388 research outputs found

    Interpolatory methods for H\mathcal{H}_\infty model reduction of multi-input/multi-output systems

    Full text link
    We develop here a computationally effective approach for producing high-quality H\mathcal{H}_\infty-approximations to large scale linear dynamical systems having multiple inputs and multiple outputs (MIMO). We extend an approach for H\mathcal{H}_\infty model reduction introduced by Flagg, Beattie, and Gugercin for the single-input/single-output (SISO) setting, which combined ideas originating in interpolatory H2\mathcal{H}_2-optimal model reduction with complex Chebyshev approximation. Retaining this framework, our approach to the MIMO problem has its principal computational cost dominated by (sparse) linear solves, and so it can remain an effective strategy in many large-scale settings. We are able to avoid computationally demanding H\mathcal{H}_\infty norm calculations that are normally required to monitor progress within each optimization cycle through the use of "data-driven" rational approximations that are built upon previously computed function samples. Numerical examples are included that illustrate our approach. We produce high fidelity reduced models having consistently better H\mathcal{H}_\infty performance than models produced via balanced truncation; these models often are as good as (and occasionally better than) models produced using optimal Hankel norm approximation as well. In all cases considered, the method described here produces reduced models at far lower cost than is possible with either balanced truncation or optimal Hankel norm approximation

    Model Reduction of Descriptor Systems by Interpolatory Projection Methods

    Get PDF
    In this paper, we investigate interpolatory projection framework for model reduction of descriptor systems. With a simple numerical example, we first illustrate that employing subspace conditions from the standard state space settings to descriptor systems generically leads to unbounded H2 or H-infinity errors due to the mismatch of the polynomial parts of the full and reduced-order transfer functions. We then develop modified interpolatory subspace conditions based on the deflating subspaces that guarantee a bounded error. For the special cases of index-1 and index-2 descriptor systems, we also show how to avoid computing these deflating subspaces explicitly while still enforcing interpolation. The question of how to choose interpolation points optimally naturally arises as in the standard state space setting. We answer this question in the framework of the H2-norm by extending the Iterative Rational Krylov Algorithm (IRKA) to descriptor systems. Several numerical examples are used to illustrate the theoretical discussion.Comment: 22 page

    Inexact Solves in Interpolatory Model Reduction

    Get PDF
    We investigate the use of inexact solves for interpolatory model reduction and consider associated perturbation effects on the underlying model reduction problem. We give bounds on system perturbations induced by inexact solves and relate this to termination criteria for iterative solution methods. We show that when a Petrov-Galerkin framework is employed for the inexact solves, the associated reduced order model is an exact interpolatory model for a nearby full-order system; thus demonstrating backward stability. We also give evidence that for \h2-optimal interpolation points, interpolatory model reduction is robust with respect to perturbations due to inexact solves. Finally, we demonstrate the effecitveness of direct use of inexact solves in optimal H2{\mathcal H}_2 approximation. The result is an effective model reduction strategy that is applicable in realistically large-scale settings.Comment: 42 pages, 5 figure
    corecore