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We consider quasi-interpolation operators for functions assuming their values in a Riemannian manifold.
We construct such operators from corresponding linear quasi-interpolation operators by replacing affine
averages with the Riemannian centre of mass. As a main result, we show that the approximation rate
of such a nonlinear operator is the same as for the linear operator it has been derived from. In order
to formulate this result in an intrinsic way, we use the Sasaki metric to compare the derivatives of the
function to be approximated with the derivatives of the nonlinear approximant. Numerical experiments
confirm our theoretical findings.
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1. Introduction

A fundamental problem in computational science is the handling of massive amounts of data. In addition
to the sheer mass of data to be processed, in recent times many modern sensing mechanisms produce
data which is of a nonstandard type, with data points assuming their value in nonlinear geometries.
Examples include the following subjects.

(1) Deformation tensors, where the data points consist of elements of the Cartan–Hadamard space
of positive-definite symmetric matrices. The data are modelled as a function R

3 → SPD(3).
Such data arise, for instance, in diffusion tensor magnetic resonance imaging (MRI) in medi-
cal imaging (Denis Le Bihan et al., 2001) or strain and stress measurement in materials science.

(2) Positions of rigid bodies, where the data points consist of elements of the Lie group of rigid
body motions. The data are modelled as a function R → SE(3). Data of this type arise, for
instance, in kinematics or motion design (Wallner & Pottmann, 2006), or Cosserat rod modelling
(Sander, 2010).

(3) Orientations, where the data points consist of elements of the Lie group of orthogonal matrices.
The data are modelled as a function R → O(3). Orientation-valued data arrays arise, for instance,
as ‘black-box’ recordings of the orientation of aircraft, varying with time (Rahman et al., 2006).

(4) Subspaces, where the data points consist of elements of a Grassmanian manifold. The data are
modelled as a function R → G(k, n). These data types can arise, for instance, in array signal
processing (Rahman et al., 2006).

(5) Orthogonal matrices with positive determinants, where data are modelled as a function
R → SO(n). Such data arise, e.g, in isospectral flow problems (Iserles et al., 2000).

This (incomplete) list suggests that it is of eminent interest to develop useful computational and
theoretical tools capable of processing manifold-valued functions. In this spirit, the objective of this
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paper is to present a complete extension of the theory of quasi-interpolation (de Boor & Fix, 1973;
Chui, 1992) to the nonlinear case. We will start with a linear quasi-interpolation scheme and, by replac-
ing affine averages with the Riemannian centre of mass (Karcher, 1977), wind up with an intrinsic
approximation procedure for manifold-valued functions. Our main result is that the linear properties
completely carry over to the nonlinear case.

Even stating such a result is nontrivial since it is at first glance not clear how to compare a differ-
ential of a function with the differential of an approximant, both of which assume their values in the
(iterated) tangent bundle of the manifold. We solve this problem by utilizing the so-called Sasaki metric
(Sasaki, 1958) which is a canonical Riemannian structure defined on the tangent bundle of a Rieman-
nian manifold. Using this formulation, we are able to give a complete and intrinsic extension of the
linear theory; see Theorem 3.8.

To give a flavour of our main result consider a linear quasi-interpolation operator

f �→ Q̄hf (·) :=
∑
j∈Z

f (hj)Φ(h−1 · −j),

where Φ might be, for instance, an affine combination of the integer translates of the fundamental
cardinal cubic B-spline function as in Example 2.5 (of course, higher orders than cubic and different
functions are possible).

The well-known linear theory establishes results regarding the decay of the approximation error,∥∥∥∥∥
(

d

dx

)l

(f − Q̄hf )

∥∥∥∥∥
∞

,

with the step width h tending to zero. This approximation error in h is related to a few simple properties
of Φ such as smoothness and polynomial exactness; see Section 2.1.

Our main idea is to regard the expression for Q̄hf as a weighted average of the samples f (hj).
By replacing affine averages with the Riemannian centre of mass (Karcher, 1977), we arrive at a
definition of an associated quasi-interpolation operator Qhf for functions f with values in a differen-
tiable manifold M; see Section 2.2.

In order to study the approximation errors of Qh, we need to be able to compare derivatives dlf with
dlQhf , both taking their values in the iterated tangent bundle TlM of M. This is achieved by using the
Sasaki metric on TlM which is described in Section 3.2. With the geodesic distance sl induced by the
Sasaki metric, our main result is that the approximation error

sl(d
lf , dlQhf )

behaves in the exact same way as the corresponding linear error; see Theorem 3.8 for a more precise
statement.

Even though this result might not be very surprising, its proof turns out to be quite involved.
As an application, we construct nonlinear approximation manifolds (see Definition 2.7) with a pre-

scribed number of degrees of freedom and determine their approximation properties.
Besides approximating an explicitly given function, a main motivation for our construction is the

potential use of these approximation manifolds to solve manifold-valued optimization problems in a
finite-element-like fashion (cf. Sander, 2010, 2011).

We would like to note that our construction can easily be adapted to the multivariate case and also
over simplicial grids (cf. Sander, 2011). The study of the associated approximation properties (also with
respect to other error norms) will be the subject of forthcoming work.
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1.1 Previous work

There exists, by now, a substantial body of previous work related to nonlinear data types of
which we only mention some examples. In the paper of Rahman et al. (2006), a manifold-valued
wavelet transform has been derived, and its theoretical properties are investigated in Grohs &
Wallner (2009), Grohs (2010c) and Harizanov & Oswald (2010). The idea to use nonlinear
subdivision schemes for the approximation of manifold-valued data was investigated in
Grohs (2010a,b), Weinmann (2010), Xie & Yu (2008, 2010, 2011), Wallner & Dyn (2005),
Wallner & Pottmann (2006). Among these, we would like to single out the work of
Xie & Yu (2011) where a different construction of quasi-interpolants is presented and analysed
numerically. The already-mentioned papers (Sander, 2010, 2011) present a construction of first-order
geodesic finite element spaces much in the spirit of our (higher-order) construction. Related to these
constructions, various optimization problems are studied. Finally, we would like to mention (Iserles
et al., 2000), where Runge–Kutta methods are extended to the case of Lie-valued (and more general)
ordinary differential equations (ODEs). On the theoretical side, Karcher (1977) introduced a general
mollifying procedure for the approximation of functions between Riemannian manifolds. One can
interpret our method as a specimen of his construction. In contrast to Karcher (1977), we are able to
derive the exact same approximation rates as corresponding linear constructions for our construction,
even for the approximation of higher-order derivatives.

1.2 Outline

The outline is as follows. In Section 2, we will lay out the necessary background from linear approxi-
mation theory and also describe the nonlinear set-up we will work with. After that, in Section 3, we will
first show that it suffices to study our approximation problems in a chart, and then we will discuss the
Sasaki metric which will allow us to formulate our results in an intrinsic fashion. Section 4 contains the
proof of our main result and forms the main technical part of this paper. Finally, in Section 5, we present
some numerical computations which confirm our theory. We also include an appendix containing some
auxiliary results which will be needed in the course of the proof and another one explaining some basic
concepts in Riemannian geometry which will be needed in the course of this paper.

1.3 Notation

For a function f : R → R
d , we use the usual terminology ‖f ‖∞ := supx |f (x)| with | · | the maximum

norm on R
d . The space of continuous functions with values in a manifold M is denoted by C0(R,M).

If M is a Euclidean space, we simply write C0. Furthermore, we use the symbol l∞ for the Banach
space of bounded, real-valued sequences on Z. We use boldface notation for multi-indices j ∈ Z

k and
denote |j|1 := j1 + · · · + jk . Distance metrics on Riemannian manifolds are usually expressed by fraktur
letters, for instance, d. The space of polynomials of degree � m on R shall be denoted by Πm. For a set
A, the symbol χA denotes its indicator function.

2. Preliminaries

2.1 Linear theory

We start by reviewing some well-known facts from linear quasi-interpolation theory. For more
information, we refer to de Boor & Fix (1973), Chui (1992) and DeVore & Lorentz (1993). In the
following definition, we introduce the smoothness spaces Cα which we will work with.
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Definition 2.1 For a function f : R → R
d , we define Δl

hf , the lth-order forward difference with step
width h > 0 inductively by

Δ0
hf := f and Δl

hf (x) := Δl−1
h (x + h) − Δl−1

h (x).

We say that f ∈ Cα , α > 0 if we have∥∥∥∥∥Δh

(
d

dx

)�α	
f

∥∥∥∥∥
∞

=O(hα−�α	).

Linear finite element spaces on a regular partition of an interval are usually constructed from a
function Φ : R → R satisfying the following requirements:∑

j∈Z

Φ(· − j) = 1 (partition of unity), (2.1)

∃N ∈ R : supp Φ ⊂ [−N , N] (locality), (2.2)∑
j∈Z

p(i)Φ(· − j) = p(·) ∀p ∈ Πm−1 (polynomial exactness), (2.3)

Φ ∈ Cs (smoothness). (2.4)

Given such a function, we can define the linear finite element spaces

Vh(Φ) :=
⎧⎨
⎩
∑
j∈Z

a(j)Φ(h−1 · −j) : (a(j))j∈Z ∈ l∞

⎫⎬
⎭ .

In many applications, it is necessary to approximate a given function f by the finite element spaces
Vh(Φ). This can be done either implicitly, when f is given as a solution of an operator equation, or
explicitly, when f is explicitly given. One of the very fundamental results in approximation theory is
that the approximation rate of the finite element spaces for a given function f is exactly governed by the
smoothness of f .

Theorem 2.2 (Jackson theorem) Assume that f ∈ Cα with α < m. Then for l < α and l < s, we have

inf
g∈Vh(Φ)

∥∥∥∥∥
(

d

dx

)l

(f − g)

∥∥∥∥∥
∞

=O(hα−l). (2.5)

In fact, more can be said: under the assumptions (2.1)–(2.4), a quasioptimal approximant g ∈ Vh(Φ)

can be constructed explicitly.

Definition 2.3 For Φ satisfying (2.1)–(2.4) we define the linear quasi-interpolation operator Q̄h :
C0 → Vh(Φ) defined via

f (·) �→ Q̄hf (·) :=
∑
j∈Z

f (hj)Φ(h−1 · −j) ∈ Vh(Φ). (2.6)

Now we can state the following stronger form of Theorem 2.2.
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Theorem 2.4 Assume that f ∈ Cα with α < m. Then, for l < α and l < s, we have∥∥∥∥∥
(

d

dx

)l

(f − Q̄hf )

∥∥∥∥∥
∞

=O(hα−l). (2.7)

Example 2.5 (Cubic B-spline quasi-interpolation) A classical example of a quasi-interpolation operator
can be constructed from the cardinal cubic B-spline function B3(·) (Chui, 1992). Even though the choice
Φ = B3 would only lead to the low-degree polynomial reproduction of 1, it is possible to preprocess the
sampling data of f and arrive at a fourth-order quasi-interpolation scheme

Q̄hf (·) :=
∑
j∈Z

B3(h
−1 · −j)

(
−1

6
f (h(j − 1)) + 4

3
f (hj) − 1

6
f (h(j + 1))

)
,

which falls into our definition by putting

Φ(·) = −1

6
B3(· − 1) + 4

3
B3(·) − 1

6
B3(· + 1)

which can be shown to satisfy (2.3) with m = 4 (Chui, 1992). The linear approximation spaces are given
by piecewise cubic polynomials, C2 at the knots.

Clearly, Theorem 2.4 implies Theorem 2.2; for a proof of Theorem 2.4, we refer to Chui (1992).
We would like to close this section by noting that the backbone of any approximation method or finite
element solver is given by the validity of a Jackson theorem (Braess, 2007).

2.2 Nonlinear approximation

Having presented a brief introduction to the construction of regular finite element spaces for functions
f : R → R

d , we would now like to ask whether such a construction can be meaningfully extended to the
case of manifold-valued functions f : R →M, M being a d-dimensional differentiable manifold. More
specifically, our goal is to construct a quasi-interpolation operator operating on M-valued functions
such that an equivalent to Theorem 2.4 holds. The approach we will take is to regard the sum∑

j∈Z

f (hj)Φ(h−1 · −j)

in (2.6) as a weighted average of the points (f (hj))j∈Z with weights given by (Φ(h−1 · −j))j∈Z. By (2.1)
this is justified. The key insight is that weighted averages also exist in Riemannian manifolds, i.e., a
pair (M, g) with M a differentiable manifold and g a metric tensor field on M; see DoCarmo (1992)
(or Appendix B) for more information on Riemannian geometry.

Definition 2.6 Assume that (M, g) is a Riemannian manifold with induced metric d. For points
(p(j))j∈J and weights (w(j))j∈J , the Riemannian centre of mass

x∗ = avM((p(j))j∈J , (w(j))j∈J )

is defined as
x∗ = argmin

x∈M

∑
j∈J

w(j)d(p(j), x)2.
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It can be shown that locally the Riemannian centre of mass exists and is unique. Furthermore, locally,
it is characterized by the first-order equilibrium condition∑

j∈J

w(j) logM(x∗, p(j)) = 0; (2.8)

see e.g., Karcher (1977). Here, logM denotes the logarithm mapping of M, e.g., the local inverse of the
exponential function expM of M (DoCarmo, 1992).

The natural idea is now to replace the affine weighted average in (2.6) with the Riemannian average
in M. This leads to the following definition.

Definition 2.7 We define the nonlinear finite element manifolds

VM
h (Φ) := {avM((a(j))j∈Z, (Φ(h−1 · −j))j∈Z) : whenever the average is well defined}.

It is our interest to study the approximation properties of these nonlinear finite element manifolds,
i.e., instead of approximating with linear spaces we are approximating with nonlinear manifolds with
the same number of degrees of freedom. We will do this by considering explicit projection operators
onto these manifolds in terms of nonlinear quasi-interpolation as defined below.

Definition 2.8 Define the nonlinear quasi-interpolation operator

Qh : C0(R,M) → C0(R,M)

by
Qhf (·) := avM((f (hj))j∈Z, (Φ(h−1 · −j)j∈Z). (2.9)

Remark 2.9 Note that for h sufficiently small and f ∈ Cα for any α > 0, the expression Qhf is always
defined. This is due to the locality of Φ and the fact that all sampling points used in the computation of
Qhf (x) lie in a set of arbitrarily small diameter. Therefore, by local well-definedness of the Riemannian
centre of mass, the average leading to Qhf (x) exists. For this reason, we will ignore the issue of well-
definedness in the sequel and tacitly assume that the sampling width h is sufficiently small.

We would also like to remark that for several examples of practical interest, the manifold M pos-
sesses particular structural properties which make the Riemannian averages defined for any initial data.
One such example is the manifold SPD(n) of symmetric positive-definite n × n matrices arising, e.g.,
in diffusion tensor MRI in medical imaging (Pennec et al., 2006).

Remark 2.10 Karcher (1977) constructs a similar, continuous mollifying procedure for approximating
manifold-valued functions (which may also be defined on a general manifold). The fact that Karcher
did not succeed in proving approximation results for higher-order derivatives accounts for the nontrivial
nature of our problem. In Karcher (1977, p. 521), he writes

The approximation of higher derivatives of f , if they exist, by the corresponding derivatives
of [the approximant] is not clear to me.

We believe that our approach could be suitable for clarifying this question in the general case.

The idea to replace affine averages by the Riemannian centre of mass is not new. In Grohs (2010b)
and Wallner et al. (2011), it was applied to study smoothness and approximation properties of manifold-
valued subdivision schemes. The very recent and interesting work of Sander (2010, 2011) constructs
first-order finite element spaces essentially in the same way as we do. These spaces are then used to
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solve manifold-valued optimization problems arising, e.g., in Cosserat rod modelling in a very natural
fashion. We expect our present results to be relevant in this direction. Finally, we would like to mention
Pennec et al. (2006), where Riemannian methods are used for the filtering, denoising and statistical
analysis of diffusion tensor MRI data.

The central question to ask is whether the approximation properties which are known in the linear
case (e.g., Theorem 2.4) also hold for the nonlinear quasi-interpolation operators. Answering this ques-
tion affirmatively will be the main theme of this paper.

In order to pose the question of approximability of the derivatives of f correctly, it is necessary
to give a canonical notion of difference between elements of the tangent bundles TlM. In Section 3,
we address this problem and present an appropriate construction, namely, the so-called Sasaki metric
(Sasaki, 1958). Then, in Section 4, we show that indeed the linear approximation results also hold in the
same form for manifold-valued quasi-interpolation.

3. Localization and natural metrics

In this section, we will examine how we can perform our local computations in a chart without losing
any generality. In order to help the reader with little experience in differential geometry, we have added
a short Appendix B where most of the geometric terms are explained in a leisurely manner.

3.1 Computations in charts

We now consider a chart γ : M→ R
d and its induced chart (γ , dγ ) : TM→ R

2d . The starting point is
the balance equation (2.8), which can be transferred to a similar equation in R

d by composition with the
chart γ .

More precisely, using the notation

u(x, y) := γ ◦ expM(γ −1(x), (dγ )−1|xy) and v(x, y) := dγ |γ −1x(logM(γ −1x, γ −1y)), x, y ∈ R
d ,

we can write (2.8) as

γ ◦ Qhf (x) = u

⎛
⎝γ ◦ Qhf (x),

∑
j∈Z

Φ(h−1x − j)v(γ ◦ Qhf (x), γ ◦ f (hj))

⎞
⎠ . (3.1)

In order to verify (3.1), observe that a point (x, y) can be transported back to the tangent vector dγ −1|xy ∈
Tγ −1(x)M and that the mapping dγ −1|x is linear, cf. Appendix B. We remark that the definition of u
simply means that we transport the vector (x, y) back to the vector dγ −1|xy ∈ Tγ −1(x)M via the induced
chart on TM and then we apply the exponential mapping, yielding a point expM(γ −1(x), (dγ )−1|xy) ∈
M. This point is then mapped to R

d via the chart γ which allows us to perform all operations with
respect to a chart. The function v can be interpreted in an analogous way.

Our main result is that in any chart γ , we have the following approximation rate.

Theorem 3.1 Assume that f ∈ Cα with α < m and α < s. Then for l < α and any chart γ , we have∥∥∥∥∥
(

d

dx

)l

(γ ◦ f − γ ◦ Qhf )

∥∥∥∥∥
∞

=O(hα−l). (3.2)
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In particular, the previous theorem easily implies that for any Riemannian metric gl on TlM
with induced distance dl (meaning that dl measures the geodesic distance between two points; see
DoCarmo, 1992), we have the following result.

Theorem 3.2 Assume that f ∈ Cα with α < m and α < s. Then for l < α and any Riemannian metric gl

on the vector bundle TlM with induced distance metric dl, we have the estimate

sup
x

dl(d
lf , dlQhf ) =O(hα−l), (3.3)

where dlf : R → TlM denotes the total differential of order l (DoCarmo, 1992). The implicit constant
is uniform for data values in a compact set.

Proof. Any chart γ induces the chart dlγ : TlM→ R
2ld . With respect to this latter chart, by

Theorem 3.1, we have

‖dlγ ◦ (dlQhf (·)) − dlγ ◦ (dlf (·))‖∞ =O(hα−l).

Since the inverse (dlγ )−1 of the chart dlγ is smooth and in particular Lipschitz with respect to the
metric dl, we arrive at the estimate

sup
x

dl(d
lf (x), dlQhf (x)) = sup

x
dl((d

lγ )−1 ◦ dlγ ◦ (dlf (x)), (dlγ )−1 ◦ dlγ ◦ (dlQhf (x)))

=O(‖dlγ ◦ (dlQhf (·)) − dlγ ◦ (dlf (·))‖∞) =O(hα−l),

which proves the assertion for data contained in the domain of definition for any single chart γ . If the
data values are contained in a compact set, finitely many charts cover this set and therefore the unifor-
mity of the implied constant follows. �

3.2 Sasaki metric

Theorem 3.2 states that for any Riemannian metric defined on the tangent bundle TlM, we can show
an approximation theorem as strong as for the linear case. It is a well-known fact that any differentiable
manifold admits a Riemannian metric (Spivak, 1979). However, it would be nice to be able to single
out one specific Riemannian metric on TlM within which we can measure the approximation error
between dlf and its approximation dlQhf . The present section describes such a canonical metric, the
so-called Sasaki metric which was introduced by Sasaki (1958). The reader who is content with the
chart-dependent result in Section 3.1 may skip this section.

3.2.1 Construction. Before we can describe the Sasaki metric, we need some preliminary facts from
the Riemannian geometry of tangent bundles; see Yano & Ishihara (1973) for more information. Assume
that we are given a Riemannian manifold (M, g), where g is a symmetric (0, 2)-tensor field on M.
Consider its tangent bundle TM which carries a natural manifold structure (DoCarmo, 1992). For
p ∈M, we denote by TpM the tangent space attached to p and likewise we denote by T(p,u)TM the
tangent space attached to the tangent bundle of M at the tangent vector (p, u) ∈ TM. We want to find a
suitable metric tensor gT on the manifold TM, meaning that gT acts on pairs of tangent vectors of TM.
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With π : TM→M denoting the bundle projection, we define the vertical subspace

V(p,u) := ker(dπ |(p,u))

of T(p,u)TM at (p, u) ∈ TM. The terminology ‘vertical’ stems from the fact that a vertical vector leaves
the base point p stationary and only moves along the fibre π−1{p} ⊂ TM. Without going into detail, we
would like to mention that the vertical subspace V(p,u) can be complemented by the so-called horizontal
subspace

H(p,u) := ker(K(p,u)),

where K(p,u) : T(p,u)TM→ TpM is defined as (c(t), U(t)) ∈ TM, (c(0), U(0)) = (p, u) �→ ∇c′U(0),
where ∇ denotes the Levi-Civita connection of (M, g) (here, H(p,u) consists of tangent vectors of par-
allel vector fields). We have

T(p,u)TM=H(p,u) ⊕ V(p,u)

(Dombrowski, 1962; DoCarmo, 1992).

Definition 3.3 Let X ∈ TpM. Then the horizontal lift of X at (p, u) ∈ TM is the unique vector X h ∈
H(p,u) such that dπ(p,u)(X h) = X . The vertical lift X v of X at (p, u) is the unique vector X v ∈ V(p,u) such
that K(p,u)(X v) = X .

Each Z ∈ T(p,u)TM can be uniquely expressed as Z = X h + Y v for X , Y ∈ TpM. Based on this
decomposition, we can now define natural metrics on TM (Kappos, 2001).

Definition 3.4 A metric gT on TM is called natural if

gT (X h, Y h) = g(X , Y) and gT (X h, Y v) = 0 for all vector fields X , Y on M.

Several different natural metrics for TM can be defined by specifying conditions on gT (X v, Y v).
For instance, the so-called Cheeger–Gromoll metric is uniquely defined by setting

gCG
T (X v, Y v)(p,u) = 1

1 + g(X , Y)2
(g(X , Y) + g(X , u)g(Y , u));

see Cheeger & Gromoll (1972). We will focus on the simpler Sasaki metric.

Definition 3.5 The Sasaki metric is the unique natural metric on TM which satisfies

gS
T (X v, Y v) = g(X , Y) for all vector fields X , Y on M.

By iterating this construction, a Sasaki metric can be defined on the iterated tangent bundles TlM,
l ∈ Z+.

The geodesic distance metric on TlM induced by the Riemannian Sasaki metric will be denoted by
sl; it gives a natural notion of (local) distance sl(x, y) between points x, y ∈ TlM.

For a list of various properties satisfied by the Sasaki metric, we refer to the original paper
Sasaki (1958).
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3.2.2 Intrinsic approximation results. Now that we have singled out a canonical metric on the
tangent bundles TlM, we can define smoothness properties for M-valued functions intrinsically as
follows.

Definition 3.6 An M-valued function f : R →M is in Cα(R,M) if

s�α	(d�α	f (· + h), d�α	f (·)) =O(hα−�α	)

with the implicit constant uniform in x for data values f (x) in a compact set.

Remark 3.7 It is easy to see that f ∈ Cα(R,M) if and only if γ ◦ f ∈ Cα for all charts γ .

We can finally state our main theorem.

Theorem 3.8 Assume that f ∈ Cα(R,M) with α < m and α < s. Then for l < α, we have the estimate

sl(d
lf , dlQhf ) =O(hα−l). (3.4)

The implicit constant is uniform for data values f (x) in a compact set.

Proof. The proof is a direct consequence of Theorem 3.2. �

Remark 3.9 Although in Theorem 3.8 the implicit constant is only locally uniform, one can actually
achieve a global constant whenever M is a homogeneous space, which is the case for all examples we
mentioned in Section 1. Indeed, in that case one can always transform any part of f (x) to a fixed domain
of definition of a fixed chart and the constants become uniform.

Remark 3.10 For computational reasons, it might be beneficial to replace the exponential function by
a simpler retraction; see, for instance, Absil et al. (2008). It is easy to see that Theorem 3.8 also holds
true in this case.

4. Proof of Theorem 3.1

From now on, we will simply write Qhf (·) in place of γ ◦ Qhf (·) with the understanding that we are
actually computing in a chart. The only property we shall use is the representation (3.1) and the smooth-
ness of the functions u and v.

In a chart, the linear quasi-interpolation operator can be written as

Q̄hf (x) =
∑
j∈Z

Φ(h−1x − j)u(Qhf (x), v(Qhf (x), f (hj))). (4.1)

The main idea is to compare the nonlinear approximation operator Qhf with its linear counterpart Q̄hf
and to use known properties of the linear operator to show the desired result. Estimating the error
between linear and nonlinear quasi-interpolation will make up the bulk of this section, culminating in
the proof of Theorem 3.1 in Section 4.2.

Remark 4.1 The method of bounding the difference between a linear and a nonlinear approximation
procedure has become a powerful tool in the study of nonlinear approximation schemes. It is often
called the method of proximity and has mostly been used before in the analysis of nonlinear subdivision
schemes; see, for instance Daubechies et al. (2004), Wallner & Dyn (2005), Wallner & Pottmann (2006),
Xie & Yu (2008, 2010), Grohs (2009, 2010a,b), Grohs & Wallner (2009), Weinmann (2010).
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We now define an important asymptotic quantity which will frequently be used in the sequel.

Definition 4.2 For f : R → R
d , h > 0, l ∈ N, we define the quantity

Ωl,h(f ) :=
∑
|r|1=l

∏
p

‖Δrp

h f ‖∞. (4.2)

We collect some simple properties of the quantities Ωl,h(f ).

Lemma 4.3 Assume that f ∈ Cα with α > l. Then

Ωl,h(f ) =O(hl). (4.3)

Proof. Assume that f ∈ Cα . Then, for any l′ < α, we have

‖Δl′
h f ‖∞ =O(hl′).

It follows that

Ωl,h(f ) =
∑
|r|1=l

∏
p

‖Δrp

h f ‖∞ =O
⎛
⎝∑

|r|1=l

∏
p

hrp

⎞
⎠=O(hl).

�

Lemma 4.4 We have

Ωl1,h(f )Ωl2,h(f ) =O(Ωl1+l2,h(f )). (4.4)

Proof. The proof follows simply by noting that all terms occurring on the left-hand side of (4.4) also
occur on the right-hand side. �

4.1 Proximity inequality

Our basic strategy will be to compare the linear representation with the nonlinear one in order to infer
properties for the nonlinear operator from properties of the linear one. Taylor expanding (3.1) up to
order M , we obtain

Qhf (x) =
M∑

k=0

1

k!
d(k)

2 u|(Qhf (x),0

⎛
⎜⎝
⎡
⎣∑

j∈Z

Φ(h−1x − j)v(Qhf (x), f (hj))

⎤
⎦

k
⎞
⎟⎠

+ 1

(M + 1)!
d(M+1)

2 u|(
Qhf (x),ξ

(∑
j∈Z

Φ(h−1x−j)v(Qhf (x),f (hj))
))

×
⎛
⎝
⎡
⎣∑

j∈Z

Φ(h−1x − j)v(Qhf (x), f (hj))

⎤
⎦

M+1⎞
⎠ . (4.5)



860 P. GROHS

Taylor expanding (4.1) up to order M , we obtain

Q̄hf (x) =
M∑

k=0

∑
j∈Z

Φ(h−1x − j)
1

k!
d(k)

2 u|(Qhf (x),0)([v(Q
hf (x), f (hj))]k)

+
∑
j∈Z

Φ(h−1x − j)
1

(M + 1)!
d(M+1)

2 u|(Qhf (x),ξ(v(Qhf (x),f (hj))))

× ([v(Qhf (x), f (hj))]M+1). (4.6)

We have used Taylor expansion in the second component, d(k)
2 denoting the kth total derivative in the

second coordinate and ξ a smooth function.
In what follows, we will make use of the following definition.

Definition 4.5 For an arbitrary vector-valued sequence p : Z → R
d we define the lth forward differ-

ence via

δlp(j) :=
l∑

i=0

(−1)l−i

(
l

i

)
p(j + i). (4.7)

In addition, we shall use the following notation. For a vector v ∈ R
d , we define the concatenation

[v]k := (v, . . . , v) ∈ R
kd .

Furthermore, for a function f (x) and a multi-index l ∈ Z
k
+, we denote

Δl
h[f ]k(x) := (Δ

l1
h f (x1), . . . , Δlk

h f (xk)), x ∈ R
k ,

and similarly for a sequence p(j),

δl[p]k(j) := (δl1 p(j1), . . . , δlk p(jk)), j ∈ Z
k .

Our first goal is to gather useful estimates for the differences

Fk := d(k)
2 u|(Qhf (x),0)

⎛
⎜⎝
⎡
⎣∑

j∈Z

Φ(h−1x − j)v(Qhf (x), f (hj))

⎤
⎦

k
⎞
⎟⎠

−
∑
j∈Z

Φ(h−1x − j)d(k)
2 u|(Qhf (x),0)([v(Q

hf (x), f (hj))]k), (4.8)

namely, the following lemma. The proof is based on a combinatorial argument exploiting the polyno-
mial reproduction property (2.3) of Φ. Similar arguments have been used in previous work in different
contexts (Daubechies et al., 2004; Grohs, 2009; Xie & Yu, 2010).

Lemma 4.6 For l < s, we have

|Δl
h′Fk| =O

(
Ωm,h(f )

l∑
i=0

(h−1h′)l−iΩi,h′(Qhf )

)
. (4.9)
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Proof. Define j̄ := �h−1x − N	. Then every index j occurring in the summation formula for Fk satisfies
j � j̄ and j − j̄ =O(1), due to the support properties of Φ. By the definition of the forward differences,
we can represent each vector v(Qhf (x), f (hj)) by

v(Qhf (x), f (hj)) =
j−j̄∑
i=0

(
j − j̄

i

)
δiv(Qhf (x), f (hj̄)). (4.10)

Inserting (4.10) into the definition of Fk , we obtain Fk = F1
k + F2

k , where

F1
k :=

∑
i1,...,ik∈Z+

∑
j1,...,jk∈Z

∏
r

Φ(h−1x − jr)

(
jr − j̄

ir

)

× d(k)
2 u|(Qhf (x),0)(δ

i1 v(Qhf (x), f (hj̄)), . . . , δik v(Qhf (x), f (hj̄)))

and

F2
k :=

∑
i1,...,ik∈Z+

∑
j∈Z

Φ(h−1 · −j)
∏

r

(
j − j̄

ir

)

× d(k)
2 u|(Qhf (x),0)(δ

i1 v(Qhf (x), f (hj̄)), . . . , δik v(Qhf (x), f (hj̄))).

Let us now fix (i1, . . . , ik) with i1 + · · · + ik < m. Then the functions pr := pr(jr) = (jr−j̄
ir

)
, p(j) :=∏k

r=1

(j−j̄
ir

)
are polynomials of total degree < m. Therefore, by polynomial reproduction of the func-

tion Φ of order m − 1, we obtain

∑
j1,...,jk∈Z

∏
r

Φ(h−1x − jr)

(
jr − j̄

i1

)
=
∑
j∈Z

Φ(h−1x − j)
∏

r

(
j − j̄

ir

)
= p(h−1x),

and therefore we only need to consider terms with i1 + · · · + ik � m in the summation formula for
Fk = F1

k − Fk
2 . In summary, Fk can be expressed as a finite linear combination of terms of the form

c(x)d(k)
2 u|(Qhf (x),0)(δ

i1 v(Qhf (x), f (hj̄)), . . . , δik v(Qhf (x), f (hj̄))),

with

i1 + · · · + ik � m

and

c(x) :=
k∏

r=1

Φ(h−1x − j1)pr(jr) − χj1=···=jk (j1, . . . , jk)Φ(h−1x − j1)p(j1). (4.11)

We need to bound Δl
h′Fk and by the above discussion it suffices to obtain a bound on

Δl
h′c(x)d

(k)
2 u|(Qhf (x),0)(δ

i1 v(Qhf (x), f (hj̄)), . . . , δik v(Qhf (x), f (hj̄))) (4.12)
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with i1 + · · · + ik � m. The expression (4.12) can be rewritten as a finite linear combination of terms
of the form

(Δ
l1
h′c(x1))(Δ

l2
h′d

(k)
2 u|(Qhf (x2),0))(Δ

l3
h′δ

i1 v(Qhf (x3), f (hj̄)), . . . , Δlk+2
h′ δik v(Qhf (xk+2), f (hj̄))),

with l1 + · · · + lk+2 = l. By (4.11) and the smoothness of Φ we can estimate

Δ
l1
h′c(x) =O(h−l1(h′)l1). (4.13)

Further, due to the smoothness of u and Lemma A2, we can estimate

‖Δl2
h′d

(k)
2 u|(Qhf (x2),0)‖ =O(Ωl2,h′(Qhf )). (4.14)

Finally, by Lemma A3, we have for general l′, i′, that

Δl′
h′δ

i′v(Qhf (x), f (hj̄)) =O(Ωl′,h′(Qhf )Ωi′,h(f )). (4.15)

By putting estimates (4.13)–(4.15) into (4.12), we finally arrive at the desired result. �

We next treat the remainder terms in the Taylor representations.

Lemma 4.7 For M > 0 and l < s, we have

Δl
h′d

(M+1)
2 u|(Qhf (x),ξ(

∑
j∈Z

Φ(h−1x−j)v(Qhf (x),f (hj))))

⎛
⎝
⎡
⎣∑

j∈Z

Φ(h−1x − j)v(Qhf (x), f (hj))

⎤
⎦

M+1⎞
⎠

= ‖Δhf ‖M−l
∞ O

(
l∑

i=0

(h−1h′)l−iΩi,h′(Qhf )

)
(4.16)

and

Δl
h′
∑
j∈Z

Φ(h−1x − j)
1

(M + 1)!
d(M+1)

2 u|(Qhf (x),ξ(v(Qhf (x),f (hj))))([v(Q
hf (x), f (hj))]M+1)

= ‖Δhf ‖M−l
∞ O

(
l∑

i=0

(h−1h′)l−iΩi,h′(Qhf )

)
. (4.17)

Proof. We start with (4.16). The proof goes by iteratively rewriting the divided differences in order to
arrive at simpler expressions. First, note that the left-hand side of (4.16) can be expressed as a linear
combination of terms of the form

(Δ
l1
h′d

(M+1)
2 u|(Qhf (x1),ξ(

∑
j∈Z

Φ(h−1x1−j)v(Qhf (x1),f (hj)))))

×
⎛
⎝Δ

l2
h′

⎡
⎣∑

j∈Z

Φ(h−1 · −j)v(Qhf (·), f (hj))

⎤
⎦

M+1

(x2)

⎞
⎠ ,
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with l1 + |l2|1 = l. Due to the smoothness of u and (A.3), we can estimate

‖(Δl1
h′d

(M+1)
2 u|(Qhf (x),ξ(

∑
j∈Z

Φ(h−1x−j)v(Qhf (x),f (hj)))))‖

�
∑

r1+r2=l1

Ωr1,h′(Qhf )Ωr2,h′

⎛
⎝ξ

⎛
⎝∑

j∈Z

Φ(h−1 · −j)v(Qhf (·), f (hj))

⎞
⎠
⎞
⎠ .

Due to the smoothness of ξ and (A.3), this expression can be further estimated by∑
r1+r2=l1

Ωr1,h′(Qhf ) sup
j

Ωr2,h′(Φ(h−1 · −j)v(Qhf (·), f (hj))). (4.18)

For the second term in this product, we employ the following estimate for r � 0:

‖Δr
h′Φ(h−1 · −j)v(Qhf (·), f (hj))‖∞ �

∑
t1+t2=r

Ωt1,h′(Φ(h−1 · −j))Ωt2,h′(v(Qhf (·), f (hj)))

which, by the smoothness of v and (A.3), can be bounded by∑
t1+t2=r

Ωt1,h′(Φ(h−1 · −j))Ωt2,h′(Qhf (·)). (4.19)

Due to the smoothness of Φ, this expression can be estimated by∑
t1+t2=r

h−t1(h′)t1Ωt2,h′(Qhf (·)). (4.20)

Combining (4.18) and (4.20) and using Lemma 4.4, we obtain

‖(Δl1
h′d

(M+1)
2 u|(Qhf (x),ξ(

∑
j∈Z

Φ(h−1x−j)v(Qhf (x),f (hj)))))‖ =O
⎛
⎝∑

i�l1

(h−1h′)l1−iΩi,h′(Qhf )

⎞
⎠ . (4.21)

Now we go on to estimate entries in the vector

Δ
l2
h′

⎡
⎣∑

j∈Z

Φ(h−1 · −j)v(Qhf (x), f (hj))

⎤
⎦

M+1

;

since |l2|1 � l, we can assume that only the first l entries of l2 are nonzero. The other M + 1 − l entries
can be bounded by O(‖Δhf ‖∞) by Lemma A1. For the other entries, we can use the estimate (4.20)
with r replaced by (l2)i. Combining this estimate with (4.21) finally yields the desired estimate to show
(4.16). The proof for (4.17) works analogously. �

Putting together the two previous estimates, we arrive at the following general result.
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Corollary 4.8 We have the proximity inequality

‖Δl
h′(Qhf (·) − Q̄hf (·))‖∞ =O

(
Ωm,h(f )

l∑
i=0

(h−1h′)l−iΩi,h′(Qhf )

)
. (4.22)

Proof. If we disregard the residue terms in the Taylor expansions of Qhf and Q̄hf , then the estimate
follows directly from Lemma 4.6. The residual terms are handled by Lemma 4.7 and by choosing
M � m + 1 + l. �

4.2 Main theorem

We are almost in a position to give a proof of our main Theorem 3.1. First, we need the following lemma
which states that the quasi-interpolants Qhf are uniformly smooth and independent of h.

Lemma 4.9 Assume that f ∈ Cα with α < m and α < s. Then, for l � α, we have

‖Δl
h′Qhf ‖∞ =O((h′)l), (4.23)

the implicit constant being independent of h.

Proof. We perform induction on l, the case l = 0 being trivial. Let us now assume that for all l′ < l, we
have an inequality of the form (4.23). We can estimate

‖Δl
h′Qhf ‖∞ � ‖Δl

h′(Qhf − Q̄hf )‖∞ + ‖Δl
h′Q̄hf ‖∞

which, by Corollary 4.8, can be bounded by

C

⎛
⎝∑

|s|1=m

∏
q

‖Δsq

h f ‖∞
∑
|r|1�l

(h−1h′)l−|r|1
∏

p

‖Δrp

h′ Qhf ‖∞

⎞
⎠+ ‖Δl

h′Q̄hf ‖∞.

By the smoothness of f , Lemma 4.3, and the induction hypothesis, we can bound the above quantity by

Chα−l(h′)l + Chα‖Δl
h′Qhf ‖∞ + ‖Δl

h′Q̄hf ‖∞,

with another constant C.
Utilizing the fact that ‖Δl

h′Q̄hf ‖∞ =O((h′)l), we arrive at the estimate

‖Δl
h′Qhf ‖∞ � Chα−l(h′)l + Chα‖Δl

h′Qhf ‖∞ + C̄(h′)l.

Now let h be small enough such that Chα � 1
2 . Then we have

1
2‖Δl

h′Qhf ‖∞ � Chα−l(h′)l + C̄(h′)l,

and this shows the desired assertion. �

We can finally conclude the proof of Theorem 3.1.
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Proof of Theorem 3.1. The idea is to use the linear theory which states that∥∥∥∥∥
(

d

dx

)l

(f − Q̄hf )

∥∥∥∥∥
∞

=O(hα−l),

together with a suitable estimate for the difference between the linear and the nonlinear approximation
procedure, namely, we will show that∥∥∥∥∥

(
d

dx

)l

(Qhf − Q̄hf )

∥∥∥∥∥
∞

=O(hα−l). (4.24)

In order to arrive at (4.24), we observe that the expression to be estimated can be written as∥∥∥∥∥
(

d

dx

)l

(Qhf − Q̄hf )

∥∥∥∥∥
∞

= lim
h′→0

(h′)−l‖Δl
h′(Qhf − Q̄hf )‖∞. (4.25)

By Corollary 4.8, the right-hand side in (4.25) can be estimated by a constant times

(h′)−lΩm,h(f )
l∑

i=0

(h−1h′)l−iΩi,h′(Qhf ). (4.26)

By Lemma 4.9, we can estimate

‖Δr
h′Qhf ‖∞ =O((h′)r), r = 0, . . . , l,

and hence
Ωi,h′(Qhf ) =O((h′)i) (4.27)

with an implicit constant independent of h and h′. Furthermore, due to the fact that f ∈ Cα and
Lemma 4.3, we have

Ωm,h(f ) =O(hα). (4.28)

Putting (4.27) and (4.28) into (4.26), we arrive at the estimate

(h′)−l‖Δl
h′(Qhf − Q̄hf )‖∞ =O(hα−l),

with the implicit constant independent of h′. By (4.25), this implies that∥∥∥∥∥
(

d

dx

)l (
Qhf − Q̄hf

)∥∥∥∥∥
∞

=O(hα−l).

This proves (4.24) and hence the theorem. �

5. Numerical experiments

In the present section, we conduct some simple numerical experiments which confirm our theoretical
findings. We will confine ourselves to the case M= SO(2), the manifold of orthogonal 2 × 2 matrices



866 P. GROHS

with a positive determinant. This is a compact Riemannian manifold and also a Lie group. Its tangent
bundle TM is given by SO(2) × so2, where so2 is the Lie algebra of 2 × 2 skew-symmetric matrices.

The exponential function of M is defined by the matrix exponential

expM(p, q) := p

( ∞∑
i=0

qi

i!

)
, (p, q) ∈ SO(2) × so2,

its (local) inverse is given by

logM(p, q) :=
∑
i=0

(−1)i (qp−1 − I)i

i
, p, q ∈ SO(2),

the usual matrix logarithm.
We compute the Riemannian centre of mass

avM((p(j))j, (w(j))j)

via the fixed-point iteration

xn+1 = expM

⎛
⎝xn,

∑
j

w(j) logM(xn, p(j))

⎞
⎠ .

In Karcher (1977), it is shown that this iterative procedure converges linearly to the centre of mass.

Remark 5.1 In our simple experiments, we have used the simple fixed-point iteration defined above.
For more numerically demanding applications, one could replace this iteration by a Newton-type
scheme (Groisser, 2004). Also it is possible to replace the exponential function by another, possibly
more efficiently computable, retraction; see, e.g., Absil et al. (2008).

Example 5.2 (Quasi-interpolation with cubic B-splines: smooth data) In this example, we set

Φ(x) := −1

6
B3(x − 1) + 4

3
B3(x) − 1

6
B3(x + 1),

with B3 the cardinal cubic B-spline function (Chui, 1992). In the linear case, this gives a well-known
quasi-interpolation scheme with polynomial reproduction m = 4 and smoothness s = 2. We study the
approximation speed for the smooth SO(2)-valued function

f (x) =
(

cos(sin(2x)) − sin(sin(2x))
sin(sin(2x)) cos(sin(2x))

)
(5.1)

and its first two derivatives; see Fig. 1. The error is measured in the Frobenius norm. Our experiment
confirms the approximation rates predicted by the theory.

Example 5.3 (Quasi-interpolation with cubic B-splines: nonsmooth data) In this example, we study the
same approximation procedure as in Example 5.2, this time with the nonsmooth function f : [0, 1] →
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Fig. 1. In this example, the function f (x) : [0, 1] → SO(2) given by (5.1) is approximated by nonlinear cubic B-spline quasi-
interpolation. Top left: f (x). A matrix in SO(2) is illustrated by its two orthogonal row vectors. Top right: approximation error,
plotted against h with log–log axis scaling. The dashed line represents the ruling line corresponding to an approximation rate h4.
Bottom left: approximation error of first derivatives, plotted against h with log–log axis scaling. The dashed line represents the
ruling line corresponding to an approximation rate h3. Bottom right: approximation error of second derivatives, plotted against h
with log–log axis scaling. The dashed line represents the ruling line corresponding to an approximation rate h2.

SO(2) defined via

f (x) =
(

cos(|x − 0.5|1/2) − sin(|x − 0.5|1/2)

sin(|x − 0.5|1/2) cos(|x − 0.5|1/2)

)
. (5.2)

The function f is only in C1/2 and therefore we only expect an approximation rate of 1
2 which is observed

in Fig. 2.

Example 5.4 (High-order approximation) In our final example, we consider quasi-interpolation with a
quintic B-spline function. With B5 the cardinal B-spline function of degree 5, we put

Φ(·) = 13

240
B5(x − 2) − 7

15
B5(x − 1) + 73

40
B5(x) − 7

15
B5(x + 1) + 13

240
B5(x + 2).

It can be shown that this function satisfies the assumptions (2.1)–(2.4) with m = 6 and s = 4. It follows
that the approximation error

f − Qhf

is expected to be of order h6. This is confirmed by the numerical experiment in Fig. 3, where the smooth
function f from Example 5.2 is approximated numerically.
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Fig. 2. In this example, the function f (x) : [0, 1] → SO(2) given by (5.2) is approximated by nonlinear cubic B-spline quasi-
interpolation. Left: f (x). Right: approximation error, plotted against h with log–log axis scaling. The dashed line represents the
ruling line corresponding to an approximation rate h1/2.
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Fig. 3. Approximation rate of the smooth function f given in (5.1) by quintic B-spline quasi-interpolation. The approximation
error is plotted against h with log–log axis scaling. The dashed line represents the ruling line corresponding to an approximation
rate h6; the plot suggests the expected approximation order h6.
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Appendix A. Additional technical results

Lemma A1 We have

χ[−N ,N](h
−1x − i)v(Qh(x), f (hj)) =O(‖Δhf (·)‖∞).

Proof. Let us assume for simplicity that M is embedded in Euclidean space. First note that

logM(x, y) = logM(x, x) + O(|x − y|) =O(|x − y|) (A.1)

since log(x, x) = 0. By Karcher (1977, 1.5.1), it holds that

|f (hj) − Qhf (x)| � d(f (hj), Qhf (x)) �
∣∣∣∣∣
∑
l∈Z

Φ(h−1x − l) logM(f (hl), f (hi))

∣∣∣∣∣ . (A.2)

This expression is only nonzero if

h−1x − l ∈ [−N , N].

Further, by assumption, we have

h−1x − i ∈ [−N , N],

which implies that |hl − hi| � h. Therefore, by (A.1) and (A.2), we obtain

χ[−N ,N](h
−1x − i)|f (hj) − Qhf (x)| =O(‖Δhf ‖∞).

The final estimate follows from noting that

|v(f (hj), Qhf (x))| � |f (hj) − Qhf (x)|,

which can be shown in the same fashion as (A.1). �

Lemma A2 Assume that g : R
k → R is a smooth function and f = (f1, . . . , fk) : R → R

k . Then

Δl
h′g(f(·)) =O

⎛
⎝∑

|r|1=l

∏
q

Ωrq,h′(fq)

⎞
⎠ (A.3)
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Proof. We use Taylor expansion of g at (f1(x), . . . , fk(x)):

g(f(x + y)) =
l−1∑
i=1

∑
s∈{1,...,k}i

di
sg|(f(x))(fs1(x + y) − fs1(x), . . . , fsi(x + y) − fsi(x))

+
∑

s∈{1,...,k}l

dl
sg|ξ(f(x+y))(fs1(x + y) − fs1(x), . . . , fsi(x + y) − fsi(x)).

Here, the expression di
sg denotes the partial derivative ∂s1 . . . ∂si g. The last term in the above expression

is clearly of order

O
⎛
⎝ ∑

s∈{1,...,k}l

∏
q

‖Δh′ fsq‖l
∞

⎞
⎠ for |y| � lh′,

and therefore we can estimate

Δl
h′g(f(x)) =

l−1∑
i=1

∑
s∈{1,...,k}i

Δl
h′di

sg|f(fs1(x + y) − fs1(x), . . . , fsi(x + y) − fsi(x))

+ O
⎛
⎝ ∑

s∈{1,...,k}l

∏
q

‖Δh′ fsq‖l
∞

⎞
⎠ . (A.4)

Each of the terms

Δl
h′di

sg|f(x)(fs1(x + y) − fs1(x), . . . , fsi(x + y) − fsi(x))

can be expressed as a finite linear combination of terms of the form

di
sg|f(x)(Δl1

h′ fs1(x1 + ·) − fs1(x1), . . . , Δli
h′ fsi(xi + ·) − fsi(xi))

with l1 + · · · + li = l and some (x1, . . . , xi) ∈ R
i. This gives the final bound. �

Lemma A3 We have the estimate

Δ
l1
h′δ

l2 v(Qh(x), f (hj)) =O(Ωl1,h′(Qhf )Ωl2,h(f )). (A.5)

Proof. Again we use Taylor expansion of the bivariate function v(x, y) together with arguments
akin to the proof of Lemma A2. Put j̄ = �h−1x − N	. Then hj̄ − hj =O(h) for all j such that
v(Qhf (x), f (hj)) |= 0. We have

v(Qhf (x), f (hj)) =
l1−1∑
i=0

d(i)
2 v|(Qhf (x),f (hj̄))([f (hj) − f (hj̄)]i)

+ d(l2)
2 v|(Qhf (x),ξ(f (hj)))([f (hj) − f (hj̄)]i).

For any i, we can write

δl2Δ
l1
h′d

(i)
2 v|(Qhf (x),f (hj̄))([f (hj) − f (hj̄)]i)
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as a finite linear combination of terms of the form

Δ
l1
h′d

(i)
2 v|(Qhf (x),f (hj̄))(δ

s[f (hj) − f (hj̄)]i)

with |s|1 = l2. This expression can be bounded by

‖Δl1
h′d

(i)
2 v|(Qhf (x),f (hj̄))‖

∑
|s|1=l2

∏
q

‖Δsq

h f ‖∞.

Furthermore, by Lemma A2,we have

‖Δl1
h′d

(i)
2 v|(Qhf (x),f (hj̄))‖ =O

⎛
⎝∑

|r|1=l1

∏
p

‖Δrp Qhf ‖∞

⎞
⎠ .

To handle the residual term, we note that we can bound the expression

δl2Δ
l1
h′d

(l2)
2 v|(Qhf (x),ξ(f (hj)))([f (hj) − f (hj̄)]i)

by terms of the form
Δ

l1
h′d

(l2)
2 v|(Qhf (x),ξ(f (hj)))([f (hj) − f (hj̄)]i),

which can in turn be bounded by

‖Δl1
h′d

(l2)
2 v|(Qhf (x),ξ(f (hj)))‖|f (hj) − f (hj̄)|l2 =O

⎛
⎝∑

|r|1=l1

∏
p

‖Δrp Qhf ‖∞‖Δhf ‖l2∞

⎞
⎠ .

We have used Lemma A2 and the fact that hj − hj̄ =O(h). Summing these estimates gives the desired
result. �

Appendix B. Some basic notions of Riemannian geometry

For the convenience of the reader, we summarize a few basic definitions in Riemannian geometry.
Everything covered here is completely elementary and can be found in any textbook on differential
geometry, such as the work of DoCarmo (1992). This appendix is meant to help the reader who is
not familiar with Riemannian geometry with the understanding of the results of this paper, especially
Section 3.

B.1 Smooth manifolds and tangent space

We start with a smooth manifold M, which can be defined as a Hausdorff topological space which
‘locally looks like Euclidean space’ in the sense that there exists a family of charts γ : Uγ ⊂M→
γ (Uγ ) ⊂ R

d such that Uγ is an open set and

• the functions γ : Uγ → γ (Uγ ) are bijective,

• the composition of any two charts γ1 ◦ γ −1
2 is smooth as a function defined on a subset of R

d

mapping into R
d ,

• for each p ∈M there exists a chart γ such that p ∈ Uγ .
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A smooth manifold possesses enough structure to define the notion of a smooth curve; a curve c(t) :
[−1, 1] →M is smooth if the mapping γ ◦ c(t) : [−1, 1] → R

d is smooth for all charts whose domain
of definition contains the image of c in M. For an arbitrary point p ∈M, one can define the tangent
space in p as consisting of all smooth curves c : [−1, 1] →M with c(0) = p modulo the equivalence
relation c1 ∼ c2 :⇔ (d/dt)γ ◦ c1(0) = (d/dt)γ ◦ c2(0) for one (and then all) chart(s) γ with p ∈ Uγ . We
shall denote the equivalence class of a curve c by [c]. This means that tangent vectors in p are by
definition velocities of curves through p. These form a vector space TpM, the tangent space of M in p.
The full tangent bundle is simply the union of all spaces TpM over all points p: TM :=⋃p∈M TpM.
Sometimes, we use the somewhat imprecise notation (p, u) for a tangent vector attached to p ∈M, in
order to mark its base point p.

Now if we have two manifolds M1 and M2 and a function f : M1 →M2, then we can define the
derivative of f as follows:

df :

{
TM1 → TM2,

[c] ∈ TpM1 �→ [f ◦ c] ∈ Tf (p)M2.

Restricted to the tangent space TpM1 at a point p ∈M1, the mapping df is linear. We denote this
restriction by df |p : TpM1 → Tf (p)M2. Using these notions, it is possible to equip the tangent space
TM of a smooth manifold M with the structure of a smooth manifold: given any chart γ : Uγ → R

d ,
one can define the induced chart (γ , dγ ) : TUγ → TR

d ∼= R
2d by mapping a tangent vector [c] ∈ TpM

to the tangent vector (d/dt)(γ ◦ c)(0) in R
d , attached to γ (p) ∈ R

d . It can be shown that the system of
induced charts equips TM with the structure of a smooth manifold. Therefore, one can also speak of
iterated tangent spaces TlM which carry the structure of a smooth manifold. The tangent space TM
carries the structure of a vector bundle, which means that locally it looks like a parametrized family of
vector spaces attached to different points. We denote the bundle projection π : TM→M defined by
π([c]) := c(0). It projects a tangent vector onto its base point.

B.2 Riemannian structure

Intuitively, a Riemannian manifold is a smooth manifold where one can measure distances much in the
same way as in Euclidean space. For instance, to measure the length of a curve c : [a, b] →M, one
can define the length of c as the integral

∫ b
a 〈dc(t), dc(t)〉Tc(t)Mdt. For this definition of arc length, it is

necessary to measure lengths of velocity vectors. This motivates the definition of a Riemannian mani-
fold as a smooth manifold M, together with a smooth family (〈·, ·〉p)p∈M of Euclidean inner products
〈·, ·〉p on the vector spaces TpM. Often one uses the notation 〈·, ·〉p := g(·, ·)p. The expression g can be
interpreted as a family of 2-tensors, parametrized by p ∈M. Therefore, one calls g a (symmetric) (0, 2)-
tensor field and refers to the pair (M, g) as a Riemannian manifold. In a Riemannian manifold, we are
able to measure the length of a curve c connecting two points p, q ∈M and this readily introduces a
notion of induced distance d(p, q) between two points p, q ∈M as the infimal arc length over all curves
connecting p and q.

A geodesic can be defined as being the curve with minimal arc length connecting two points. It can
be shown that this definition is locally unique. Geodesics satisfy a second-order autonomous ODE and
are as such fully determined by their initial value and velocity. Therefore, one can define the exponential
mapping expM which maps a tangent vector [c], attached to p ∈M, to the point expM(p) obtained from
following the unique geodesic emanating from p with initial velocity [c] for one time instant. As such,
the exponential mapping is a mapping from TM to M. It can be shown that locally there exists an
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inverse to expM which maps two points p, q ∈M to the initial velocity of the geodesic emanating from
p and connecting p and q. This mapping is called the logarithm mapping and it is a mapping from (a
subset of) M × M to TM.

Another important concept in Riemannian geometry is the Levi-Civita connection which provides
a geometric way to identify tangent spaces attached to different points. We refer to DoCarmo (1992)
for details and simply mention that the Levi-Civita connection allows vector fields (i.e., mappings V :
M→ TM, π(V(p)) = p) to be differentiated along curves c : [a, b] →M yielding the expression ∇c′V ,
where c′ denotes the differential of c.


