6 research outputs found

    Computer-Aided Geometry Modeling

    Get PDF
    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design

    Parallel implementation of a virtual reality system on a transputer architecture

    Get PDF
    A Virtual Reality is a computer model of an environment, actual or imagined, presented to a user in as realistic a fashion as possible. Stereo goggles may be used to provide the user with a view of the modelled environment from within the environment, while a data-glove is used to interact with the environment. To simulate reality on a computer, the machine has to produce realistic images rapidly. Such a requirement usually necessitates expensive equipment. This thesis presents an implementation of a virtual reality system on a transputer architecture. The system is general, and is intended to provide support for the development of various virtual environments. The three main components of the system are the output device drivers, the input device drivers, and the virtual world kernel. This last component is responsible for the simulation of the virtual world. The rendering system is described in detail. Various methods for implementing the components of the graphics pipeline are discussed. These are then generalised to make use of the facilities provided by the transputer processor for parallel processing. A number of different decomposition techniques are implemented and compared. The emphasis in this section is on the speed at which the world can be rendered, and the interaction latency involved. In the best case, where almost linear speedup is obtained, a world containing over 250 polygons is rendered at 32 frames/second. The bandwidth of the transputer links is the major factor limiting speedup. A description is given of an input device driver which makes use of a powerglove. Techniques for overcoming the limitations of this device, and for interacting with the virtual world, are discussed. The virtual world kernel is designed to make extensive use of the parallel processing facilities provided by transputers. It is capable of providing support for mUltiple worlds concurrently, and for multiple users interacting with these worlds. Two applications are described that were successfully implemented using this system. The design of the system is compared with other recently developed virtual reality systems. Features that are common or advantageous in each of the systems are discussed. The system described in this thesis compares favourably, particularly in its use of parallel processors.KMBT_22

    Early Stages of Precipitation In Aluminum Alloys by First-Principles and Machine-Learning Atomistic Simulations

    Get PDF
    Age hardening induced by the formation of (semi)-coherent precipitate phases is crucial for the processing and final properties of the widely used Al-6000 alloys despite the early stages of precipitation are still far from being fully understood. This crucial step in the technology of Al-based alloys is studied by means of multi-scale simulations that include first-principles atomistic modeling, surrogate models based on statistical learning, as well as kinetic Monte Carlo and continuum elasticity models to bridge time and length scales. We begin with an analysis of the energetics of nanometric precipitates of the meta-stable beta'' phases (that play a crucial role in this system) identifying the bulk, elastic strain and interface energies that contribute to the stability of a nucleating cluster. Results show that needle-shape precipitates are unstable to growth even at the smallest size beta'' formula unit. This study made it possible to develop a semi-quantitative classical nucleation theory model, including also elastic strain energy, that captures the trends in precipitate energy versus size and composition. This validates the use of mesoscale models to assess stability and interactions of beta'' precipitates. Studies of smaller 3D clusters also show stability relative to the solid solution state, indicating that the early stages of precipitation may be diffusion-limited. Our results thus point toward the need for a systematic study of the energetics of aggregates in the Guinier-Preston zone regime, and the interactions between those aggregates and vacancies and/or trace elements to understand and fine-tune the behavior of Al-6000 alloys in the early stages of precipitation. To enable full atomistic-level simulations of the whole precipitation sequence of this important alloy system, two Neural Network (NN) potentials have been created by representing just 2-body interactions and including also the 3-body interactions. For the latter, we developed an automatic scheme to determine the most appropriate representation of the structural features of this ternary alloy. Training of the NN uses an extensive database of energies and forces computed using Density Functional Theory, including complex precipitate phases. The NN potentials accurately reproduce most of the properties of pure Al which are relevant to the mechanical behavior and formation energies of small solute clusters and precipitates that are required for modeling the precipitation and mechanical strengthening. This success not only enables future detailed studies of Al-Mg-Si but also highlights the ability of machine learning methods to generate useful potentials in complex alloy systems. Finally, we used this NN potential to implement a kinetic Monte Carlo scheme to study the formation of pre-precipitation clusters. While quantitative accuracy will probably require further refinement of its training set, to achieve a more complete description of the interactions between solute atoms and vacancies, we could already observe some of the key mechanisms the determine the ultra-fast formation of aggregates. This work lays the foundations for a thorough investigation of the behavior of Al-6000 alloys over time and size scales that are technologically relevant and demonstrates a combination of atomistic modeling techniques that could be adapted to a large number of similar metallic alloys
    corecore