
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Theses Department of Mathematics and Statistics

4-24-2007

The Square Root Function of a Matrix
Crystal Monterz Gordon

Follow this and additional works at: https://scholarworks.gsu.edu/math_theses

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
Gordon, Crystal Monterz, "The Square Root Function of a Matrix." Thesis, Georgia State University, 2007.
https://scholarworks.gsu.edu/math_theses/24

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71422549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


THE SQUARE ROOT FUNCTION OF A MATRIX

by

Crystal Monterz Gordon

Under the Direction of Marina Arav and Frank Hall

ABSTRACT

Having origins in the increasingly popular Matrix Theory, the square root func-

tion of a matrix has received notable attention in recent years. In this thesis, we

discuss some of the more common matrix functions and their general properties,

but we specifically explore the square root function of a matrix and the most effi-

cient method (Schur decomposition) of computing it. Calculating the square root

of a 2×2 matrix by the Cayley-Hamilton Theorem is highlighted, along with square

roots of positive semidefinite matrices and general square roots using the Jordan

Canonical Form.

Keywords: Cayley-Hamilton Theorem, Interpolatory Polynomials, Jordan Canon-

ical Form, Matrix Theory, Functions of Matrices, Positive Semidefinite

Matrices, Schur’s Theorem, Square Roots of Matrices
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1. Introduction

As stated in [1] and [19], the introduction and development of the notion of a

matrix and the subject of linear algebra followed the development of determinants.

Gottfried Leibnitz, one of the two founders of calculus, used determinants in 1693

arising from the study of coefficients of systems of linear equations. Additionally,

Cramer presented his determinant-based formula, known as Cramer’s Rule, for

solving systems of linear equations in 1750. However, the first implicit use of

matrices occurred in Lagrange’s work on bilinear forms in the late 1700’s in his

method now known as Lagrange’s multipliers. Some research indicates that the

concept of a determinant first appeared between 300 BC and AD 200, almost 2000

years before its invention by Leibnitz, in the Nine Chapters of the Mathematical

Art by Chiu Chang Suan Shu. There is no debate that in 1848 J.J. Sylvester coined

the term, “matrix”, which is the Latin word for womb, as a name for an array of

numbers. Matrix algebra was nurtured by the work of Arthur Cayley in 1855.

He studied compositions of linear transformations and was led to define matrix

multiplication, so that the matrix of coefficients for the composite transformation

AB is the product of the matrix A times the matrix B. Cayley went on to study

the algebra of these compositions including matrix inverses and is famous for the

Cayley-Hamilton theorem, which is presented later in this thesis.

In mathematics, a matrix is a rectangular table of numbers, or more generally,

a table consisting of abstract quantities. Matrices are used to describe linear equa-

tions, keep track of coefficients of linear transformations, and to record data that

depend on two parameters. Matrices can be added, multiplied, and decomposed in

various ways, which makes them a key concept in linear algebra and matrix theory,

two of the fundamental tools in mathematical disciplines. This makes intermediate

facts about matrices necessary to understand nearly every area of mathematical



2

science, including but not limited to differential equations, probability, statistics,

and optimization. Additionally, continuous research and interest in applied mathe-

matics created the need for the development of courses devoted entirely to another

key concept, the functions of matrices.

In this thesis, we provide a detailed overview of the basic functions of matrices

while focusing on the square root function of a matrix and a few of the most common

computational methods. We discuss the specific case of a square root of a 2 × 2

matrix before outlining results on square roots of positive semidefinite matrices and

general square roots.

Although the theory of matrix square roots is rather complicated, simplifica-

tion occurs for certain classes of matrices. Consider, for example, symmetric pos-

itive semi(definite) matrices. Any such matrix has a unique symmetric positive

semi(definite) square root, and this root finds use in the theory of the generalized

eigenproblem [16] (section 15-10), and preconditioned methods [4, 10]. More gener-

ally, any matrix A having no nonpositive real eigenvalues has a unique square root,

for which every eigenvalue has a positive real part, and it is this square root, de-

noted A
1
2 and sometimes called the principal square root, that is usually of interest

(e.g. the application in boundary value problems, [17]).

There is a vast amount of references available focusing on the square root func-

tion of a matrix, many of which are listed in the References section. While some

of the references were used explicitly, all provided insight and assistance in the

completion of this thesis.

We begin now by defining key terms used throughout this thesis for clarity and

cohesiveness.

Definitions

As in [8] and [9], we let Mn denote the set of all n × n complex matrices. We

note that some authors use the notation Cn×n. Now let A ∈ Mn. Then a nonzero
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vector x ∈ Cn is said to be an eigenvector of A corresponding to the eigenvalue λ,

if

Ax = λx.

The set containing all of the eigenvalues of A is called the spectrum of A and is

denoted, σ(A).

Let A,B ∈Mn. Then B is a square root of A, if B2 = A.

A matrix D = [dij] ∈Mn is called a diagonal matrix, if dij = 0 whenever i 6= j.

Let A,B ∈Mn. Then A is similar to B, denoted A ∼ B, if there is a nonsingular

matrix S such that S−1AS = B. If A ∼ B, then they have the same characteristic

polynomial and therefore the same eigenvalues with the same multiplicities.

Let A ∈Mn. Then A is diagonalizable, if A is similar to a diagonal matrix.

A matrix U ∈Mn is said to be unitary, if U∗U = I.

A matrix A ∈ Mn is said to be unitarily equivalent or unitarily similar to

B ∈ Mn, if there is an unitary matrix U ∈ Mn such that U∗AU = B. If U may

be taken to be real (and therefore real orthogonal), then A is said to be (real)

orthogonally equivalent to B.

If a matrix A ∈Mn is unitarily equivalent to a diagonal matrix, A is said to be

unitarily diagonalizable.

Let A ∈ Mn. Then A is Hermitian, if A∗ = A, where A∗ = ĀT = [āji]. If

A ∈Mn is Hermitian, then the following statements hold:

(a) All eigenvalues of A are real; and

(b) A is unitarily diagonalizable.
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The minimal polynomial of A, denoted m(t), is the monic annihilating polyno-

mial of the least possible degree.

An n× n matrix A is called upper triangular, if aij = 0 for i > j, i.e. all of the

entries below the main diagonal are zero.

An n × n matrix A is called lower triangular, if aij = 0 for i < j, i.e. all of the

entries above the main diagonal are zero.

The functions of matrices appear widely in many areas of linear algebra and are

linked to numerous applications in both science and engineering. While the most

common matrix function is the matrix inverse (usually mentioned with terms: in-

vertible or nonsingular), other general matrix functions are the matrix square root,

the trigonometric, the exponential and the logarithmic functions. The following are

the definitions of the matrix functions mentioned above.

Examples of General Matrix Functions

A matrix A is invertible or nonsingular, if there exists a unique inverse denoted

by A−1, where A−1A = I and AA−1 = I and I is the identity matrix.

Let p(t) = akt
k + · · · + a1t+ a0 be a polynomial. Then, by definition,

p(A) = akA
k + · · · + a1A+ a0I.

The exponential of A ∈Mn, denoted eA or exp(A), is defined by

eA = I +A+
A2

2!
+ · · · + Ak

k!
+ · · · .

Let A ∈Mn. Any X such that eX = A is a logarithm of A.

The sine and cosine of A ∈Mn are defined by

cos(A) = I − A2

2!
+ · · · + (−1)k

(2k)!
A2k + · · · ,

sin(A) = A− A3

3!
+ · · · + (−1)k

(2k + 1)!
A2k+1 + · · · .
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2. Functions of Matrices

We provide a detailed overview of the basic ideas of functions of matrices to aid

the reader in the understanding of the “connectivity” of the fundamental principles

(many of which are defined in the introduction) of matrix theory.

One can easily show that if Ax = λx and p(t) is a polynomial, then p(A)x =

p(λ)x, so that if x is an eigenvector of A corresponding to λ, then x is an eigenvector

of p(A) corresponding to the eigenvalue p(λ). We will shortly obtain an even

stronger result.

Perhaps the most fundamentally useful fact of elementary matrix theory is that

any matrix A ∈ Mn is unitarily equivalent to an upper triangular (also to a lower

triangular) matrix T . Representing the simplest form achievable under unitary

equivalence, we now recall one of the most useful theorems in all of matrix theory,

Schur’s Theorem.

Schur’s Theorem: If A ∈Mn, then A is unitarily triangularizable, that is, there

exists a unitary matrix U and an upper-triangular matrix T such that U∗AU = T .

Through the use of Schur’s Theorem, one can prove that if A ∈Mn with σ(A) =

{λ1, . . . , λn} and p(t) is a polynomial, then

σ(p(A)) = {p(λ1), . . . , p(λn)}.

The proof goes as follows: U∗p(A)U = p(U∗AU) = p(T ), which is upper-

triangular with p(λ1), . . . , p(λn) on the diagonal. The proof follows from the simi-

larity of p(A) and p(T ).

We now shift our focus from polynomials to general functions.

Let A ∈Mn and suppose that λ1, λ2,..., λs are the distinct eigenvalues of A, so

that

m(t) = (t− λ1)
m1(t− λ2)

m2 · · · (t− λs)
ms
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is the minimal polynomial of A with degree m = m1 + m2 +. . .+ ms. Then mk

is the index of the eigenvalue λk, i.e. it is the size of the largest Jordan block

associated with λk and is equal to the maximal degree of the elementary divisors

associated with λk (1 ≤ k ≤ s).

Now, a function f(t) is defined on the spectrum of A, if the numbers

f(λk), f
′(λk), . . . , f

(mk−1)(λk), k = 1, 2, ..., s,

are defined (exist). These numbers are called the values of f (t) on the spectrum of

A, where if mk = 1, f (mk−1) is f (0) or simply f .

Many of the succeeding results can be found in [12], but we will provide more

details here.

Proposition 2.1: Every polynomial is defined on the spectrum of any matrix

in Mn. For the polynomial m(t), the values of

m(λk),m
′(λk), ...,m

(mk−1)(λk), k = 1, 2, . . . , s,

are all zero.

Proof: The first statement is clear. Next, each m(λk) = 0. So,

m′(t) = (t−λ1)
m1

d

dt
[(t−λ2)

m2 · · · (t−λs)
ms]+[(t−λ2)

m2 · · · (t−λs)
ms]·m1(t−λ1)

m1−1.

Therefore,

m′(λ1) = 0 · d
dt

[(t−λ2)
m2 · · · (t−λs)

ms]+ [(t−λ2)
m2 · · · (t−λs)

ms] ·0 = 0, if m1 > 1.

Similarly, for the other λk and the higher order derivatives.

Proposition 2.2: For the two polynomials p1(t) and p2(t), p1(A) = p2(A) if

and only if p1(t) and p2(t) have the same values on the spectrum of A.
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Proof: ⇒ Suppose p1(A) = p2(A). Let p0(t) = p1(t) - p2(t). Then, p0(A) = 0.

So, m(t) is a factor of p0(t), i.e. p0(t) = q(t)m(t) for some polynomial q(t). Now,

each term of p
(j)
0 (t) is a product, which involves one of the terms:

m(t),m′(t), ...,m(j)(t).

Hence, by Proposition 2.1,

p
(j)
1 (λk) − p

(j)
2 (λk) = p

(j)
0 (λk) = 0,

for j = 0, 1, ...,mk − 1, and 1 ≤ k ≤ s. So, p
(j)
1 (λk) = p

(j)
2 (λk) for the values of j

and k.

⇐ We assume that p1(t) and p2(t) have the same values on the spectrum of A.

Let p0(t) = p1(t)− p2(t), then

p
(j)
0 (λk) = 0 for j = 0, 1, 2, ...,mk − 1.

So, λk is a zero of p0(t) with multiplicity of at least mk, i.e. (t− λk)
mk is a factor

of p0(t). Hence, m(t) is a factor of p0(t), where p0(t) = q(t)m(t) and therefore,

p0(A) = 0. Thus, p1(A) = p2(A).

Proposition 2.3 (Interpolatory Polynomial): Given distinct numbers

λ1, λ2, . . . , λs, positive integers m1,m2, . . . ,ms with m =

s∑

k=1

mk, and a set of

numbers

fk,0, fk,1, . . . , fk,mk−1, k = 1, 2, . . . , s,

there exists a polynomial p(t) of degree less than m such that

p(λk) = fk,0, p(1)(λk) = fk,1, . . . , p(mk−1)(λk) = fk,mk−1 for k = 1, 2, . . . , s. (1)

Proof: It is easily seen that the polynomial pk(t) = αk(t)ψk(t) (note: if s = 1,

then by definition ψ1(t) ≡ 1), where 1 ≤ k ≤ s and

αk(t) = αk,0 + αk,1(t− λk) + · · · + αk,mk−1(t− λk)
mk−1,
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ψk(t) =
s∏

j=1,j 6=k

(t− λj)
mj ,

has degree less than m and satisfies the conditions

pk(λi) = p
(1)
k (λi) = · · · = p

(mi−1)
k (λi) = 0

for i 6= k and arbitrary αk,0, αk,1, · · · , αk,mk−1. Hence, the polynomial

p(t) = p1(t) + p2(t) + · · · + ps(t) (2)

satisfies conditions (1) if and only if

pk(λk) = fk,0, p
(1)
k (λk) = fk,1, . . . , p

(mk−1)
k (λk) = fk,mk−1 for each 1 ≤ k ≤ s. (3)

By differentiation,

p
(j)
k (λk) =

j∑

i=0

(
j

i

)
α

(i)
k (λk)ψ

(j−i)
k (λk)

for 1 ≤ k ≤ s, 0 ≤ j ≤ mk − 1. Using Eqs.(3) and recalling the definition of αk(λ),

we have for k = 1, 2, . . . , s, j = 0, 1, . . . ,mk − 1,

fk,j =

j∑

i=0

(
j

i

)
i!αk,iψ

(j−i)
k (λk). (4)

Since ψk(λk) 6= 0 for each fixed k, Eqs. (4) can now be solved successively (beginning

with j = 0) to find the coefficients αk,0, . . . , αk,mk−1 for which (3) holds. Thus, a

polynomial p(t) of the form given in (2) satisfies the required conditions.

The interpolatory polynomial referred to in Proposition 2.3 is known as the Her-

mite interpolating polynomial. It is in fact unique, but the proof of the uniqueness

is omitted, since it is quite cumbersome. If f(t) is defined on the spectrum of A,

we define f(A) to be p(A), where p(t) is the interpolating polynomial for f(t) on

the spectrum of A.

Theorem 2.4: If A ∈Mn is a block-diagonal matrix,

A = diag[A1, A2, ..., At],
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and the function f(t) is defined on the spectrum of A, then

f(A) = diag[f(A1), f(A2), ..., f(At)]. (5)

Proof: It is clear that for any polynomial q(t),

q(A) = diag[q(A1), q(A2), ..., q(At)].

Hence, if p(t) is the interpolatory polynomial for f(t) on the spectrum of A, we

have

f(A) = p(A) = diag[p(A1), p(A2), ..., p(At)].

Since the spectrum of Aj (1 ≤ j ≤ t) is obviously a subset of the spectrum of A,

the function f(t) is defined on the spectrum of Aj for each j = 1, 2, ..., t. (Note also

that the index of an eigenvalue of Aj cannot exceed the index of the same eigenvalue

of A.) Furthermore, since f(t) and p(t) assume the same values on the spectrum

of A, they must also have the same values on the spectrum of Aj (j = 1, 2, ..., t).

Hence,

f(Aj) = p(Aj)

and we obtain Eq. (5).

Theorem 2.5: If A,B, S ∈ Mn, where B = SAS−1, and f(t) is defined on the

spectrum of A, then

f(B) = Sf(A)S−1. (6)

Proof: Since A and B are similar, they have the same minimal polynomial.

Thus, if p(t) is the interpolatory polynomial for f(t) on the spectrum of A, then it

is also the interpolatory polynomial for f(t) on the spectrum of B. Thus, we have

f(A) = p(A),

f(B) = p(B),
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p(B) = Sp(A)S−1,

so the relation (6) follows.

Theorem 2.6: Let A ∈ Mn and let J = diag[Jj ]
t
j=1 be the Jordan canonical

form of A, where A = SJS−1 and Jj is the jth Jordan block of J. Then

f(A) = S diag[f(J1), f(J2), ..., f(Jt)]S
−1. (7)

The last step in computing f(A) by use of the Jordan form of A consists of the

following formula.

Theorem 2.7: Let J0 be a Jordan block of size l associated with λ0:

J0 =




λ0 1

λ0
. . .
. . . 1

λ0


 .

If f(t) is an (l− 1)-times differentiable function in a neighborhood of λ0, then

f(J0) =




f(λ0)
1
1!
f ′(λ0) . . . 1

(l−1)!
f (l−1)(λ0)

0 f(λ0)
. . .

...
...

. . .
. . . 1

1!
f ′(λ0)

0 . . . 0 f(λ0)



. (8)

Proof: The minimal polynomial of J0 is (t − λ0)
l and the values of f(t) on

the spectrum of J0 are therefore f(λ0), f
′(λ0),. . . ,f

(l−1)(λ0). The interpolatory

polynomial p(t), defined by the values of f(t) on the spectrum {λ0} of J0, is found

by putting s = 1,mk = 1, λ1 = λ0, and ψ1(t) ≡ 1. One obtains

p(t) =
l−1∑

i=0

1

i!
f (i)(λ0)(t− λ0)

i.

The fact that the polynomial p(t) solves the interpolation problem p(j)(λ0) =

f (j)(λ0), 1 ≤ j ≤ l − 1, can also be easily checked by a straightforward calcula-

tion.
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We then have f(J0) = p(J0) and hence

f(J0) =
l−1∑

i=0

1

i!
f (i)(λ0)(J0 − λ0I)

i.

Computing the powers of J0 − λ0I, we obtain

(J0 − λ0I)
i =




0 1

0
. . .
. . . 1

0




i

=




0 . . . 0 1 0 . . . 0
. . .

...
. . . 0
. . . 1

0
...
0




with 1’s in the i-th super-diagonal positions, and zeros elsewhere, and Eq.(8) follows.

Thus, given a Jordan decomposition of the matrix A, the matrix f(A) is easily

found by combining Theorems 2.6 and 2.7.

From Theorems 2.6 and 2.7, we have the following results.

Theorem 2.8: Using the notation of Theorem 2.6,

f(A) = S diag[f(J1), f(J2), ..., f(Jt)]S
−1,

where f(Ji) (i = 1, 2, ..., t) are upper triangular matrices of the form given in Eq.(8).

Theorem 2.9: If λ1, λ2, ..., λn are the eigenvalues of the matrixA ∈Mn and f(t)

is defined on the spectrum ofA, then the eigenvalues of f(A) are f(λ1), f(λ2), ..., f(λn).

This follows from the fact that the eigenvalues of an upper triangular matrix

are its diagonal entries.
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3. The Square Root of a 2 × 2 Matrix

If A,B ∈ Mn and A is similar to B, then A has a square root if and only if B

has a square root. The standard method for computing a square root of an n× n

diagonalizable matrix A is easily stated. Suppose

S−1AS = D

for some nonsingular matrix S and diagonal matrix D. Then

A = SDS−1,

and by substitution we have

A = (SD̂S−1)(SD̂S−1) = SDS−1,

where D̂ is a square root of D. In general, the matrix D will have 2n distinct

square roots (when A has n nonzero eigenvalues, which are obtained by taking the

square roots of the diagonal elements of D with all possible sign choices). If D1/2

is any square root of D, it follows that B = SD1/2S−1 is a square root of A, that

is B2 = A. However, even in some 2 × 2 cases, the computations can become quite

messy.

Not every 2 × 2 matrix has a square root. For example, by direct calculation,

we can show that [
0 1
0 0

]

has no square root. On the other hand, if b ∈ C,

[
b b

−b −b

]

gives an infinite number of square roots of

[
0 0
0 0

]
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and if b 6= 1,

1

b− 1

[
b 1
1 1

] [
−1 0

0 1

] [
1 −1

−1 b

]
=

1

b− 1

[
−b− 1 2b
−2 b+ 1

]

yields an infinite number of square roots of

[
1 0
0 1

]
.

We next recall another useful theorem in matrix analysis, the Cayley-Hamilton

Theorem.

Cayley-Hamilton Theorem: If A ∈Mn and pA(t) = det(tI −A) is the char-

acteristic polynomial of A, then pA(A) = 0.

In [15] and [18], the authors show how the Cayley-Hamilton Theorem may be

used to determine explicit formulae for all the square roots of 2×2 matrices. These

formulae indicate exactly when a 2× 2 matrix has square roots, and the number of

such roots. Suppose A is 2 × 2 and

X2 = A. (9)

However, for each 2 × 2 matrtix X, the Cayley-Hamilton Theorem states that

X2 − (trX)X + (detX)I = 0. (10)

Thus, if a 2 × 2 matrix A has a square root X, then we may use (10) to eliminate

X2 from (9) to obtain

tr(X)X = A + (detX)I.

Now, since (detX)2 = detX2 = detA, then

detX = ε1
√

detA, ε1 = ±1,

that is det
√
A = ε1

√
detA, so that the above result simplifies to the identity:

(trX)X = A + ε1
√

det AI, ε1 = ±1. (11)
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Case 1: A is a scalar matrix. If A is a scalar matrix, A = aI, then (11) gives

(trX)X = (1 + ε1)aI, ε1 = ±1.

Hence, either (trX)X = 0, or (trX)X = 2aI. The first of these possibilities deter-

mines the general solution of (9) as

X =

(
α β
γ −α

)
, α2 + βγ = a, (12)

and it covers the second possibility, if a = 0. On the other hand, if a 6= 0, then

the second possibility, (trX)X = 2aI, implies X is scalar and has only one pair of

solutions

X = ±
√
aI. (13)

For this case, we conclude that if A is a zero matrix, then it has a double-infinity of

square roots as given by (12) with a = 0, whereas if A is a nonzero, scalar matrix,

then it has a double-infinity of square roots plus two scalar square roots as given

by (12) and (13).

Case 2: A is not a scalar matrix. If A is not a scalar matrix, then trX 6= 0 in

(11). Consequently, every square root X has the form:

X = τ−1(A+ ε1
√

detAI), τ 6= 0.

Substituting this expression for X into (9) and using the Cayley-Hamilton theorem

for A, we find

A2 + (2 ε1
√

detA− τ 2)A+ (detA)I = 0

((trA)A− (detA)I) + (2 ε1
√

detA − τ 2)A + (detA)I = 0

(trA+ 2 ε1
√

detA− τ 2)A = 0.

Since A is not a scalar matrix, then A is not a zero matrix, so

τ 2 = trA+ 2 ε1
√

detA, (τ 6= 0, ε1 = ±1). (14)
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If (trA)2 6= 4detA, then both values of ε1 may be used in (14) without reducing τ

to zero. Consequently, it follows from (11) that we may write X, the square root

of A, as

X = ε2
A+ ε1

√
detAI√

trA+ 2 ε1
√

detA
. (15)

Here each εi = ±1, and if detA 6= 0, the result determines exactly four square roots

for A. However, if detA = 0, then the result (15) determines two square roots for

A as given by

X = ± 1√
trA

A. (16)

Alternatively, if (trA)2 = 4detA 6= 0, then one value of ε1 in (14) reduces τ to zero,

whereas the other value yields the results 2ε1
√

detA = trA and τ 2 = 2 trA. In this

case, A has exactly two square roots given by

X = ± 1√
2 trA

(A+
1

2
(trA)I). (17)

Finally, if (trA)2 = 4det A = 0, then both values of ε1 reduce τ to zero in (14).

Hence it follows by contradiction that A has no square roots.

For this case, we conclude that a nonscalar matrix, A, has square roots, if and

only if, at least one of the numbers, trA and detA, is nonzero. Then the matrix

has four square roots given by (15), if

(trA)2 6= 4det A, detA 6= 0

and two square roots given by (16) or (17), if

(trA)2 6= 4detA, detA = 0 or (trA)2 = 4det A, detA 6= 0.

It is worth noting from (15) that

tr X = tr
√

A = ε2

√
trA + 2 ε1

√
detA.
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Hence using the identity, det
√
A = ε1

√
detA as applied in (11), result (15) may

be rewritten as
√
A =

1

tr
√
A

(A+ det
√
AI),

which is equivalent to the Cayley-Hamilton Theorem for the matrix
√
A. This same

deduction can be made, of course, for all other cases under which
√
A exists.

In [2], the author is concerned with the determination of algebraic formulas

yielding all of the solutions of the matrix equation Bn = A, where n is a positive

integer greater than 2 and A is a 2 × 2 matrix with real or complex elements. If

A is a 2 × 2 scalar matrix, the equation Bn = A has infinitely many solutions,

and one can obtain the explicit formulas giving all of the solutions. If A is a non-

scalar matrix, the equation Bn = A has only a finite number of solutions. While

the author’s concern is beyond the scope of this thesis, it outlines a process for

obtaining other roots with expressed preciseness.
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4. Positive Semidefinite Matrices

By definition, an n× n Hermitian matrix A is called positive semidefinite, if

x∗Ax ≥ 0 for all nonzero x ∈ Cn.

Theorem 4.1: A Hermitian matrix A ∈ Mn is positive semidefinite if and only

if all of its eigenvalues are nonnegative.

Proof: Since A is Hermitian, there exists a unitary matrix U and a diagonal

matrix D such that U∗AU = D. Then

x∗Ax = x∗UDU∗x = y∗Dy =
n∑

i=1

diȳiyi =
n∑

i=1

di|yi|2,

where U∗x = y.

⇒ Let the Hermitian matrix A ∈ Mn be positive semidefinite. Then, from the

above,
n∑

i=1

di|yi|2 ≥ 0, for all y ∈ Cn.

Letting y = ei, then y∗Dy = di. Hence, all of the eigenvalues of A are nonnegative.

⇐ Let A ∈Mn be a Hermitian matrix and suppose that all λi(A) ≥ 0. Then

n∑

i=1

di|yi|2 ≥ 0

and hence, x∗Ax ≥ 0 for all x ∈ Cn.

Corollary 4.2: If A ∈ Mn is positive semidefinite, then so are all the powers

Ak, k = 1, 2, 3, ....

Proof: If the eigenvalues of A are λ1, λ2,. . . , λn, then the eigenvalues of Ak are

λ1
k, λ2

k,. . . , λn
k.
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A positive semidefinite matrix can have more than one square root. However,

it can only have one positive semidefinite matrix square root. The proof of the

following result is adapted from [8].

Theorem 4.3: Let A ∈ Mn be positive semidefinite and let k ≥1 be a given

integer. Then there exists a unique positive semidefinite Hermitian matrix B such

that Bk = A. We also have

(a) BA = AB and there is a polynomial p(t) such that B = p(A);

(b) rank B = rank A, so B is a positive definite if A is; and

(c) B is real if A is real.

Proof: We know that the Hermitian matrix A can be unitarily diagonalized as

A = UDU∗ with D = diag(λ1, λ2, ...., λn) and all λi ≥ 0. We define B = UD
1
kU∗,

whereD1/k ≡ diag(λ
1/k
1 , λ

1/k
2 , ..., λ

1/k
n ), and the unique nonnegative kth root is taken

in each case. Clearly, Bk = A and B is Hermitian and positive semidefinite. Also,

AB = UDU∗UD
1
kU∗ = UDD

1
kU∗ = UD

1
kDU∗ = UD

1
kU∗UDU∗ = BA, and B

is positive semidefinite because all λi (and hence their kth roots) are nonnegative.

The rank of B is just the number of nonzero λi terms, which is also the rank of A.

If A is real and positive semidefinite, then we know that U may be chosen to be a

real orthogonal matrix, so it is clear that B can be chosen to be real in this case.

It remains only to consider the question of uniqueness.

Notice first that there is a polynomial p(t) such that p(A) = B; we need only

choose p(t) the Lagrange interpolating poynomial for the set {(λ1, λ
1
k
1 ), . . . , (λn, λ

1
k
n )}

to get p(D) = D
1
k and p(A) = p(UDU∗) = Up(D)U∗ = UD

1
kU∗ = B. But

then if C is any positive semidefinite Hermitian matrix such that Ck = A, we

have B = p(A) = p(Ck) so that CB = Cp(Ck) = p(Ck)C = BC. Since B

and C are commuting Hermitian matrices, they may be simultaneously unitarily
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diagonalized; that is, there is some unitary matrix V and diagonal matrices D1 and

D2 with nonnegative diagonal entries such that B = V D1V
∗ and C = V D2V

∗.

Then from the fact that Bk = A = Ck we deduce that Dk
1 = Dk

2 . But since

the nonnegative kth root of a nonnegative number is unique, we conclude that

(Dk
1)

1
k = D1 = D2 = (Dk

2)
1
k and B = C.

The most useful case of the preceding theorem is for k = 2. The unique positive

(semi)definite square root of the positive (semi)definite matrix A is usually denoted

by A
1
2 . Similarly, A

1
k denotes the unique positive (semi)definite kth root of A for

each k = 1, 2, . . ..

An n× n Hermitian matrix A is called positive definite, if

x∗Ax > 0 for all nonzero x ∈ Cn.

If A is a real symmetric positive definite matrix, then A can be factored into a

product LDLT , where L is a lower triangular matrix with 1’s along the diagonal

and D is a diagonal matrix, whose diagonal entries are all positive. Then A =

(LD
1
2 )(D

1
2LT ), which is the Cholesky Decomposition of A. It is worth noting that

many applications can be recast to use a Cholesky Decomposition instead of the

square root. The Cholesky Decomposition becomes referred to as a square root

decomposition and has many applications such as in multiwavelet representations,

predictive control, and square-root filters.
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5. General Square Roots

Our main tool in this chapter is the Jordan Canonical Form.

Theorem 5.1 (Jordan Form Theorem): Let A ∈Mn. Then there is a non-

singular matrix S such that S−1AS = J is a direct sum of Jordan blocks. Further-

more, J is unique up to a permutation of the Jordan blocks.

Let A = SJS−1 be the Jordan canonical form of the given matrix A, so that if

X2 = A = SJS−1, then S−1X2S = (S−1XS)2 = J . It suffices, therefore, to solve

the equationX2 = J . But if X is such that the Jordan canonical form of X2 is equal

to J , then there is some nonsingular T such that J = TX2T−1 = (TXT−1)2. Thus,

it suffices to find an X such that the Jordan canonical form ofX2 is equal to J . If the

Jordan canonical form of X itself is JX , then the Jordan canonical form of X2 is the

same as that of (JX)2, so it suffices to find a Jordan matrix JX such that the Jordan

canonical form of (JX)2 is equal to J . Finally, if JX = Jm1(µ1)⊕· · ·⊕Jmr(µr), then

the Jordan canonical form of (JX)2 is the same as the direct sum of the Jordan

canonical forms of Jmi(µi)
2, i = 1, . . . , r. Thus, to solve X2 = A, it suffices to

consider only whether there are choices of scalars µ and positive intergers m such

that the given Jordan canonical form J is the direct sum of the Jordan canonical

forms of matrices of the form Jm(λ)2. If µ 6= 0, we know that the Jordan canonical

form of Jm(µ)2 is Jm(µ2), so every nonsingular Jordan block Jk(λ) has a square

root; in fact, it has square roots that lie in two distinct similarity classes with

Jordan canonical forms Jk(±
√
λ). If necessary, these square roots of Jordan blocks

can be computed explicitly.

Thus, every nonsingular matrix A ∈ Mn has a square root, and it has square

roots in at least 2µ different similarity classes, if A has µ distinct eigenvalues. It has

square roots in at most 2ν different similarity classes, if the Jordan canonical form
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of A is the direct sum of ν Jordan blocks; there are exactly 2ν similarity classes, if

all the Jordan blocks with the same eigenvalue have different sizes, but there are

fewer than 2ν , if two or more blocks of the same size have the same eigenvalue, since

permuting blocks does not change the similarity class of a Jordan canonical form.

Some of these nonsimilar square roots may not be “functions” of A, however. If

each of the ν blocks has a different eigenvalue (i.e.,A is nonderogatory), a Lagrange-

Hermite interpolation polynomial can always be used to express any square root

of A as a polynomial in A. If the same eigenvalue λ occurs in two or more blocks,

however, polynomial interpolation is possible only if the same choice is made for

λ
1
2 for all of them; if different choices are made in this case, one obtains a square

root of A that is not a “function” of A in the sense that it cannot be obtained as

a polynomial in A, and therefore cannot be a primary matrix function f(A) with a

single-valued function f(·).

What happens if A is singular? Since each nonsingular Jordan block of A has a

square root, it suffices to consider the direct sum of all the singular Jordan blocks

of A. If A has a square root, then this direct sum is the Jordan canonical form of

the square of a direct sum of singular Jordan blocks. Which direct sums of singular

Jordan blocks can arise in this way?

Let k > 1. We know that the Jordan canonical form of Jk(0)
2 consists of exactly

two Jordan blocks Jk/2(0) ⊕ Jk/2(0) if k > 1 is even, and it consists of exactly two

Jordan blocks J(k+1)/2(0) ⊕ J(k−1)/2(0) if k > 1 is odd.

If k = 1, J1(0)
2 = [0] is a 1-by-1 block, and this is the only Jordan block that is

similar to the square of a singular Jordan block.

Putting together this information, we can determine whether or not a given

singular Jordan matrix J has a square root as follows: Arrange the diagonal blocks
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of J by decreasing size, so J = Jk1(0) ⊕ Jk2(0) ⊕ · · · ⊕ Jkp(0) with k1 ≥ k2 ≥

k3 ≥ · · · ≥ kp ≥ 1. Consider the differences in sizes of successive pairs of blocks:

∆1 = k1−k2,∆3 = k3−k4,∆5 = k5−k6, etc., and suppose J is the Jordan canonical

form of the square of a singular Jordan matrix J̃ . We have seen that ∆1 = 0 or 1

because either k1 = 1 [in which case J1(0) ⊕ J1(0) corresponds to (J1(0) ⊕ J1(0))
2

or to J2(0)
2] or k1 > 1 and Jk1(0) ⊕ Jk2(0) corresponds to the square of the largest

Jordan block in J̃ , which has size k1+k2. The same reasoning shows that ∆3,∆5, . . .

must all have the value 0 or 1 and an acceptable square root corresponding to the

pair Jki(0)⊕Jki+1(0) is Jki+ki+1(0), i = 1, 3, 5, . . .. If p (the total number of singular

Jordan blocks in J) is odd, then the last block Jkp(0) is left unpaired in this process

and must therefore have size 1 since it must be the square of a singular Jordan

block. Conversely, if the successive differences (and kp, if p is odd) satisfy these

conditions, then the pairing process described constructs a square root for J .

Suppose A ∈ Mn is singular and suppose there is a polynomial r(t) such that

B = r(A) is a square root of A. Then r(0) = 0, r(t) = tg(t) for some polynomial

g(t), and A = B2 = A2g(A)2, which is clearly impossible if rank A2 < rank A.

Thus, rank A = rank A2 in this case, which means that every singular Jordan

block of A is 1-by-1. Conversely, if A is singular and has minimal polynomial

qA(t) = t(t− λ1)
r1 · · · (t− λµ)rµ with distinct nonzero λ1, . . . , λµ and all ri ≥ 1, let

g(t) be a polynomial that interpolates the function f(t) = 1/
√
t and its derivatives

at the (necessarily nonzero) roots of the polynomial qA(t)/t = 0, and let r(t) ≡ tg(t).

For each nonsingular Jordan block Jni(λi) of A, g(Jni(λi)) = [Jni(λi)]
− 1

2 and hence,

we have r(Jni(λi)) = Jni(λi)[Jni(λi)]
− 1

2 = Jni(λi)
1
2 . Since all the singular Jordan

blocks of A are 1-by-1 and r(0) = 0, we conclude that r(A) is a square root of

A. Thus, a given singular A ∈ Mn has a square root that is a polynomial in A if

and only if rank A = rank A2. Since this latter condition is trivially satisfied if A

is nonsingular (in which case we already know that A has a square root that is a
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polynomial in A), we conclude that a given A ∈ Mn has a square root that is a

polynomial in A if and only if rank A = rank A2.

If we agree that a “square root” of a matrix A ∈ Mn is any matrix B ∈ Mn

such that B2 = A, we can summarize what we have learned about the solutions of

the equation X2 −A = 0 in Theorem 5.2.

Theorem 5.2: Let A ∈Mn be given.

(a) If A is nonsingular and has µ distinct eigenvalues and ν Jordan blocks in its

Jordan canonical form, it has at least 2µ and at most 2ν nonsimilar square roots.

Furthermore, at least one of its square roots can be expressed as a polynomial in

A.

(b) If A is singular and has Jordan canonical form A = SJS−1, let Jk1(0) ⊕

Jk2(0)⊕· · ·⊕Jkp(0) be the singular part of J with the blocks arranged in decreasing

order of size: k1 ≥ k2 ≥ · · · ≥ kp ≥ 1. Define ∆1 = k1 − k2,∆3 = k3 − k4, . . .. Then

A has a square root if and only if ∆i = 0 or 1 for i = 1, 3, 5, . . . and, if p is odd,

kp =1. Furthermore, A has a square root that is a polynomial in A if and only if

k1 = 1, a condition that is equivalent to requiring that rank A = rank A2.

(c) If A has a square root, its set of square roots lies in finitely many different

similarity classes.

Since the sizes and numbers of the Jordan blocks Jk(λ) of a matrix A can be

inferred from the sequence of ranks of the powers (A − λI)k, k = 1, 2, . . ., the

necessary and sufficient condition on the sizes of the singular Jordan blocks of A

in part (b) of the preceding theorem can be restated in terms of ranks of powers.

Let A ∈ Mn be a given singular matrix, and let r0 = n, rk = rank Ak for k =

1, 2, . . . . The sequence r0, r1, r2, . . . is decreasing and eventually becomes constant.

If rk1−1 > rk1 = rk1+1 = . . ., then the largest singular Jordan block in A has size k1,

which is the index of the matrix with respect to the eigenvalue λ = 0. The difference
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rk1−1 − rk1 is the number of singular Jordan blocks of size k1. If this number is

even, the blocks of size k1 can all be paired together in forming a square root. If

this number is odd, then one block is left over after the blocks are paired and A

can have a square root only if either k1 = 1 (so that no further pairing is required),

or there is at least one singular Jordan block of size k1 − 1 available to be paired

with it; this is the case only if rk1−2 − rk1−1 > rk1−1 − rk1, since rk1−2 − rk1−1 equals

the total number of singular Jordan blocks of sizes k1 and k1 − 1. This reasoning is

easily continued backward through the sequence of ranks rk. If all the differences

ri − ri+1 are even, i = k1 − 1, k1 − 3, . . ., then A has a square root. If any difference

ri − ri+1 is odd, then ri−1 − ri must have a larger value, if A is to have a square

root. Since r0 − r1 is the total number of singular Jordan blocks of all sizes, if

r0 − r1 is odd, we must also require that there be at least one block of size 1, that

is, 1 ≤ (# of singular blocks of all sizes ≥ 1)− (# of singular blocks of all sizes ≥

2) = (r0 − r1)− (r1 − r2) = r0 − 2r1 + r2. Notice that rk ≡ n, if A is nonsingular, so

all the successive differences ri − ri+1 are zero and A trivially satisfies the criteria

for a square root in this case.

This theorem largely results from [3] but is presented more clearly in [9].

Corollary 5.3: Let A ∈Mn and let r0 = n, rk = rank Ak for k = 1, 2, . . . . Then

A has a square root if and only if the sequence

{rk − rk+1}, k = 0, 1, 2, . . .

does not contain two successive occurrences of the same odd integer and, if r0 − r1

is odd, r0 − 2r1 + r2 ≥ 1.

As mentioned in chapter 3, we can use direct calculation to show that there is

no matrix

B =

[
a b
c d

]
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such that

B2 = A =

[
0 1
0 0

]
.

We can also use the criteria in Theorem 5.2 and Corollary 5.3 given by [9] to show

that no such matrix B exist.

Although we now know exactly when a given complex matrix has a complex

square root, one sometimes needs to answer a slightly different question: When does

a given real matrix A ∈ Mn(R) have a real square root? The equivalent criteria

in Theorems 5.2 and Corollary 5.3 are still necessary, of course, but they do not

guarantee that any of the possible square roots are real. The crucial observation

needed here is that if one looks at the Jordan canonical form of a real matrix,

then the Jordan blocks with nonreal eigenvalues occur only in conjugate pairs, i.e.,

there is an even number of Jordan blocks of each size for each nonreal eigenvalue.

Moreover, a given complex matrix is similar to a real matrix if and only if the

nonreal blocks in its Jordan canonical form occur in conjugate pairs.

If there is some B ∈ Mn such that B2 = A, then any Jordan block of A with

a negative eigenvalue corresponds to a Jordan block of B of the same size with

a purely imaginary eigenvalue. If B is real, such blocks must occur in conjugate

pairs, which means that the Jordan blocks of A with negative eigenvalues must also

occur in pairs, just like the nonreal blocks of A.

Conversely, let J be the Jordan canonical form of the real matrix A ∈ Mn(R),

suppose all of the Jordan blocks in J with negative eigenvalues occur in pairs,

and suppose A satisfies the rank conditions in Corollary 5.3. Form a square root

for J using the process leading to Theorem 5.2 for the singular blocks, and using

the primary-function method (found in [9]) for each individual nonsingular Jordan

block, but be careful to choose conjugate values for the square root for the two

members of each pair of blocks with nonreal or negative eigenvalues; blocks or
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groups of blocks with nonnegative eigenvalues necessarily have real square roots.

Denote the resulting, possibly complex, block diagonal upper triangular matrix by

C, so C2 = J . Each diagonal block of C is similar to a Jordan block of the same

size with the same eigenvalue, so C is similar to a real matrix R because of the

conjugate pairing of its nonreal Jordan blocks. Thus, the real matrix R2 is similar

to C2 = J , and J is similar to the real matrix A, so R2 is similar to A. Recall that

two real matrices are similar if and only if they are similar via a real similarity,

since they must have the same real Jordan canonical form, which can always be

attained via a real similarity. Thus, there is a real nonsingular S ∈ Mn(R) such

that A = SR2S−1 = SRS−1SRS−1 = (SRS−1)2 and the real matrix SRS−1 is

therefore a real square root of A.

In the above argument, notice that if A has any pairs of negative eigenvalues,

the necessity of choosing conjugate purely imaginary values for the square roots of

the two members of each pair precludes any possibility that a real square root of

A could be a polynomial in A or a primary matrix function of A. The following

theorem summarizes these observations.

Theorem 5.4: Let A ∈ Mn(R) be a given real matrix. There exists a real

B ∈ Mn(R) with B2 = A if and only if A satisfies the rank condition given in

Corollary 5.3 and has an even number of Jordan blocks of each size for every

negative eigenvalue. If A has any negative eigenvalues, no real square root of A can

be a polynomial in A or a primary matrix function of A.

The same reasoning used before to analyze the equation X2 = A can be used to

analyze Xm = A for m = 3, 4, . . .. Every nonsingular A ∈Mn has an mth root, in

fact, a great many of them, and the existence of an mth root of a singular matrix

is determined entirely by the sequence of sizes of its singular Jordan blocks.
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From [11], it is important to note that if σ(A) ∩ (−∞, 0] = ∅, then A has a

unique square root B ∈Mn with σ(B) in the open right (complex) half plane.
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6. Computational Method

To evaluate matrix square root functions, it is suggested that the most stable

way is to use the Schur decomposition. Recalling Schur’s Theorem, we know that

for each complex matrix A there exist a unitary matrix q and upper triangular

matrix t, such that A = qtq−1. A square root b of the upper triangular factor t

could be computed by directly solving the equation b2 = t. The choices of signs on

the diagonal of b, bmm =
√
tmm determine which square root is obtained. {tmm} are

eigenvalues of A, {bmm} are eigenvalues of b, and the principal
√
A has nonnegative

eigenvalues or eigenvalues with a nonnegative real part. Using Schur decomposition,

we have

A = qtq−1,

b2 = t,

c = qbq−1,

c2 = qbq−1qbq−1 = qb2q−1 = qtq−1 = A.

The most time consuming if done by hand is Schur decomposition. Fortunately,

MatLab does it for us. Computing b that satisfies b2 = t is the next time consuming

(if done by hand) portion of this process. Consider the following 4 × 4 matrix.




b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44







b11 b12 b13 b14

0 b22 b23 b24

0 0 b33 b34

0 0 0 b44


 =




t11 t12 t13 t14

0 t22 t23 t24

0 0 t33 t34

0 0 0 t44


 .

Since the eigenvalues of the upper triangular matrix t are the main diagonal

entries, we can use them to calculate the eigenvalues of the matrix b. First we
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compute entries of the main diagonal: bmm =
√
tmm, then we compute entries on

the first diagonal parellel to the main one.

t12 = b11b12 + b12b22 = b12(b11 + b22)

b12 =
t12

b11 + b22

t23 = b22b23 + b23b33 = b23(b22 + b33)

b23 =
t23

b22 + b23

t34 = b33b34 + b34b44 = b34(b33 + b44)

b34 =
t34

b33 + b44

After that, we compute elements of the second diagonal parellel to the main

one.

t13 = b11b13 + b12b23 + b13b33

t13 − b12b23 = b13(b11 + b33)

b13 =
t13 − b12b23

b11 + b33

t24 = b22b24 + b23b34 + b24b44

t24 − b23b34 = b24(b22 + b44)

b24 =
t24 − b23b34

b22 + b44

Finally, we compute elements of the third diagonal parallel to the main one. In

case of the 4-th order, it consists of only one element.

t14 = b11b14 + b12b24 + b13(b34 + b14b44)
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t14 − b12b24 − b13b34 = b14(b11 + b44)

b14 =
t14 − b12b24 − b13b34

b11 + b44
.

Therefore, we have

b12 =
t12

b11 + b22

,

b23 =
t23

b22 + b23
,

b34 =
t34

b33 + b44
,

b13 =
t13 − b12b23

b11 + b33

,

b24 =
t24 − b23b34

b22 + b44
,

b14 =
t14 − b12b24 − b13b34

b11 + b44
.

Now we can derive the following algorithm for a matrix of n-th order.

For m = 1, 2, . . . , n :

bmm =
√
tmm

For m = 1, 2, . . . , n− 1 :

bm,m+1 =
tm,m+1

bm,m + bm+1,m+1
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For r = 2, 3, . . . , n− 1 and m = 1, 2, . . . , n− r:

b(m,m+ r) =

t(m,m+ r) −
m+r+1∑

k=m+1

b(m,k) · b(k,m+ r)

bm,m + bm+r,m+r

Below is a script file (as it should be typed for use in MatLab) to find the square

root of a matrix using Schur decomposition:

n=input (‘Enter size of a matrix: ’)

A=input (‘Enter n x n matrix:’)

a=A+0.000001i*norm(A)*eye(n,n);

eigvala=eig(a)

[q,t]=schur(a);

b=zeros(n,n);

for m = 1:n

b(m,m)= sqrt(t(m,m));

end;

for m=1:n-1

b(m,m+1)=t(m,m+1)/(b(m,m)+b(m+1,m+1));

end;

for r=2:n-1

for m=1:n-r

B=0;

for k=(m+1):(m+r-1)

B=B+b(m,k)*b(k,m+r);

end;

b(m,m+r)=(t(m,m+r)-B)/(b(m,m)+b(m+r,m+r));

end;
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end;

b

c=q*b*q’

eigvalc=eig(c)

csquare=c*c

A

er=norm(A-c*c)/norm(A)

Explanation of the Program

n=input (‘Enter size of a matrix: ’): Indicate the size of the matrix

A=input (‘Enter n x n matrix:’): Enter the entries of the matrix enclosed in

brackets. Separate each entry with a comma and each row with a semicolon.

a=A+0.000001i*norm(A)*eye(n,n);: If a matrix A is real with complex con-

jugate eigenvalues, MatLab will automatically return a real matrix with Jordan

blocks instead of an upper triangular complex matrix unless we indicate that we

are interested in the complex triangular matrix. It is more difficult to compute

the square root of a real matrix with Jordan blocks than it is of a triangular one.

The term ‘eye’ in our command refers to the identity matrix, I. The addition,

A+ εI = qtq′ + ε qIq′ = q(t+ εI)q′, will change the matrix t by εI, which is very

small for small number ε. Our computation will show that our results has error less

than ε.

eigvala=eig(a): This command yields the eigenvalues of the matrix A.

[q,t]=schur(a);: This command shows the breakdown of the matrix A using

Schur decomposition. Here q is unitary and t is upper triangular.
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b=zeros(n,n);: This command sets all entries of the triangular matrix b to zero

to begin the cycle.

for m = 1:n

b(m,m)=sqrt(t(m,m));

end;: This cycle yields the main diagonal entries for the matrix b.

for m=1:n-1

b(m,m+1)=t(m,m+1)/(b(m,m)+b(m+1,m+1));

end;: This cycle yields the other diagonal entries {b12, b23, b34} for the matrix b.

The following section of the program yields the general formula for finding the

matrix entries of b:

bm,m+r =

tm,m+r −
m+r+1∑

k=m+1

bm,k · bk,m+r

bm,m + bm+r,m+r
, r ≥ 2.

This formula has two nonnegative terms (or terms with nonnegative real parts) in

the denominator. They are square roots of eigenvalues of the given matrix. Even if

the given matrix has 2 zero eigenvalues, the denominator will not be zero because

of the added matrix 0.000001i*norm(A)*eye(n,n). But in this case the result is not

reliable, it may have a larger error.

for r=2:n-1

for m=1:n-r

B=0;

for k=(m+1):(m+r-1)

B=B+b(m,k)*b(k,m+r); end;

b(m,m+r)=(t(m,m+r)-B)/(b(m,m)+b(m+r,m+r));

end;
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end;

b: Prints the matrix b

c=q*b*q’: Gives the final result c =
√
A. Since q is a unitary matrix, we can

use transpose, q′, instead of the inverse, q−1 in our program.

eigvalc=eig(c): This command prints the eigenvalues of the matrix c.

csquare=c*c: This command calculates c2.

A: Prints the matrix A for comparison with matrix c2.

er=norm(A-c*c)/norm(A): This commands computes the relative error.

Here is an example of computation by the program above:

� SchurSqrt(name given to program)

Enter the size of a matrix: 4

Output: n = 4

Enter the matrix n × n: [2, 3, 1, 5; 0, 2, 5, -3; -1, 2, 3, 0; 2, 4, -2, 1]

Output:

A =




2 3 1 5
0 2 5 −3

−1 2 3 0
2 4 −2 1




Output: eigvala=

5.1193 + 2.3938i

5.1193 − 2.3936i

−1.1193 + 2.3938i

−1.1193 − 2.3936i
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Output:

q =




−0.3131 + 0.6646i −0.3443 − 0.3407i 0.3651 + 0.0808i −0.1874 − 0.2253i
−0.4184 − 0.1222i −0.3389 + 0.5834i 0.0488 − 0.3534i 0.2551 − 0.4030i
−0.3214 − 0.0658i −0.2637 + 0.4194i −0.0033 + 0.4943i −0.3791 + 0.5088i
−0.1982 + 0.3512i −0.2096 − 0.1442i −0.6745 − 0.1832i 0.3723 + 0.3815i




Output:

t =




5.1193 + 2.3938i 2.3321 − 0.4383i −2.1173 + 1.5117i −0.3298 − 2.4575i
0 5.1193 − 2.3936i 2.6075 − 1.9311i 0.8210 + 2.3928i
0 0 −1.1193 + 2.3938i 0.1782 + 1.6295i
0 0 0 −1.1193 − 2.3936i




Output:

b =




2.3206 + 0.5158i 0.5025 − 0.0944i −0.2775 + 0.7764i 0.3460 − 0.6983i
0 2.3206 − 0.5157i 0.6106 − 0.7684i −0.2512 + 0.4469i
0 0 0.8727 + 1.3715i 0.1021 + 0.9336i
0 0 0 0.8727 − 1.3714i




Output:

c =




1.2751 + 0.0000i 0.0942 + 0.0000i 0.9015 − 0.0000i 1.7204 − 0.0000i
0.2889 − 0.0000i 1.7738 + 0.0000i 0.9570 + 0.0000i −1.1722 + 0.0000i

−0.4103 + 0.0000i 0.4295 + 0.0000i 1.8323 + 0.0000i 0.3623 − 0.0000i
0.4166 + 0.0000i 1.3518 − 0.0000i −1.0993 + 0.0000i 1.5054 + 0.0000i




Output: eigvalc=

0.8727 + 1.3715i

0.8727 − 1.3714i

2.3206 + 0.5158i

2.3206 − 0.5157i
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Output: (csquare)

c2 =




2 3 1 5
0 2 5 −3

−1 2 3 0
2 4 −2 1




Output:

A =




2 3 1 5
0 2 5 −3

−1 2 3 0
2 4 −2 1




Output: er = 1.0000e − 006

Once again, to find a matrix c2 = A using Schur decomposition, we begin with

A = qtq−1,

where q is a unitary matrix and t is an upper triagular matrix. From here we have,

b2 = t,

b =
√
t,

where
√
t is the principal square root and c = qbq−1.
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