where we plot Π∗

1 for
varying strikes X and ω values (Π∗

2 looks similar). The right panel of Figure 4 gives
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(a) The base case: S = 100, r = 2%, q = 2%,
√

v0 = 30%,
√

θ = 30%, ρ = 0,
κ = 1, σ = 0.0%, λ = 0.1, µJ = 0, σJ = 30%. Volatility-of-volatility is zero, as is
the jump mean.
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(b) µJ = −10%: more asymmetry
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(c) θ = 70%: stochastic volatility included.
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(d) µJ = −10%, θ = 70%, ρ = −0.3.

Figure 2: Bates model: re-creating the implied volatility surface
The graphics show the bsm implied volatilities obtained from prices under the Bates model.
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Figure 3: Π∗
1 and Π∗

2 for bsm (S = 100, X = 100, τ = 1,
√

v = 0.3, r = 0.03).

the same plot, but shows only the strikes from 80 to 120; here little oscillation is
apparent.
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Figure 4: Π∗
1 for bsm with varying strikes (S = 100, τ = 1/12,

√
v = 0.3, r = 0.03).

Gauss–Legendre quadrature is applicable to finite intervals, but the integrals in
Equations (2) decay so rapidly to zero that we can also evaluate them up to a cutoff
point, which we set to 200. Figure 5 shows the relative pricing errors for the bsm case
with 20 nodes (left) and 100 nodes (right). Note that here we are already pricing a
whole matrix of options (different strikes, different maturities). This matrix is taken
from the experiments described in the next section. Already with 100 nodes the
pricing errors are in the range of 10-13, ie, practically zero.

The behaviour of the integrals is similar for other characteristic functions. For
the Heston model, examples for Π∗

j are given in Figure 6. If we let the volatility-of-

volatility go to zero, the functions exactly resemble those of the corresponding bsm

case. Figure 7 shows Π∗
1 for different strikes, analogously to Figure 4.
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Figure 5: Relative pricing errors compared with analytical bsm: a Gauss-rule with 20

nodes (left) and 100 nodes (right).

A remark: integration rules like Gauss–Legendre (or others, eg, Clenshaw–Curtis)
prescribe to sample the integrand at points that cluster around the endpoints of the
interval. This happens because essentially a Gauss rule approximates the function
to be integrated by a polynomial, and then integrates this polynomial exactly. Gauss
rules are even optimal in the sense that for a given number of nodes, they integrate
exactly a polynomial of highest order possible. For an oscillating function, however,
we may need a very-high–order polynomial to obtain a good approximation, hence
alternative rules may be more efficient for such functions (Hale and Trefethen, 2008).
In our experiments this oscillation never caused problems. Furthermore, in Figures 4

and Figures 7 the strikes we computed range from 20 to 180 (with spot at 100). The
potentially difficult cases are options with delta zero or delta one, which are not the
instruments that are difficult to price.

3 Calibrating model parameters

Calibrating an option pricing model means to find parameters such that the model’s
prices are consistent with market prices, leading to an optimisation problem of the
form

min
M

∑
i=1

∣
∣Cmodel

i − Cmarket
i

∣
∣

Cmarket
i

(13)

where M is the number of market prices. Alternatively, we could specify absolute
deviations, use squares instead of absolute values, or introduce weighting schemes.
The choice of the objective function depends on the application at hand; ultimately,
it is an empirical question to determine a good objective function. Since here we are
interested in numerical aspects, we will use specification (13). Figure 8 shows an
example objective function for the Heston model (on a log scale) when varying two
parameters – mean reversion κ and volatility-of-volatility σ – while holding the others
fixed. The problem is not convex, and standard methods (eg, based on derivatives of
the objective function) may fail. We deploy heuristic methods, Differential Evolution
and Particle Swarm Optimisation, to solve problem (13).

When we evaluate (13), we price not just one option, but a whole array of different
strikes and different maturities. But for a given set of parameters that describe the
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Figure 6: Π∗
1 and Π∗

2 for Heston model (S = 100, X = 100, τ = 1,
√

vT = 0.3,
√

v0 =
0.3, r = 0.03, κ = 0.2, σ = 0.8, ρ = −0.5).

underlying process of the model, the characteristic function φ only depends on the
time to maturity, not on the strike price. This suggests that speed improvements can
be achieved by preprocessing those terms of φ that are constant for a given maturity,
and then compute the prices for all strikes for this maturity, see Kilin (2007) for a
discussion, see Algorithm 1 for a summary.

3.1 Differential Evolution

Differential Evolution (de) is described in detail in Storn and Price (1997). de evolves
a population of nP solutions, stored in real-valued vectors of length p (p is five for
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Figure 7: Π∗
1 for Heston model with varying strikes (S = 100, τ = 1/12,

√
vT =

0.3,
√

v0 = 0.3, r = 0.03, κ = 0.2, σ = 0.8, ρ = −0.5).
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Figure 8: A search space for the Heston model.

Algorithm 1 Computing the prices for a given surface.

1: set parameters, set T = maturities, set X = strikes
2: for τ ∈ T do
3: compute characteristic function φ
4: for X ∈ X do
5: compute price for strike X, maturity τ
6: end for
7: end for
8: compute objective function

Heston, eight for Bates). In every generation k, the algorithm creates nP new candi-
date solutions; one new solution for each existing one. Such candidate solutions are
constructed by taking the difference between two other solutions, weighting this dif-
ference, and adding the weighted difference to a third solution. Then an element-wise
crossover takes place between the auxiliary solutions P(v) and the original solutions.
If such a final candidate solution is better than the original solution, it replaces it; if
not, the old solution is kept.

Algorithm 2 summaries the technique. (Notation: nG - number of generations; F -
weight parameter; CR - crossover probability; P - population (a matrix of size p × nP);
ℓ(·) - integers; F - objective function; ζ - a random variate with uniform distribution
on [0 1].)

3.2 Particle Swarm Optimisation

In Particle Swarm Optimisation (ps; Eberhart and Kennedy, 1995), we have again a
population that comprises nP solutions, stored in real-valued vectors. In every gen-
eration, a solution is updated by adding another vector called velocity vi. We may
think of a solution as a position in the search space, and of velocity as a direction into
which the solution is moved. Velocity changes over the course of the optimisation, the
magnitude of change is the sum of two components: the direction towards the best

12



Algorithm 2 Differential Evolution.

1: set parameters nP, nG, F and CR

2: initialise population P
(1)
j,i , j = 1, . . . , p, i = 1, . . . , nP

3: for k = 1 to nG do
4: P(0) = P(1)

5: for i = 1 to nP do
6: generate ℓ1, ℓ2, ℓ3 ∈ {1, . . . , nP}, ℓ1 6= ℓ2 6= ℓ3 6= i

7: compute P
(v)
·,i = P

(0)
·,ℓ1

+ F× (P
(0)
·,ℓ2

− P
(0)
·,ℓ3

)

8: for j = 1 to p do

9: if ζ < CR then P
(u)
j,i = P

(v)
j,i else P

(u)
j,i = P

(0)
j,i

10: end for
11: if F(P

(u)
·,i ) < F(P

(0)
·,i ) then P

(1)
·,i = P

(u)
·,i else P

(1)
·,i = P

(0)
·,i

12: end for
13: end for

14: find best solution gbest = argmini F(P
(1)
·,i )

15: solution = P
(1)
·,gbest

solution found so far by the particular solution, Pbesti, and the direction towards the
best solution of the whole population, Pbestgbest. These two directions are perturbed
via multiplication with a uniform random variable ζ and constants c(·), and summed,
see Statement 7. The vector so obtained is added to the previous vi, the resulting
updated velocity is added to the respective solution. In some implementations, the
velocities are reduced in every generation by setting the parameter δ, called inertia, to
a value smaller than unity.

Algorithm 3 details the procedure. (Notation: nG - number of generations; P -
population (a matrix of size p × nP); F - objective function; Fi - objective function
value associated with the ith solution; ζ - a random variate with uniform distribution
on [0 1].)

3.3 A simple hybrid

Population-based methods like ps and de are often effective in exploration: they can
quickly identify promising areas of the search space; but then these methods converge
only slowly. In the literature we thus often find combinations of population-based
search with local search (in the sense of a trajectory method that evolves only a single
solution); an example are Memetic Algorithms (Moscato, 1989). We also test a simple
hybrid based on this idea; it combines de and ps with a direct search component. In
the classification systems of Talbi (2002) or Winker and Gilli (2004), this is a high-level
relay hybrid.

Preliminary tests suggested that the objective function is often flat, thus different
parameter values give similar objective function values. This indicates that (i) our
problem may be sensitive to small changes in the data when we are interested in pre-
cise parameter estimates; and that (ii) if we insist on computing parameters precisely,
we may need either many iterations, or an algorithm with a large step size. Thus, as
a local search strategy, we use the direct search method of Nelder and Mead (1965)
as implemented in Matlab’s fminsearch. This algorithm can change its step size; it is
also robust in case of noisy objective functions (eg, functions evaluated by numerical
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Algorithm 3 Particle Swarm.

1: set parameters nP, nG, δ, c1 and c2

2: initialise particles P
(0)
i and velocity v

(0)
i , i = 1, . . . , nP

3: evaluate objective function Fi = F(P
(0)
i ), i = 1, . . . , nP

4: Pbest = P(0), Fbest = F, Gbest = mini(Fi), gbest = argmini(Fi)
5: for k = 1 to nG do
6: for i = 1 to nP do

7: △vi = c1 × ζ1 × (Pbesti − P
(k−1)
i ) + c2 × ζ2 × (Pbestgbest − P

(k−1)
i )

8: v
(k)
i = δv(k−1)+ △vi

9: P
(k)
i = P

(k−1)
i + v

(k)
i

10: end for
11: evaluate objective function Fi = F(P

(k)
i ), i = 1, . . . , nP

12: for i = 1 to nP do

13: if Fi < Fbesti then Pbesti = P
(k)
i and Fbesti = Fi

14: if Fi < Gbest then Gbest = Fi and gbest = i
15: end for
16: end for
17: solution = P

(nG)
·,gbest

techniques that may introduce truncation error, as could be the case here). The hybrid
is summarised in Algorithm 4.

Algorithm 4 Hybrid search.

1: set parameters for population-based method
2: for k = 1 to nG do
3: do population-based search
4: if local search then
5: select nS solutions as starting values for local search
6: for each selected solution do
7: perform local search
8: end for
9: end if

10: end for

For an implementation, we need to decide how often we start a local search, how
many solutions we select, and how we select them. In the extreme, with just one
generation and nS = nP, we would have a simple restart strategy for the local search
method.

3.3.1 Nelder–Mead Search

Spendley et al. (1962) suggested to code a solution x as a simplex. A simplex of
dimension p consists of p+ 1 vertices (points), hence for p = 1 we have a line segment;
p = 2 is a triangle, p = 3 is a tetrahedron, and so on. In the algorithm of Spendley
et al. (1962), this simplex could be reflected across an edge, or it could shrink. Thus,
the size of the simplex could change, but never its form. Nelder and Mead (1965)
added two more operations: now the simplex could also expand and contract; hence
the simplex could change its size and its form. The possible operations are illustrated
in the following figure:
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a simplex (p = 2)
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reflection
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x3
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x1 x2
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shrinking

x1 x2

x3

Algorithm 5 outlines the Nelder–Mead algorithm. The notation follows Wright (1996);
when solutions are ordered as

x1, x2, . . . , xp+1

this means we have

F(x1) < F(x2) < . . . < F(xp+1) .

We denote the objective values associated with particular solutions as F1 , F2 , . . . , Fp+1 .
Typical values for the parameters in Algorithm 5 are

̺ = 1, χ = 2, γ = 1/2, and ς = 1/2 ;

these are also used in Matlab’s fminsearch. Matlab transforms our initial guess x into

x(1) x(1) + εx(1) x(1) x(1) . . . x(1)

x(2) x(2) x(2) + εx(2) x(2) . . . x(2)

x(3) x(3) x(3) x(1) + εx(3) . . . x(3)

...
...

...
...

. . .
...

x(p) x(p) x(p) x(p) . . . x(p) + εx(p)

(14)

where the superscript (i) denotes the ith element of x. In the implementation used
here (Matlab 2008a), ε is 0.05. If x(i) is zero, then εx(i) is set to 0.00025.

The simplex adjusts to the contours of the objective function (ie, it can ‘stretch’
itself) and so can make larger steps into favourable directions. But this flexibility can
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Algorithm 5 Nelder–Mead search.
1: set ̺, χ, γ, ς
2: while stopping criteria not met do

3: order points x1, . . . , xp+1 , compute x̄ = 1/p ∑
p
i=1 xi

4: set shrink = false

5: xR = x̄ + ̺(x̄ − xp+1), FR = F(xR) # reflect
6: if F1 ≤ FR < Fp then
7: x∗ = xR

8: else if FR < F1 then
9: xE = x̄ + χ(xR − x̄), FE = F(xE) # expand

10: if FE < FR then x∗ = xE else x∗ = xR

11: else if FR ≥ Fp then
12: if Fp ≤ FR < Fp+1 then
13: xC = x̄ + γ(xR − x̄), FC = F(xC) # outside contract
14: if FC ≤ FR then x∗ = xC else shrink = true

15: else
16: xC′ = x̄ − γ(x̄ − xp+1), fC′ = f (xC′ ) # inside contract
17: if FC′ < Fp+1 then x∗ = xC′ else shrink = true

18: end if
19: end if
20: if shrink == true then
21: xi = x1 + ς(xi − x1) , i = 2, . . . , p + 1
22: else
23: xp+1 = x∗

24: end if
25: end while

also be a disadvantage: try to visualise a narrow valley along which a long-stretched
simplex advances. If this valley were to take a turn, the simplex
could not easily adapt (see Wright (1996) for a discussion). This phenomenon seems
to occur in our problem. When we initialise the simplex, the maximum of a parameter
value is 5% greater than its minimum, and this is true for all parameters by construc-
tion, see Equation (14). Thus the stretch in relative terms along any dimension is the
same. When we run a search and compare this initial with the final simplex, we of-
ten find that the stretch along some dimensions is 200 times greater than along other
dimensions; the condition number of a simplex often increases from 103 or so to 1012

and well beyond. This can be a warning sign, and here it is: it turns out that restart-
ing the algorithm, ie, re-initialising the simplex several times, leads to much better
solutions.

3.4 Constraints

We constrain all heuristics to favour interpretable values: thus we want non-negative
variances, correlation between -1 and 1, and parameters like κ, σ and λ also non-
negative. These constraints are implemented through penalty terms. For any violation
a positive number proportional to the violation is added to the objective function.
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4 Experiments and results

We create artificial data sets to test our techniques. The spot price S0 is 100, the riskfree
rate r is 2%, there are no dividends. We compute prices for strikes X from 80 to 120

in steps of size 2, and maturities τ of 1/12, 3/12, 6/12, 9/12, 1, 2 and 3 years. Hence our
surface comprises 21 × 7 = 147 prices. Given a set of parameters, we compute option
prices and store them as the true prices. Then we run 10 times each of our methods
to solve problem (13) and see if we can recover the parameters; the setup implies that
a perfect fit is possible.

The parameters for the Heston model come from the following table:

√
v0 0.3 0.3 0.3 0.3 0.4 0.2 0.5 0.6 0.7 0.8√
θ 0.3 0.3 0.2 0.2 0.2 0.4 0.5 0.3 0.3 0.3

ρ -0.3 -0.7 -0.9 0.0 -0.5 -0.5 0.0 -0.5 -0.5 -0.5
κ 2.0 0.2 3.0 3.0 0.2 0.2 0.5 3.0 2.0 1.0
σ 1.5 1.0 0.5 0.5 0.8 0.8 3.0 1.0 1.0 1.0

For the Bates model, we use the following parameter sets:

√
v0 0.3 0.3 0.3 0.3 0.4 0.2 0.5 0.6 0.7 0.8√
θ 0.3 0.3 0.2 0.2 0.2 0.4 0.5 0.3 0.3 0.3

ρ -0.3 -0.7 -0.9 0.0 -0.5 -0.5 0.0 -0.5 -0.5 -0.5
κ 2.0 0.2 3.0 3.0 0.2 0.2 0.5 3.0 2.0 1.0
σ 0.3 0.5 0.5 0.5 0.8 0.8 1.0 1.0 1.0 1.0
λ 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
µJ -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
σJ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

With ten different parameter sets for every model and with ten optimisation runs
(restarts) for each parameter set, we have 100 results for each optimisation method.
For each restart we store the value for the objective function (the mean percentage
error; Equation (13)), and the corresponding parameter estimates. For the latter we
compute absolute errors, ie,

error = | estimated parameter − true parameter | .

Below we look at the distributions of these errors.
All algorithms are coded in Matlab, for the direct search we use Matlab’s fminsearch.

We ran a number of preliminary experiments to find effective parameter values for
the algorithms. For de, the F-parameter should be set to around 0.3–0.5 (we use 0.5);
very low or high values typically impaired performance. The CR-parameter had less
influence, but levels close to unity worked best; each new candidate solution is then
likely changed in many dimensions. For ps, the main task is to accelerate conver-
gence. Velocity should not be allowed to become too high, hence inertia should be
below unity (we set it to 0.7); we also restricted maximum absolute velocity to 0.2. The
stopping criterion for de and ps is a fixed number of function evaluations (population
size × generations); we run three settings,

1 250 (25×50) ,
5 000 (50×100) ,

20 000 (100×200) .
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On an Intel p8700 single core at 2.53GHz with 2 GB of ram one run takes about 10, 40,
160 seconds, respectively. (An alternative stopping criterion is to halt the algorithm
once the diversity within the population – as measured for instance by the range of
objective function or parameter values – falls below a tolerance level. This strategy
works fine for de where the solutions generally converge rapidly, but leads to longer
run times for ps.)

For the hybrid methods, we use a population of 25 solutions, and run 50 gen-
erations. Every 10 generations, one or three solutions are selected, either the best
solutions (‘elitists’) or random solutions. These solutions are then used as the starting
values of a local search. This search comprises repeated applications of Nelder–Mead,
restricted to 200 iterations each, until no further improvement can be achieved; ‘fur-
ther improvement’ is a decrease in the objective function greater than 0.1% . One run
takes between 10 and 30 seconds.

4.1 Goodness-of-fit

We first discuss the achieved objective function values, ie, the average percentage
pricing error. Figures 9 to 16 show the empirical distributions of the pricing errors.
For the pure population-based approaches, the grey scales indicate the increasing
number of function evaluations (1 250, 5 000, and 20 000).

For the Heston model, all methods converge quickly to very good solutions with
pricing errors less than one percent; we can also achieve a perfect fit. (Not reported:
we ran further tests for de and ps with more function evaluations which increased
running time to 3–5 minutes; then both algorithms converged on the true solutions
without exception. However, for practical purposes, the precision achieved here is
sufficient.) de converges faster than ps. This becomes apparent for the hybrid algo-
rithms. Here, for de it makes little difference how we select solutions for local search
(random or elitists) because all members of the population are similar. For ps, select-
ing solutions by quality works better, see Figures 11 and 12.

It is more difficult to calibrate the Bates model. Figures 13 to 16 show that conver-
gence is slower here. The hybrid methods perform very well; in particular so when
based on de, or on ps with solutions chosen by quality. For both the Heston and the
Bates model, the hybrids performed best, with a small advantage for the de-based
algorithm.

4.2 Parameters

It is also of interest to know how fast the parameter estimates converge to their true
values – or if they do. To save space here, we only present results for de; convergence
for other methods looked similar. Figures 17 and 18 show that for the Heston model,
the parameters converge roughly in-line with the objective function; see for instance
Figure 9. Still, good fits (say, less than one percent pricing error) can be achieved with
quite different parameter values.

For the Bates model, the results are worse: Figures 19, 20, and 21 give results for
de. Those parameters that are also in the Heston model are estimated less precisely;
but for the jump parameters (λ, µJ and σJ) there is essentially no convergence. No
convergence in the parameters does not mean we cannot get a good fit; compare
Figures 13 to 16 and the discussion below. This non-convergence is to some extent
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Figure 9: Heston model: Distributions of errors for Differential Evolution. Darker
grey indicates more iterations.
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Figure 10: Heston model: Distributions of errors for Particle Swarm Optimisation.
Darker grey indicates more iterations.
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Figure 11: Heston model: Distributions of errors for hybrid based on Differential
Evolution.
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Figure 12: Heston model: Distributions of errors for hybrid based on Particle Swarm
Optimisation.
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Figure 13: Bates model: Distributions of errors for Differential Evolution. Darker grey
indicates more iterations.
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Figure 14: Bates model: Distributions of errors for Particle Swarm Optimisation.
Darker grey indicates more iterations.
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Figure 15: Bates model: Distributions of errors for hybrid based on Differential Evo-
lution.
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Figure 16: Bates model: Distributions of errors for hybrid based on Particle Swarm
Optimisation.
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Figure 17: Convergence of parameter estimates for the Heston model with de.
The figure shows the distributions of absolute errors in the parameters for

√
v0 (left),

√
θ

(middle), and ρ (right).

0 0.5 1
0

0.2

0.4

0.6

0.8

1

errors
0 0.5 1

0

0.2

0.4

0.6

0.8

1

errors

Figure 18: Convergence of parameter estimates for the Heston model with de.
The figure shows the distributions of absolute errors in the parameters for κ (left), and σ

(right).

owed to our choice of parameters. Experiments with Merton’s model (not reported)
showed that for ‘small’ mean jumps µJ of magnitude -10% or -20%, it is difficult
to recover parameters precisely because many parameter values give price errors of
practically zero. In other words, the optimisation is fine, we can well fit the prices,
but we cannot accurately identify the different parameters. In any case, parameter
values of the magnitude used here have been reported in the literature (eg, Schoutens
et al., 2004, or Detlefsen and Härdle, 2007). The precision improves for large jumps.
This is consistent with other studies: He et al. (2006) for instance report relatively-
precise estimates for a mean jump size -90%. (At some point, this begs the question
how much reason we should impose on the parameters. An advantage of theoretical
models over simple interpolatory schemes is the interpretability of parameters. If we
can only fit option prices by unrealistic parameters, there is little advantage in using
such models.)

The convergence of parameters is also pictured in Figures 22 to 26. The graphics
show the parameter errors of a solution compared with the overall price error of the
respective solutions. In the middle panel of Figure 22, for example, we see that in the
Heston model we can easily have a price error of less than one percent, but a corre-
sponding error in long-run volatility of 0.2 (ie, 20 percentage points). Most remarkable
is Figure 26: we see that for µJ and σJ , practially any value can be compatible with a
low price error.
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Figure 19: Convergence of parameter estimates for the Bates model with de.
The figure shows the distributions of absolute errors in the parameters for
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(middle), and ρ (right).
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Figure 20: Convergence of parameter estimates for the Bates model with de.
The figure shows the distributions of absolute errors in the parameters for κ (left), σ (middle),

and λ (right).
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Figure 21: Convergence of parameter estimates for the Bates model with de.
The figure shows the distributions of absolute errors in the parameters for µJ (left), and σJ

(right).
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Figure 22: Goodness of fit vs parameter errors for the Heston model with de.
The x-scale gives the objective function value (average error in percentage points) for solutions.

The y-scale shows the associated absolute errors in the parameters for
√

v0 (left),
√

θ (middle),

and ρ (right).
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Figure 23: Goodness of fit vs parameter errors for the Heston model with de.
The x-scale gives the objective function value (average error in percentage points) for solutions.

The y-scale shows the associated absolute errors in the parameters for κ (left), and σ (right).

0 2 4
0

0.05

0.1

0.15

0.2

0.25

errors in %
0 2 4

0

0.2

0.4

0.6

0.8

errors in %
0 2 4

0

0.2

0.4

0.6

errors in %

Figure 24: Goodness of fit vs parameter errors for the Bates model with de.
The x-scale gives the objective function value (average error in percentage points) for solutions.

The y-scale shows the associated absolute errors in the parameters for
√

v0 (left),
√

θ (middle),

and ρ (right).
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Figure 25: Goodness of fit vs parameter errors for the Bates model with de.
The x-scale gives the objective function value (average error in percentage points) for solutions.

The y-scale shows the associated absolute errors in the parameters for κ (left), σ (middle), and

λ (right).
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Figure 26: Goodness of fit vs parameter errors for the Bates model with de.
The x-scale gives the objective function value (average error in percentage points) for solutions.

The y-scale shows the associated absolute errors in the parameters for µJ (left), and σJ (right).
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4.3 Conditioning of the problem

We have seen that good results in terms of the objective function – ie, low price errors –
can go along with sometimes large errors in the estimated parameters. This can have
to do with specific parameter settings as discussed above for Merton’s jump diffusion
model; it also reflects the fact that both stochastic volatility and jumps can generate
the volatility smile (though stochastic volatility models are better at this for long
maturities, and jump models are better for short expirations, see Das and Sundaram,
1999). The optimisation procedure hence cannot clearly attribute the smile to either
cause. This is an identification problem, a problem of the model, not of the numerical
technique.

Our objective function (13) can be rewritten as a system of nonlinear equations

∣
∣Cmodel

i − Cmarket
i

∣
∣

Cmarket
i

= 0 (15)

where i ∈ 1, . . . , M. The number of market prices M is greater than the number of
parameters, so the system is overidentified; it can only be solved by minimising a
norm of the residual. The conditioning of a system of equations does not necessarily
affect the size of the residual: even badly-conditioned equations may result in small
residuals; but the parameters can then not be accurately determined. This seems to
be the case here.

To test the conditioning, we explicitly evaluate the Jacobian matrix J at every
step of the optimisation. J is a matrix of size M × #{x0} where #{x0} is number
of parameters of a solution x0, h is a small number, and ej is the jth unit vector.
We denote c0 a vector of length M that stores the relative price errors. Algorithm 6

describes how to approximate the Jacobian of (15) by a forward difference.

Algorithm 6 Computing the Jacobian matrix.

1: set h
2: compute c0: the left-hand side of Equation (15) for parameters x0

3: for j = 1 to #{x0} do
4: compute xj = x0 + hej

5: compute cj: the left-hand side of Equation (15) for parameters xj

6: J·,j = (cj − c0)/h
7: end for
8: compute condition number of J

We find that mostly the condition number of the models is numerically acceptable
for double precision (say, of order 105 or 106), even though there are steps where the
conditioning deteriorates dramatically. An example for the Bates model (

√
v0 = 0.3

,
√

θ = 0.3, ρ = −0.3, κ = 2, σ = 0.3, λ = 0.10, µJ = −0.10, σJ = 0.10) is given in
Figure 27. For the Heston model, the conditioning is better.

Just because the condition number is numerically acceptable does not mean the
model is fine. For intuition: in a linear regression model, the Jacobian is the data
matrix. The condition number of this matrix can be acceptable even though high
correlation between the columns may prohibit any sensible inference. The following
Matlab script sets up a linear regression model with extremely correlated regressors.

1 % set number of observations , number of regressors
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Figure 27: Condition number of Jacobian for one solution over 100 generations.

2 nObs = 150; nR = 8;

3

4 % set up correlation matrix

5 C = ones(nR,nR) * 0.9999; C( 1:(nR+1):(nR*nR) ) = 1;

6

7 % create data

8 X = randn(nObs ,nR); C = chol(C); X = X*C; bTrue = randn(nR ,1);

9 y = X*bTrue + randn(nObs ,1) *0.2;

The regression X\y can be computed without numerical problems, though we had
better not interpret the coefficients.

The conditioning of the Bates model does not matter much if we just aim to in-
terpolate current option prices; it is a problem if we want to compute parameters
accurately from option prices – which we cannot do for this model.

5 Conclusion

In this paper we have investigated the calibration of option pricing models. We have
shown how to calibrate the parameters of a model with heuristic techniques, Dif-
ferential Evolution and Particle Swarm Optimisation, and that we can improve the
performance of these methods by adding a Nelder–Mead direct search. While good
price fits could be achieved with all methods, the convergence of parameter estimates
was much slower; for the jump parameters of the Bates model, there was no conver-
gence. This, it must be stressed, is not a problem of the optimisation technique, but
it stems from the model. In comparison, parameters of the Heston model could be
estimated more easily.

In empirical studies on option pricing models (eg, Bakshi et al., 1997, or Schoutens
et al., 2004), the calibration is often taken ‘for granted’; it is rarely discussed whether,
for instance, restarts of an optimisation routine with different starting values would
have resulted in different parameter estimates, and how such different esimates would
have had influenced the studies’ results. (In Gilli and Schumann (2010b) we showed
that standard gradient-based methods often fail for the kinds of calibration problems
discussed in this paper, and that restarts with different starting values can lead to
very different solutions.) Different parameter values may lead to good overall fits in
terms of prices, but these different parameters may well imply very different Greeks,
or have a more marked influence on prices of exotic options. Hence empirical studies
that look for example into hedging performance should take into account the sensitiv-
ity of their results with respect to calibration. With luck, all that is added is another
layer of noise; but the relevance of optimisation is to be investigated by empirical
testing, not by conjecturing. Such testing is straightforward: we just need to rerun
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our empirical tests many times, each time also rerunning our calibration with alter-
native starting values, and hence can get an idea of the sensitivity of outcomes with
respect to optimisation quality. Ideally, optimisation quality in-sample should be eval-
uated jointly with empirical, out-of-sample performance of the model, see Gilli and
Schumann (2009).

Our findings underline the point raised in Gilli and Schumann (2010a) that mod-
ellers in quantitative finance should be sceptical of purely-numerical precision. Model
risk is a still under-appreciated aspect in quantitative finance (and one that had better
not be handled by rigorous mathematical modelling). For instance, Schoutens et al.
(2004) showed that the choice of an option pricing model can have a large impact
on the prices of exotic options, even though all models were calibrated to the same
market data. (Unfortunately, different calibration criteria lead to different results, see
Detlefsen and Härdle, 2007). In the same vein, Jessen and Poulsen (2009) find that
different models, when calibrated to plain vanilla options, exhibit widely-differing
pricing performance when used to explain actual prices of barrier options. Our re-
sults suggest that the lowly numerical optimisation itself can make a difference. How
important this difference is needs to be assessed empirically.
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A Matlab programs

A.1 Black–Scholes–Merton

Classic formula

1 function call = callBSM(S,X,tau ,r,q,sigma)

2 % callBSM Pricing function for European calls

3 % callprice = callBSM(S,X,tau ,r,q,sigma)

4 % ---

5 % S = spot

6 % X = strike

7 % tau = time to mat

8 % r = riskfree rate

9 % q = dividend yield

10 % sigma = volatility

11 % ---

12 % Manfred Gilli and Enrico Schumann , version 2010 -02 -15

13 % http :// comisef.eu

14 %

15 d1 = ( log(S/X) + (r-q+sigma^2/2)*tau ) / (sigma*sqrt(tau));

16 d2 = d1 - sigma*sqrt(tau);

17

18 call = S*exp(-q*tau)*normcdf(d1 ,0,1) - X*exp(-r*tau)*normcdf(d2 ,0,1);

With the characteristic function

1 function call = callBSMcf(S,X,tau ,r,q,vT)

2 % callBSMcf Pricing function for European calls

3 % callprice = callBSMcf (S,X,tau ,r,q,vT)

4 % ---

5 % S = spot

6 % X = strike

7 % tau = time to mat

8 % r = riskfree rate

9 % q = dividend yield

10 % vT = variance ( volatility squared)

11 % ---

12 % Manfred Gilli and Enrico Schumann , version 2010 -02 -05

13 % http :// comisef.eu

14 %

15 vP1 = 0.5 + 1/pi * quad(@P1 ,0,200,[],[],S,X,tau ,r,q,vT);

16 vP2 = 0.5 + 1/pi * quad(@P2 ,0,200,[],[],S,X,tau ,r,q,vT);

17 call = exp(-q * tau) * S * vP1 - exp(-r * tau) * X * vP2;

18 end

19 %

20 function p = P1(om ,S,X,tau ,r,q,vT)

21 p = real(exp(-1i*log(X)*om) .* cfBSM(om -1i,S,tau ,r,q,vT) ./ (1i * om * S * exp((r

-q) * tau)));

22 end

23 %

24 function p = P2(om ,S,X,tau ,r,q,vT)

25 p = real(exp(-1i*log(X)*om) .* cfBSM(om ,S,tau ,r,q,vT) ./ (1i * om));

26 end

27 %

28 function cf = cfBSM(om,S,tau ,r,q,vT)

29 cf = exp(1i * om * log(S) + 1i * tau * (r - q) * om - 0.5 * tau * vT * (1i * om +

om .^ 2));

30 end

A.2 Merton

Classic formula

1 function call = callMerton(S,X,tau ,r,q,sigma ,lambda ,muJ ,vJ,N)
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2 % callMerton Pricing function for European calls

3 % callprice = callMerton(S,X,tau ,r,q,sigma ,lambda ,muJ ,vJ ,N)

4 % ---

5 % S = spot

6 % X = strike

7 % tau = time to mat

8 % r = riskfree rate

9 % q = dividend yield

10 % sigma = volatility

11 % lambda= intensity of poisson process

12 % muJ = mean jump size

13 % vJ = variance of jump process

14 % N = number of jumps to be included in sum

15 % ---

16 % Manfred Gilli and Enrico Schumann , version 2010 -02 -19

17 % http :// comisef.eu

18 %

19 lambda2 = lambda *(1+ muJ); call = 0;

20 for n=0:N

21 sigma_n = sqrt(sigma^2 + n*vJ/tau);

22 r_n = r - lambda*muJ+ n*log(1+muJ)/tau;

23 call = call + ( exp(-lambda2*tau) * (lambda2*tau)^n ) * ...

24 callBSM(S,X,tau ,r_n ,q,sigma_n)/ exp( sum(log(1:n)) );

25 end

With the characteristic function

1 function call = callMertoncf(S,X,tau ,r,q,v,lambda ,muJ ,vJ)

2 % callMertoncf Pricing function for European calls

3 % callprice = callMertoncf(S,X,tau ,r,q,v,lambda ,muJ ,vJ)

4 % ---

5 % S = spot

6 % X = strike

7 % tau = time to mat

8 % r = riskfree rate

9 % q = dividend yield

10 % v = variance ( volatility squared)

11 % lambda= intensity of poisson process

12 % muJ = mean jump size

13 % vJ = variance of jump process

14 % ---

15 % Manfred Gilli and Enrico Schumann , version 2010 -02 -19

16 % http :// comisef.eu

17 %

18 vP1 = 0.5 + 1/pi * quad(@P1 ,0,200,[],[],S,X,tau ,r,q,v,lambda ,muJ ,vJ);

19 vP2 = 0.5 + 1/pi * quad(@P2 ,0,200,[],[],S,X,tau ,r,q,v,lambda ,muJ ,vJ);

20 call = exp(-q * tau) * S * vP1 - exp(-r * tau) * X * vP2;

21 end

22 %

23 function p = P1(om ,S,X,tau ,r,q,v,lambda ,muJ ,vJ)

24 p = real(exp(-1i*log(X)*om) .* cfMerton(om -1i,S,tau ,r,q,v,lambda ,muJ ,vJ) ./ (1i *

om * S * exp((r-q) * tau)));

25 end

26 %

27 function p = P2(om ,S,X,tau ,r,q,v,lambda ,muJ ,vJ)

28 p = real(exp(-1i*log(X)*om) .* cfMerton(om ,S,tau ,r,q,v,lambda ,muJ ,vJ) ./ (1i *

om));

29 end

30 %

31 function cf = cfMerton(om,S,tau ,r,q,v,lambda ,muJ ,vJ)

32 A = 1i*om*log(S) + 1i*om*tau*(r-q -0.5*v-lambda*muJ) - 0.5*(om.^2)*v*tau;

33 B = lambda*tau*( exp(1i*om*log(1+muJ) -0.5*1i*om*vJ -0.5*vJ*om .^2) -1);

34 cf = exp(A + B);

35 end
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A.3 Heston

In Matlab

1 function call = callHestoncf(S,X,tau ,r,q,v0 ,vT ,rho ,k,sigma)

2 % callHestoncf Pricing function for European calls

3 % callprice = callHestoncf(S,X,tau ,r,q,v0 ,vT ,rho ,k,sigma)

4 % ---

5 % S = spot

6 % X = strike

7 % tau = time to mat

8 % r = riskfree rate

9 % q = dividend yield

10 % v0 = initial variance

11 % vT = long run variance (theta in Heston ’s paper)

12 % rho = correlation

13 % k = speed of mean reversion (kappa in Heston ’s paper)

14 % sigma = vol of vol

15 % ---

16 % Manfred Gilli and Enrico Schumann , version 2010 -02 -05

17 % http :// comisef.eu

18 %

19 vP1 = 0.5 + 1/pi * quadl(@P1 ,0,200,[],[],S,X,tau ,r,q,v0,vT,rho ,k,sigma);

20 vP2 = 0.5 + 1/pi * quadl(@P2 ,0,200,[],[],S,X,tau ,r,q,v0,vT,rho ,k,sigma);

21 call = exp(-q * tau) * S * vP1 - exp(-r * tau) * X * vP2;

22 end

23 %

24 function p = P1(om ,S,X,tau ,r,q,v0,vT,rho ,k,sigma)

25 i=1i;

26 p = real(exp(-i*log(X)*om) .* cfHeston(om-i,S,tau ,r,q,v0 ,vT ,rho ,k,sigma) ./ (i *

om * S * exp((r-q) * tau)));

27 end

28 %

29 function p = P2(om ,S,X,tau ,r,q,v0,vT,rho ,k,sigma)

30 i=1i;

31 p = real(exp(-i*log(X)*om) .* cfHeston(om ,S,tau ,r,q,v0 ,vT ,rho ,k,sigma) ./ (i *

om));

32 end

33 %

34 function cf = cfHeston(om,S,tau ,r,q,v0,vT,rho ,k,sigma)

35 d = sqrt((rho * sigma * 1i*om - k).^2 + sigma^2 * (1i*om + om .^ 2));

36 g2 = (k - rho*sigma*1i*om - d) ./ (k - rho*sigma*1i*om + d);

37 cf1 = 1i*om .* (log(S) + (r - q) * tau);

38 cf2 = vT * k / (sigma^2) * ((k - rho*sigma*1i*om - d) * tau - 2 * log((1 - g2 .*

exp(-d * tau)) ./ (1 - g2)));

39 cf3 = v0 / sigma^2 * (k - rho*sigma*1i*om - d) .* (1 - exp(-d * tau)) ./ (1 - g2

.* exp(-d * tau));

40 cf = exp(cf1 + cf2 + cf3);

41 end

In R

1 callHestoncf <- function(S,X,tau ,r,q,v0,vT,rho ,k,sigma)

2 {

3 # callHestoncf Pricing function for European calls

4 # ---

5 # S = spot

6 # X = strike

7 # tau = time to mat

8 # r = riskfree rate

9 # q = dividend yield

10 # v0 = initial variance

11 # vT = long run variance (theta in Heston ’s paper)

12 # rho = correlation

13 # k = speed of mean reversion (kappa in Heston ’s paper)

14 # sigma = vol of vol

15 # ---

16 # Manfred Gilli and Enrico Schumann , version 2010 -02 -05
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17 # http :// comisef.eu

18 #

19

20 # -- functions --

21 P1 <- function(om,S,X,tau ,r,q,v0 ,vT ,rho ,k,sigma)

22 {

23 i <- 1i

24 p <- Re(exp(-i*log(X)*om) * cfHeston(om-i,S,tau ,r,q,v0,vT,rho ,k,

sigma) / (i * om * S * exp((r-q) * tau)))

25 return(p)

26 }

27 P2 <- function(om,S,X,tau ,r,q,v0 ,vT ,rho ,k,sigma)

28 {

29 i <- 1i

30 p <- Re(exp(-i*log(X)*om) * cfHeston(om ,S,tau ,r,q,v0,vT,rho ,k,

sigma) / (i * om))

31 return(p)

32 }

33 cfHeston <- function(om ,S,tau ,r,q,v0,vT ,rho ,k,sigma)

34 {

35 d <- sqrt((rho * sigma * 1i*om - k)^2 + sigma^2 * (1i*om + om ^

2))

36 g2 <- (k - rho*sigma*1i*om - d) / (k - rho*sigma*1i*om + d)

37 cf1 <- 1i*om * (log(S) + (r - q) * tau)

38 cf2 <- vT * k / (sigma^2) * ((k - rho*sigma*1i*om - d) * tau - 2

* log((1 - g2 * exp(-d * tau)) / (1 - g2)))

39 cf3 <- v0 / sigma^2 * (k - rho*sigma*1i*om - d) * (1 - exp(-d *

tau)) / (1 - g2 * exp(-d * tau))

40 cf <- exp(cf1 + cf2 + cf3)

41 return(cf)

42 }

43 # -- pricing --

44 vP1 <- 0.5 + 1/pi * integrate(P1 ,lower=0,upper=200,S,X,tau ,r,q,v0,vT,rho ,

k,sigma)$value

45 vP2 <- 0.5 + 1/pi * integrate(P2 ,lower=0,upper=200,S,X,tau ,r,q,v0,vT,rho ,

k,sigma)$value

46 call <- exp(-q * tau) * S * vP1 - exp(-r * tau) * X * vP2;

47 return(call)

48 }

A.4 Bates

In Matlab

1 function call = callBatescf(S,X,tau ,r,q,v0,vT,rho ,k,sigma ,lambda ,muJ ,vJ)

2 % callBatescf Pricing function for European calls

3 % callprice = callBatescf(S,X,tau ,r,q,v0 ,vT ,rho ,k,sigma ,lambda ,muJ ,vJ)

4 % ---

5 % S = spot

6 % X = strike

7 % tau = time to mat

8 % r = riskfree rate

9 % q = dividend yield

10 % v0 = initial variance

11 % vT = long run variance (theta in Heston ’s paper)

12 % rho = correlation

13 % k = speed of mean reversion (kappa in Heston ’s paper)

14 % sigma = vol of vol

15 % lambda= intensity of jumps;

16 % muJ = mean of jumps ;

17 % vJ = variance of jumps;

18 % ---

19 % Manfred Gilli and Enrico Schumann , version 2010 -02 -05

20 % http :// comisef.eu

21 %
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22 vP1 = 0.5 + 1/pi * quadl(@P1 ,0,200,[],[],S,X,tau ,r,q,v0,vT,rho ,k,sigma ,lambda ,muJ

,vJ);

23 vP2 = 0.5 + 1/pi * quadl(@P2 ,0,200,[],[],S,X,tau ,r,q,v0,vT,rho ,k,sigma ,lambda ,muJ

,vJ);

24 call = exp(-q * tau) * S * vP1 - exp(-r * tau) * X * vP2;

25 end

26 %

27 function p = P1(om ,S,X,tau ,r,q,v0,vT,rho ,k,sigma ,lambda ,muJ ,vJ)

28 i=1i;

29 p = real(exp(-i*log(X)*om) .* cfBates(om -i,S,tau ,r,q,v0,vT,rho ,k,sigma ,lambda ,muJ

,vJ) ./ (i * om * S * exp((r-q) * tau)));

30 end

31 %

32 function p = P2(om ,S,X,tau ,r,q,v0,vT,rho ,k,sigma ,lambda ,muJ ,vJ)

33 i=1i;

34 p = real(exp(-i*log(X)*om) .* cfBates(om ,S,tau ,r,q,v0,vT,rho ,k,sigma ,lambda ,muJ

,vJ) ./ (i * om));

35 end

36 %

37 function cf = cfBates(om ,S,tau ,r,q,v0 ,vT ,rho ,k,sigma ,lambda ,muJ ,vJ)

38 d = sqrt((rho * sigma * 1i*om - k).^2 + sigma^2 * (1i*om + om .^ 2));

39 %

40 g2 = (k - rho*sigma*1i*om - d) ./ (k - rho*sigma*1i*om + d);

41 %

42 cf1 = 1i*om .* (log(S) + (r - q) * tau);

43 cf2 = vT * k / (sigma^2) * ((k - rho*sigma*1i*om - d) * tau - 2 * log((1 - g2 .*

exp(-d * tau)) ./ (1 - g2)));

44 cf3 = v0 / sigma^2 * (k - rho*sigma*1i*om - d) .* (1 - exp(-d * tau)) ./ (1 - g2

.* exp(-d * tau));

45 % jump

46 cf4 = -lambda*muJ*1i*tau*om + lambda*tau*( (1+muJ).^(1i*om) .* exp( vJ*(1i*om/2)

.* (1i*om -1) ) -1 );

47 cf = exp(cf1 + cf2 + cf3 + cf4);

48 end
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B Numerical integration

In this appendix we give a brief introduction to numerical integration. For a textbook
exposition see for instance Heath (2005, ch. 8). Davis and Rabinowitz (2007) gives a
detailed discussion. A highly-recommended paper is Trefethen (2008); it is one of the
rare occasions where actual convergence – as opposed to theoretical optimality – is
discussed for specific rules.

The essence of numerical integration, or quadrature, is to replace an integral

∫ b

a
f (x)dx (16)

by the sum

n

∑
i=1

wi f (xi) . (17)

The xi are called the nodes or abscissas, the wi are weights. We either assume there are
n nodes, or that the interval [a, b] is subdivided into m partitions. Quadrature rules
detail how to choose these nodes and weights. A rule is called closed if it requires to
evaluate the endpoints a and b; otherwise the rule is called open.

An intuitive approach is to follow Riemann’s original idea and replace the inte-
gral (16) by the sum of the area of m rectangles. Such a Riemann sum is defined as
follows. Assume

a = x1 < x2 < . . . < xm < xm+1 = b ,

then any collection of nodes νk ∈ [xk, xk+1], for k = 1, . . . , m, defines a Riemann sum

m

∑
k=1

(xk+1 − xk) f (νk) . (18)

We define h ≡ (b − a)/m ; then some possible quadrature rules based on Riemann
sums are:

rectangular rule R Rm = h ∑
m−1
k=0 f (a + kh) (evaluation on the left side), or

Rm = h ∑
m
k=1 f (a + kh) (evaluation on the right side).

midpoint rule M We evaluate the rectangle in the middle, hence

Mm = h ∑
m
k=0 f

(

a +
[
k + 1

2

]
h

)

.

trapezoidal rule T Tm = h

(

∑
m−1
k=1 f (a + kh) + f (a)

2 + f (b)
2

)

for m ≥ 2; or

Tm = h

(

f (a)+ f (b)
2

)

for m = 1.

The following code shows how to implement such rules in Matlab. We include a call
to Matlab’s quad function.
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1 % Riemann sums - example

2 Fun1 = @(x)(exp(-x));

3 m = 5; a = 0; b = 5; h = (b-a)/m;

4

5

6 % rectangular rule -- left

7 w = h; k = 0:(m-1); x = a + k * h;

8 fprintf(’rectangular (left) with %i rectangles:\t %f\n’,m,sum(w * Fun1(x)))

9

10 % rectangular rule -- right

11 w = h; k = 1:m; x = a + k * h;

12 fprintf(’rectangular (right) with %i rectangles:\t %f\n’,m,sum(w * Fun1(x)))

13

14 %midpoint rule

15 w = h; k = 0:(m-1); x = a + (k + 0.5)*h;

16 fprintf(’midpoint with %i rectangles:\t %f\n’,m,sum(w * Fun1(x)))

17

18 % trapezoidal rule

19 w = h; k = 1:(m-1); x = [a a + k*h b];

20 aux = w * Fun1(x); aux([1 end]) = aux([1 end])/2;

21 fprintf(’trapezoidal with %i rectangles:\t %f\n’,m,sum(aux))

22

23 %adaptive Simpson

24 fprintf(’Adaptive Simpson (Matlab):\t\t\t\t %f\n’,quad(Fun1 ,a,b))

Interpolatory rules

The three rules stated above partition the interval [a b] arbitrarily into subintervals
and approximate the integrand in each subinterval by a rectangle or a trapezium.
The accuracy of this approach improves as the number of subintervals increases. But
rectangles or trapezia may not be natural candidates to approximate a function; if
the function is smooth we can do better. Given n + 1 nodes, we can fit a polynomial
of order n that interpolates the function values at these nodes. This polynomial can
then be integrated exactly as an approximation of the true integral. This approach
is equivalent to setting the weights w such that the monomials x0, x1, . . . , xn are
integrated exactly; see Davis and Rabinowitz (2007, ch. 2) for a proof. For equidistant
nodes the resulting quadrature schemes are called Newton–Cotes rules.

Assume we wish to determine a k-point Newton–Cotes rule: we fix x1, x2, . . . , xk,
then choose the w1, w2, . . . , wk such that the resulting rule integrates the polynomials
x0 = 1, x1, . . . , xk−1 exactly on the interval [a, b]. We obtain

w1 · 1 + w2 · 1 + w3 · 1 + . . . + wk · 1 =
∫ b

a
1 dx = b − a

w1x1 + w2x2 + w3x3 + . . . + wkxk =
∫ b

a
x dx =

1

2
(b − a)2 (19)

w1x2
1 + w2x2

2 + w3x2
3 + . . . + wkx2

k =
∫ b

a
x2 dx =

1

3
(b − a)3

...

w1xk−1
1 + w2xk−1

2 + w3xk−1
3 + . . . + wkxk−1

k =
∫ b

a
xk−1 dx =

1

k
(b − a)k .

This can be rewritten conveniently as
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1 1 1 . . . 1

x1 x2 x3 . . . xk

...
...

...
. . .

...

xk−1
1 xk−1

2 xk−1
3 . . . xk−1

k



















w1

w2

...

wk










=










b − a

1
2 (b − a)2

...

1
k (b − a)k










(20)

and then solved for w. (Compare this with the rules based on Riemann sums: for
equidistant nodes, all function values were equally weighted there.) We define h =
(b − a)/m = (b − a)/(n − 1); then we have the following closed rules:

n name x w

2 trapezoidal rule a, b 1
2 h, 1

2 h

3 Simpson’s rule a, a + h, b 1
3 h, 4

3 h, 1
3 h

4 Simpson’s 3/8-rule a, a + h, a + 2h, b 3
8 h, 9

8 h, 9
8 h, 3

8 h

5 Boole’s rule a, a + h, a + 2h, a + 3h, b 14
45 h, 64

45 h, 24
45 h, 64

8 h, 14
45 h

Newton–Cotes rules of very high order are rarely used, though, since convergence is
not guaranteed for n → ∞, and Equations (20) become ever more badly conditioned as
n increases. Instead, the interval of integration is subdivided into smaller subintervals,
and to each a low-order rule is applied. Such an implementation is called a composite
(or compound) rule.

The reasoning of Equations (19) can be taken one step further by also freely choos-
ing the xi : this will leave us 2n variables, the w and the x. Choosing them such that
they integrate x0, x1, x2,. . . , x2n−1 exactly leads to Gauss rules. In principle, we could
use the approach (19), but this leads to non-linear equations that are much harder to
solve. Fortunately, nodes and weights can also be computed in alternative ways, for
instance as the zeros of certain polynomials.

Finding the nodes for Gauss rules

Let ϕ0, ϕ1, ϕ2,. . . , ϕn be a sequence of orthogonal polynomials (the subscript indicates
the order), ie,

∫ b

a
ϕi(x)ϕj(x)ω(x)dx = 0 , for all i 6= j .

Orthogonality holds with respect to a weight function ω, and for an interval [a b] .
The zeros of ϕn(x), that is, the x that satisfy ϕn(x) = 0, are the nodes of an n-point
Gauss rule for the interval [a b] . If the sequence is also normalised, so that we have

∫ b

a
ϕi(x)ϕi(x)ω(x)dx = 1 ,

we call the polynomials orthonormal. For orthogonal polynomials, the following
three-term recurrence holds:

ϕn(x) = (αnx + βn)ϕn−1(x)− γn ϕn−2(x) , n ≥ 1 . (21)
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αn, βn and γn are functions of the coefficients of the polynomials. For normalised
polynomials, γn is equal to αn/αn−1 , We can rearrange (21) to

xϕn−1(x) =
1

αn
ϕn(x) +

(

− βn

αn

)

︸ ︷︷ ︸

δn

ϕn−1(x) +
1

αn−1
ϕn−2(x) (22)

and put it into matrix notation (Wilf, 1978), where ϕn(x) ≡ 0 for n < 0:

x










ϕ0(x)
ϕ1(x)
ϕ2(x)

...
ϕn−1(x)










︸ ︷︷ ︸

Φ(x)

=











δ1
1
α1

0 0 . . . 0
1
α1

δ2
1
α2

0 . . . 0

0 1
α2

δ3
1
α3

. . . 0
...

...
...

...
. . .

...

0 0 0 0 1
αn−1

δn











︸ ︷︷ ︸

A










ϕ0(x)

ϕ1(x)
ϕ2(x)

...
ϕn−1(x)










︸ ︷︷ ︸

Φ(x)

+










0
0
...
0

1
αn

ϕn(x)










(23)

The α and δ terms relate to Equation (22). Now assume we insert x∗ into (23), and x∗

is a zero of ϕn. Then the last term in (23) vanishes, and we are left with

x∗ Φ(x∗) = AΦ(x∗) .

This equation can only hold if x∗ is an eigenvalue of A: hence the zeros of ϕn, and
thus the nodes of an n-point Gauss rule, are the eigenvalues of A. Having computed
the nodes, we could compute weights with Equations (19) and (20); but the weights
can also be obtained from the eigenvectors of A, see Wilf (1978); Golub and Welsch
(1969). More specifically, the weight corresponding to an eigenvalue/node is given by

q2
1

∫ b

a
ω(x)dx

where q1 is the first element of the eigenvector that belongs to the particular eigen-
value.

For many polynomials, the α, β and γ from Equations (21) are known, and hence
A can be set up. For instance, the Legendre polynomials Pn (used in this paper) have
weight function ω(x) ≡ 1 and are defined on the interval [−1 1]. For the normalised
polynomials we have δn = 0, and αn = (4 − 1

n2 )
0.5. In Matlab:

1 n = 6; % number of nodes

2 aux = 1./sqrt (4 -(1:(n-1)).^( -2));

3 A = diag(aux ,1)+diag(aux ,-1);

4 [V,D] = eig(A);

5 x = diag(D);

6 [x,i] = sort(x); % Matlab does not guaranty sorted eigenvalues

7 w = (2*V(1,i).^2); % Legendre: w(x)=1; integral from -1 to 1 = 2

A Gauss rule for an interval [a0 b0] can be transferred to an interval [a b] as follows
(Heath, 2005, pp. 352–353):

x′ =
(b − a)x + ab0 − ba0

b0 − a0

w′ =
b − a

b0 − a0
w
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1 % change interval of integration

2 a0 = -1; b0 = 1; % interval for Gauss rule

3 x = ((b-a)*x + a*b0-b*a0)/(b0-a0);

4 w = w * (b-a)/(b0-a0);

5 fprintf(’Gauss -Legendre with %i rectangles:\t %f\n’,m,w * Fun1(x))
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