100 research outputs found

    Multiscale Representations for Manifold-Valued Data

    Get PDF
    We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere S2S^2, the special orthogonal group SO(3)SO(3), the positive definite matrices SPD(n)SPD(n), and the Grassmann manifolds G(n,k)G(n,k). The representations are based on the deployment of Deslauriers--Dubuc and average-interpolating pyramids "in the tangent plane" of such manifolds, using the ExpExp and LogLog maps of those manifolds. The representations provide "wavelet coefficients" which can be thresholded, quantized, and scaled in much the same way as traditional wavelet coefficients. Tasks such as compression, noise removal, contrast enhancement, and stochastic simulation are facilitated by this representation. The approach applies to general manifolds but is particularly suited to the manifolds we consider, i.e., Riemannian symmetric spaces, such as Sn−1S^{n-1}, SO(n)SO(n), G(n,k)G(n,k), where the ExpExp and LogLog maps are effectively computable. Applications to manifold-valued data sources of a geometric nature (motion, orientation, diffusion) seem particularly immediate. A software toolbox, SymmLab, can reproduce the results discussed in this paper

    Definability and stability of multiscale decompositions for manifold-valued data

    Full text link
    We discuss multiscale representations of discrete manifold-valued data. As it turns out that we cannot expect general manifold-analogues of biorthogonal wavelets to possess perfect reconstruction, we focus our attention on those constructions which are based on upscaling operators which are either interpolating or midpoint-interpolating. For definable multiscale decompositions we obtain a stability result

    Inpainting of Cyclic Data using First and Second Order Differences

    Full text link
    Cyclic data arise in various image and signal processing applications such as interferometric synthetic aperture radar, electroencephalogram data analysis, and color image restoration in HSV or LCh spaces. In this paper we introduce a variational inpainting model for cyclic data which utilizes our definition of absolute cyclic second order differences. Based on analytical expressions for the proximal mappings of these differences we propose a cyclic proximal point algorithm (CPPA) for minimizing the corresponding functional. We choose appropriate cycles to implement this algorithm in an efficient way. We further introduce a simple strategy to initialize the unknown inpainting region. Numerical results both for synthetic and real-world data demonstrate the performance of our algorithm.Comment: accepted Converence Paper at EMMCVPR'1

    Second Order Differences of Cyclic Data and Applications in Variational Denoising

    Full text link
    In many image and signal processing applications, as interferometric synthetic aperture radar (SAR), electroencephalogram (EEG) data analysis or color image restoration in HSV or LCh spaces the data has its range on the one-dimensional sphere S1\mathbb S^1. Although the minimization of total variation (TV) regularized functionals is among the most popular methods for edge-preserving image restoration such methods were only very recently applied to cyclic structures. However, as for Euclidean data, TV regularized variational methods suffer from the so called staircasing effect. This effect can be avoided by involving higher order derivatives into the functional. This is the first paper which uses higher order differences of cyclic data in regularization terms of energy functionals for image restoration. We introduce absolute higher order differences for S1\mathbb S^1-valued data in a sound way which is independent of the chosen representation system on the circle. Our absolute cyclic first order difference is just the geodesic distance between points. Similar to the geodesic distances the absolute cyclic second order differences have only values in [0,{\pi}]. We update the cyclic variational TV approach by our new cyclic second order differences. To minimize the corresponding functional we apply a cyclic proximal point method which was recently successfully proposed for Hadamard manifolds. Choosing appropriate cycles this algorithm can be implemented in an efficient way. The main steps require the evaluation of proximal mappings of our cyclic differences for which we provide analytical expressions. Under certain conditions we prove the convergence of our algorithm. Various numerical examples with artificial as well as real-world data demonstrate the advantageous performance of our algorithm.Comment: 32 pages, 16 figures, shortened version of submitted manuscrip

    Total variation regularization for manifold-valued data

    Full text link
    We consider total variation minimization for manifold valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with ℓp\ell^p-type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoising images which take their values in a manifold. We apply our algorithms to diffusion tensor images, interferometric SAR images as well as sphere and cylinder valued images. For the class of Cartan-Hadamard manifolds (which includes the data space in diffusion tensor imaging) we show the convergence of the proposed TV minimizing algorithms to a global minimizer

    A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images

    Full text link
    We introduce a new non-smooth variational model for the restoration of manifold-valued data which includes second order differences in the regularization term. While such models were successfully applied for real-valued images, we introduce the second order difference and the corresponding variational models for manifold data, which up to now only existed for cyclic data. The approach requires a combination of techniques from numerical analysis, convex optimization and differential geometry. First, we establish a suitable definition of absolute second order differences for signals and images with values in a manifold. Employing this definition, we introduce a variational denoising model based on first and second order differences in the manifold setup. In order to minimize the corresponding functional, we develop an algorithm using an inexact cyclic proximal point algorithm. We propose an efficient strategy for the computation of the corresponding proximal mappings in symmetric spaces utilizing the machinery of Jacobi fields. For the n-sphere and the manifold of symmetric positive definite matrices, we demonstrate the performance of our algorithm in practice. We prove the convergence of the proposed exact and inexact variant of the cyclic proximal point algorithm in Hadamard spaces. These results which are of interest on its own include, e.g., the manifold of symmetric positive definite matrices

    Quasi-interpolation in Riemannian manifolds

    Get PDF
    We consider quasi-interpolation operators for functions assuming their values in a Riemannian manifold. We construct such operators from corresponding linear quasi-interpolation operators by replacing affine averages with the Riemannian centre of mass. As a main result, we show that the approximation rate of such a nonlinear operator is the same as for the linear operator it has been derived from. In order to formulate this result in an intrinsic way, we use the Sasaki metric to compare the derivatives of the function to be approximated with the derivatives of the nonlinear approximant. Numerical experiments confirm our theoretical finding
    • 

    corecore