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Dedicated to Silvia

I suppose the best way to find out
where you've come from

is to find out where you’re going,
and then work backwards.

— Doctor Who, “City of Death”






ABSTRACT

ge hardening induced by the formation of (semi)-coherent pre-

cipitate phases is crucial for the processing and final properties
of the widely used Al-6000 alloys. The early stages of precipitation
are particularly important from the fundamental and technological
side, but are still far from being fully understood. In this thesis, this
crucial step in the technology of Al-based alloys is studied by means
of multi-scale simulations that include first-principles atomistic mod-
elling, surrogate models based on statistical learning, as well as ki-
netic Monte Carlo and continuum elasticity models. All with the
purpose of bridging time and length scales. We begin with an anal-
ysis of the energetics of nanometric precipitates of the meta-stable
3" phases (that are understood to play a crucial role in this system).
This analysis allows us to identify the bulk, elastic strain and inter-
face energies that contribute to the stability of a nucleating cluster.
The results of this analysis show that needle-shape precipitates are
unstable to growth even at the smallest size 3” formula unit and
that there is no energy barrier to growth. This study made it possi-
ble to develop a semi-quantitative classical nucleation theory model,
including also elastic strain energy, that captures the trends in pre-
cipitate energy versus size and composition. This validates the use
of mesoscale models to assess stability and interactions of 3" precipi-
tates. Studies of smaller 3D clusters also show stability relative to the
solid solution state, indicating that the early stages of precipitation
may be diffusion-limited.

Our results thus point toward the need for a systematic study of
the energetics of aggregates in the Guinier-Preston zone regime. In
particular, a study of the interactions between aggregates and vacan-
cies and/or trace elements is required in the alloy in order to un-
derstand and fine-tune the behaviour of Al-6000 alloys in the early
stages of precipitation. To enable full atomistic-level simulations of
the whole precipitation sequence for this important alloy system, two
Neural Network (NN) potentials have been created by representing
just 2-body interactions and by also including 3-body terms. In order
to simplify the construction of NN potentials, we developed an au-
tomatic scheme to determine the most appropriate representation of
the structural features of this ternary alloy.

Training of the NN uses an extensive database of energies and
forces computed using first-principles Density Functional Theory, in-
cluding complex precipitate phases. The Neural Network potentials
accurately reproduce most of the properties of pure Al which are



relevant to the mechanical behaviour as well as the heat of solution,
solute-solute and solute-vacancy interaction energies, and formation
energies for small solute clusters and precipitates. An accurate model
that reproduces all these properties is required for modelling the
early stage of precipitation and mechanical strengthening. This suc-
cess does not only enable future detailed studies of Al-Mg-Si but also
highlights the ability of machine learning methods to generate useful
potentials in complex alloy systems.

Finally, we used this NN potential to implement a kinetic Monte
Carlo scheme to study the formation of pre-precipitation clusters.
While quantitative accuracy will probably require further refinement
of the training set for the NN, to achieve a more complete description
of the interactions between solute atoms and vacancies, we could al-
ready observe some of the key mechanisms that determine the ultra-
fast formation of aggregates of a handful of solute atoms. This work
lays the foundations for a thorough investigation of the behaviour of
Al-6000 alloys over time and size scales that are technologically rel-
evant, and demonstrates a combination of atomistic modelling tech-
niques that could be adapted and used to model a large number of
similar metallic alloys.

KEYWORDS  Aluminium alloy, precipitation, natural ageing, arti-
ficial ageing, first principles simulations, Al-Mg-Si system, density
functional theory, neural network potential, deep learning, kinetic
Monte Carlo, unsupervised machine learning, long-range interactions,
nucleation theory, molecular dynamics
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SOMMARIO

" indurimento per invecchiamento indotto dalla formazione di fa-
L si di precipitato (semi-)coerenti e cruciale per la lavorazione e le
proprieta finali delle ampiamente utilizzate leghe Al-6000. Le prime
fasi delle precipitazioni sono particolarmente importanti dal punto
di vista fondamentale e tecnologico, ma sono ancora ben lungi dal-
I'essere pienamente comprese. In questa tesi, questo passo cruciale
nella tecnologia delle leghe a base di Al é studiato attraverso simula-
zioni a multiscala che includono la modellazione atomistica da primi
principi, modelli surrogati basati sull’apprendimento statistico, non-
ché modelli elastici del continuum e modelli cinetici Monte Carlo per
superare le scale di tempo e dimensione. Iniziamo con un’analisi
energetica dei precipitati nanometrici delle fasi meta-stabili 3" (che
si ritiene svolgano un ruolo cruciale in questo sistema) identificando
le energie di deformazione elastica, di interfaccia e di formazione che
contribuiscono alla stabilita di un agglomerato di nucleazione.

I risultati mostrano che i precipitati 3" a forma di ago sono pre-
cari per la crescita anche nella pitt piccola dimensione, un’unita di
formula, cioe non vi & nessuna barriera energetica alla crescita. Le
piccole differenze tra le diverse composizioni indicano la necessita di
studiare una possibile ricostruzione dell’interfaccia precipitato/matri-
ce. Un approccio classico semi-quantitativo basato sulla teoria della
nucleazione, che include 1'energia di deformazione elastica, riesce a
catturare le tendenze dell’energia di precipitazione in funzione delle
dimensioni e della composizione. Questo convalida 1'uso di modelli
in scala mesoscopica per valutare la stabilita e le interazioni dei pre-
cipitati 3”. Gli studi sui piu piccoli agglomerati 3D mostrano anche
maggiore stabilita rispetto allo stato della soluzione solida, indican-
do che le fasi iniziali delle precipitazioni possono essere limitate alla
diffusione.

I nostri risultati indicano quindi la necessita di uno studio siste-
matico dell’energia degli aggregati nel regime delle zona di Guinier-
Preston, e delle interazioni tra questi aggregati e le vacanze e/o oli-
goelementi presenti nella lega per capire e perfezionare il compor-
tamento delle Al-6000 leghe nelle prime fasi di precipitazione. Per
consentire una completa simulazione a livello atomistico dell’intera
sequenza di precipitazione di questo importante sistema ternario, so-
no stati creati due potenziali con un’infrastuttura basata su una rete
neurale, rappresentando solo interazioni a 2 corpi e includendo an-
che le interazioni a 3 corpi. Per quest’ultimo, abbiamo sviluppato
uno schema automatico per determinare la rappresentazione piu ap-

vii
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propriata delle caratteristiche strutturali di questa lega ternaria. L’ad-
destramento della rete neurale utilizza un ampio catalogo di energie
e forze calcolate utilizzando la teoria a principi primi del funzionale
della densita comprendendo le fasi complesse del precipitato. I po-
tenziali ottenuti tramite rete neurale riproducono accuratamente la
maggior parte delle proprieta del puro Al che sono rilevanti per il
comportamento meccanico cosi come il calore di soluzione, le ener-
gie di interazione soluto-soluto e soluto-vacanza e le energie di for-
mazione di piccoli gruppi e precipitati solitari, che sono necessari per
modellare la fase iniziale di precipitazione e d’indurimento meccani-
co. Questo successo non solo consente futuri studi piti dettagliati sul
sistema Al-Mg-Si, ma mette anche in evidenza la capacita dei metodi
di apprendimento automatico per generare potenziali utili in sistemi
di leghe complesse.

Infine, abbiamo usato questo potenziale basato su reti nuerali per
implementare uno schema Monte Carlo cinetico per studiare la forma-
zione di aggregati di pre-precipitazione. Mentre la precisione quanti-
tativa probabilmente richiedera un ulteriore affinamento del catalogo
di apprendimento, per ottenere una descrizione piti completa delle in-
terazioni tra atomi di soluto e vacanze, abbiamo gid potuto osservare
alcuni dei meccanismi chiave che determinano 1'ultra-veloce forma-
zione di aggregati per un gruppetto di atomi solubili. Questo lavoro
getta le basi per un’indagine approfondita del comportamento delle
leghe Al-6000 nel tempo e su una scala dimensionale rilevanti dal
punto di vista tecnologico, e dimostra una combinazione di tecniche
di modellizzazione atomistica che potrebbero essere adattate per un
gran numero di simili leghe metalliche.

PAROLE CHIAVI Leghe di alluminio, precipitazione, invecchiamen-
to naturale, invecchiamento artificiale, simulazioni da principi primi,
sistema Al-Mg-Si, teoria del funzionale della densita, potenziale con
rete neurale, apprendimento profondo, Monte Carlo cinetico, appren-
dimento macchina non supervisionato, interazioni a lungo raggio,
teoria della nucleazione, dinamica molecolare.
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ALUMINIUM ALLOYS TECHNOLOGY

Contents
[1.1 Overview and applications| 1
[1.2 Al-Mg-5i alloys| 1

[1.2.1 Precipitation sequence] 2

1.1 OVERVIEW AND APPLICATIONS

luminium represents the second most extruded metal in the

world, exceeded only by iron, despite the fact that its produc-
tion became common only in the late 19th century owing to fun-
damental breakthroughs in the technologies for its extraction. Alu-
minium is essential because of its light weight, its weldability, and
because of exceptional increase in strength that can be obtained by
precipitation hardening. These factors combined with a compara-
tively low price make it commercially very attractive and widely used.
As a pure metal, Aluminium is soft and has little strength or resis-
tance to plastic deformation. However, as already mentioned, it can
provide the strength of steel at only half of the weight, if alloyed
with small amounts of other elements and with appropriate pre-aging
treatments.[1-3] In fact, because of the mechanical properties of these
alloys can be modulated by heat treatment, these alloys can be easily
shaped into a given form and then rapidly strengthened. Aluminium
alloys have many applications that include fuel-efficient transporta-
tion (e.g., it is increasingly used in automotive and aerospace indus-
tries for critical structure applications due to their excellent castability
and corrosion resistance and in environmental protection due to their
good strength /weight ratio), building construction and food packag-
ing.

1.2 AL-MG-SI ALLOYS

A widely used family of Al alloys is the 6000 series. Although it is
not among the strongest aluminium alloys, it constitutes a high share
of the aluminium products in the world. Since 1989, about 90% of the
tonnage extruded in Western Europe, was (AIMgSi) alloys.[4), 5] The
6xxx Al series is characterized by including Si and Mg atoms, in the
range of 0.5-1 wt%, usually with a Si/Mg ratio larger than one. The
deliberate addition of these solute atoms induces an age hardening
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through nanometer-sized precipitates (e.g stable phases, metastable
phases, or Guinier-Preston zones), which act as obstacles to disloca-
tion movement in the bulk matrix, and which thus strengthen the
aluminium by a factor of 2 or more.

Such alloys have an excess of silicon relative to stable phases (Mg, S1).
In fact, studies in the 9os by a three-dimensional atom probe (3DAP)
and transmission electron microscopy (TEM) revealed that the atomic
ratio in the co-clusters, Guinier-Preston (GP) zones and 3" is close to
that of the alloy composition, namely close to 1 rather than 2.[1 |2, |6
In Fig. [1} we can appreciate the conformation of these precipitates
seen through high-resolution TEM analysis.

Figure 1: High-resolution TEM observation of (needle) precipitates
in 6061-Al alloy after artificial ageing. A: Lattice image at
high magnification shows a clear semi-coherent 3" phase
and a not very clear and almost coherent phase. B, C, and
D: Comparison of three precipitation states: no further treat-
ment (Fig. B), after heating up to 300 °C at 15 Ks~! (Fig. C),
and after heating up to 400 °C at 15 Ks~! (Fig. D). We can
note in Fig. B as numerous (3" precipitates are present in the
shape of thin needles. These are even smaller after heating
up to 300 °C up to evolve into post-f" phase with larger
sizes after heating up to 400 °C. Reproduced from Ref. .

1.2.1 Precipitation sequence

In commercial 6ooo-series Al alloys precipitation starts at room tem-
perature shortly after quenching. This is a “natural aging” effect that
is usually undesirable. “Artificial aging” at elevated temperature is
then used to achieve the desired precipitate type(s) and sizes. At the
present time, the accepted precipitation sequence in the Al-Mg-5i
alloy system[9] can be schematized to:

SSS — Mg- and Si- atomic clusters — GP-zones — " — ', Uz,
U2, B’ — B (stable),
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where SSS refers to the initial Supersaturated Solid Solution (SSS).
Some authors call the GP zones as GP-1 zones and the 3" phases as
GP-2 zones [10]. Recently, one possible structure for the GP-zone and
for B” phase was proposed by high-resolution electron microscopy
and quantitative electron diffraction. 7]. These studies showed
that such GP-zones have a unit cell, which is only slightly different
from the one of the 3" phase, fully coherent with the matrix and with
atomic positions very close to those of the Al-matrix. The study of 3"
phase showed that its ideal composition has a Mg/Si ratio close to 1
proposing MgsSig as a possible form. It has a needle shaped habit
aligned along (100) Al that produces streaks parallel to it. [8] Sub-
sequent studies suggested two other forms for the 3" phase, where
Mg/Si ratio is still around 1 (e.g Mg5A1,Si4 and Mg4A135i4),
proving that the most stable form is Mg5Al1,Si4 and assuming such
composition as that of f”-phase. In the transformation sequence,
the next phases after the GP-zones and the 3" phase are the 3/, Uz,
Uz, and B’ phase. These have hexagonal rods structure and a lower
Mg/Si ratio than the equilibrium {3 phase. Moreover, their struc-
ture is related to the ones of previous stages through a similar ar-

rangement of silicon atoms.[6} [13H15]

SSS Si Clusters 6P—zones B*—phase B(Mg,Si)

Figure 2: Sketch of precipitation sequence in the Al-6xxx alloys.

These other phases are still important in the process of precipita-
tion, in the commercial Al alloys 6xxx-series the most effective hard-
ening phase under aged conditions is 3" (or a combination of fully co-
herent GP-zones and semi-coherent 3" ).[16] Indeed, such B phase
existing as nano-needles at high number densities provides optimal
material strength by hindering the movement of dislocations.

These finite-size nano-needles have sizes that range in size from
200 to 1000 A in length, and 60 Ain diameter. So, a model that
allows us to understand the nucleation process of the 3" phase, based
on a prediction for small clusters (e.g. few formula units) and that is
extensible to clusters of these sizes, is of fundamental importance.

While considerable progress has been made in understanding the
structure of the 3" phase and the behavior of the SSSS , little is
known on the early stages of the aging mechanism, and in particular
on the thermodynamics of the initial clustering of solutes to form the
precipitate 6, [7]. Little quantitative data has been, indeed, pub-
lished to explain the details of changes in hardness versus annealing
time. The dependence of hardness and nanostructure on the storage
time at room temperature (RT), where the GP-zone and the 3 phase

Challenges
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are stable, is still an open problem.[7, 19] Because of the different
time scales of the phenomena involved and because of the fundamen-
tal role of the environment variables, the nucleation mechanisms that
direct the various steps are still difficult to characterize, and a con-
siderable amount of confusion remains concerning the “clustering”
processes. Such knowledge is crucial to gain better control over the
balance between natural and artificial aging. The aim of this thesis
work was to investigate the nature of the nucleation mechanisms of
GP-zones and B” phase by an atomistic study of the clustering bar-
riers (i.e. due to the growth of a semi-coherent surface), and the
associated thermodynamic forces.

Because of the complexity of the entire precipitation sequence, that
involves both the computational cost and the treatment of the differ-
ent time scales, the need for more than one computational method to
achieve a meaningful description is unavoidable. For this reason we
have used different frameworks to understand the nucleation mech-
anisms, as explained in Chap. |2l In particular, our approach to the
problem has been to subdivide the entire clustering sequence into
two sub-sequences, where the subdivision element is one formula
unit (FU) of B” phase. In this way we have been able to study the
clustering post-B”" phase by a classical semi-quantitative nucleation
theory approach, as explained in Chap. [3, and pre-f” phase by a
semi-ab-initio Kinetic Monte Carlo (KMC) driven by a Neural Net-
work Potential (NN Potential) , as explained in the Chap.

EA

Kinetic Monte Carlo

&

Neural Network Potential semi-Classical NHCleatiTig

Figure 3: How to handle the entire precipitation sequence.

OUTLINE

The rest of the thesis is organized as follows. After a brief introduc-
tion about ab-initio atomistic simulations (e.g molecular dynamics and
kinetic Monte Carlo) and machine-learning techniques in Chapter
Chapter [3| will be discussed, which contains a detailed analysis of
the clustering post-” phase. It will expose the important interplay
among composition-dependent bulk, interface, and elastic strain en-
ergies in determining nanoscale precipitate stability and growth, and
the limitations of such model (adapted from ref. [20]). In Chapter 4]
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we discuss how it is possible to use ML to overcome the challenges
proposed by this system and how the achievement of a NN potential
based on these concepts could be the new frontier for the treatment
of this ternary system and for other (even non-)aluminium-kind al-
loys (adapted from refs. [21, |22]]). In Chapter |5, we adopt the NN
potential obtained to drive a KMC dynamics. This analysis can give
us preliminary and promising results on the first sub-sequence of
precipitation. Finally, in Chapter [l we draw our conclusions.
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eductive scientific reasoning underlies experiments, theory, and,

with the advent of the computer, simulations. Simulations and
modelling arise as a way of overcoming the intrinsic limitations of
mathematical calculations, associated with the complexity of natu-
ral phenomena, and they make room for another scientific discipline
based on numerical calculations.

Numerical models have been able to overcome the limits of over
simplified /approximate analytical theories. In the last decades, in
materials research as in other fields, simulations have seen a boost
of computational resources (e.g intrinsic CPU power) and algorithms
performance. That has allowed us to adopt (increasingly) sophisti-
cated and complete theories in the description of physical phenom-
ena.

The emergence of CPU demanding theories based purely on first
principles applied to a wide branch of complex systems and extensive
problems, such as the resolution of Schrédinger equation for a many-
body system, was in turn one of main driver of this process. Obvi-
ously, this boost in computational science was not sufficient to enable
solving this equation in its most explicit form. As a consequence,
physical deductions and approximations that simplify the treatment
of the problem are still highly employed. The most famous, in the
atomistic study of metals and alloys, is certainly the one proposed by
Kohn-Sham and it is based on the density of the ground state, the
so-called Density Functional Theory (DFT). In the Sec. it will
be presented with more attention.
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As approximated method to solve Schrédinger’s equation, DFT has
proved to be remarkably accurate in describing structural and elec-
tronic properties of molecular and condensed matter systems, despite
its computational simplicity. For these reasons, it is also used as a tool
to predict not only static but even dynamical properties. It interfaces
well with two big approaches based on different principles according
to statistical mechanics: Molecular Dynamics (MD) (also called ab-
initio Molecular Dynamics (AIMD)) and kinetic Monte Carlo. They
are treated respectively in the Secs. [2.1]and

MD simulations solve the equations of motion based on the Hamil-
tonian among atoms in an initial configuration in order to find out
the next configuration. [23] Vice versa, the kinetic- Monte Carlo
method is a simple and straightforward technique, based on stochas-
tic approaches that relies on Transition State Theory (TST) [24]. Un-
like the simple Monte Carlo, it is applicable to evaluate even out-of-
equilibrium systems and it is possible to extrapolate dynamic proper-
ties.

An issue that stands out for both approaches is the amount of con-
figurations generated. The large amount of easily produced informa-
tion is hard to process manually, which triggered widespread adop-
tion of Machine Learning to process the outcome of simulations to ex-
tract essential information. The branch of computer science that deals
with this procedure is commonly called Machine-Learning (ML).

In sec. we will give a more detailed explanation on how this
new discipline can be applied to the study of materials, and in Chap.
l4] we will show the particular case of 6xxx Al alloys.

2.1 MOLECULAR DYNAMICS

Molecular dynamics (MD) computes the movement of atoms by in-
tegrating the evolution of positions, velocities, and orientations with
respect to time. It describes the atomistic behaviour of matter as a
classical system composed of N interacting particles, thus MD given
a Hamiltonian H, which is in most cases time-independent, produces
a series of configurations based on the initial configuration and veloc-
ities. Their evolution over time is performed by solving Hamilton’s
equations:

_OH(p,T) _ pi

Lo (1)
. _oH(p,r) v .
Pi= aTi B aTi oY

where 1;, p; and F; are respectively the position, momentum and
force associated with the i-th particle, V is the interatomic potential
and H is the classical N-particle Hamiltonian.
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The dynamics thus produced in turn is studied through a ther-
modynamic description. A thermodynamic description is character-
ized by a set of parameters, the so-called thermodynamic observables,
which constitute the macroscopic observables of the system. In case
we wish to calculate a macroscopic observable %, of our system,
we need to properly conceive an average of the motion (position or
velocity) of the particles, which is an usual way of trying to extract
a significant and unique value from an infinite number of irregularly
moving particles. Now, the question is how can MD meets the needs
of the real-world experiments, which normally occur in a finite time .
In a mathematical formalism, it translates that the averaged features
observed must be evaluated during that interval as follows:

Gone = A7) = - | atAm(n), ), @)

where A(p(t),r(t)) is a physical observable. The main purpose of
the MD is to compare itself with the experiments both to understand
and justify, and even to predict them, and on this note the Ergodic
Hypothesis (EH) comes to the rescue. If the EH is justified then
A(t) = (A)NvE as T — M, where M is a large number and (A)NvE
is the micro-canonical ensemble average of A.

Depending on the level of detail of the Potential Energy Surface
(PES) , the Hamiltonian in Eq. takes on different forms. It is
mainly divided into two macro-groups that are accepted in the sci-
entific world under the names of Force Field MD (FF-MD) and ab-
initio MD (AIMD). The first macro-group includes all those methods
where the interactions are defined by several parameters normally
tuned from experiments, or more accurate simulations, to reproduce
defined systems. In this group, we can include methods like classical
FE, polarizable FF, reactive FF, and coarse-grained FF. The major dis-
advantage of most empirical FFs is the fact that the predictive power
of a FF is guaranteed only for those systems and thermodynamic
conditions for which they were designed. All the other methods,
where the forces are computed on-the-fly by accurate electronic struc-
ture calculations and without relying on any adjustable parameter
are included in the second group, such as Density Functional Theory
(Local Density Approximation (LDA) [25-27] , Generalised Gradient
Approximation (GGA) [27-29] , Hybrid Exchange-Correlation func-
tionals [26) 30-32]]), many-bodies perturbation theory (Hartree Fock
(HF) [33} 341 , Moller-Plesset (MP) [35, [36] , and Coupled Cluster
(CO) [37-39l ), Configuration Interaction (CI) (Standard, Quadratic,
and Full) [40] and Quantum chemistry composite methods[41), 42].

In order to obtain a realistic time evolution of these alloys, it is
mandatory to describe properly the interatomic interactions. The the-
ory that best relates between computational cost and accuracy of PES,
in this immense theoretical scheme, is the DFT. For these reasons, this

9
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is method that will be adopted in the Chaps. IV, V and VI to sample
the PES.

2.1.1  Ab-initio Molecular Dynamics

This approach unifies Hamilton’s and Schrodinger’s equations, al-
lowing to deal with complex simulations without worrying about the
development of empirical potential models. There are two types of
approaches: Born-Oppenheimer (BO) MD and Car-Parinello (CP) MD
[43]. We discuss the former in the following section.

Born Oppenheimer Approximation

In a many-body system, the Schrodinger equation is the one which
regulates the behaviour of all the particles involved (nuclei and elec-
trons)

A

.. 0
H\y(rh"' )rN>R1>"' )RM)t) :lhaW(r1,"' )rN>R1)"' )RMat)a

(3)
in which H is the Hamiltonian, composed by a kinetic energy oper-
ator and a potential operator. W(ry,r2, - ,rn, Ry, Ry, ;Rpm, 1) is

the wave function which describes the quantum-mechanical system,
r; are the space coordinates of the i-th electron (for a system with N
electrons), and R; are the space coordinates of the j-th nucleus (for a
system with M nuclei).

The many-body Hamiltonian describing a system of interacting elec-
trons and nuclei is

]:[ = —T_e+Tn+\7ee +\7nn+ven

_ h’z VZ
= 2V N

ZIZ]€ ZI€
ZZ|r1—r] ZZ|R1—R]| Z|r — Ryl
(4)

with Te and T, the sums of the kinetic energy terms of both elec-
trons (with mass m. and charge —e) and nuclei (with mass My and
charge Zie) and Vee, Viin, and Ven the sums of the Coulomb inter-
action terms among two electrons, two nuclei, and one electron and
one nucleus. If the Hamiltonian is time-independent, the Schrodinger
equation can be solved by the method of the separation of variables
and the properties of the interacting system in principle may be de-
termined from the secular equation

AY(r,R) = EY(r,R), (5)
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where E is the total energy of the (N + M)-particle system, and r = {r;}
and R = {R;} are the full set of electronic and nuclear coordinates.
The solution for the time-dependent function is simply written by
adding a phase factor. The expectation values of any operator can be
therefore obtained without the knowledge of this phase factor since
it cancels out. However, for many-particle systems the solution of Eq.
has not yet a direct resolution. A powerful and accepted way to
simplify Eq. [5|is to adopt the so-called Born Oppenheimer approxi-
mation.
The Born Oppenheimer approximation considers the motion of the
electrons and nuclei decoupled. Since the nuclei are much heavier
than the electrons their movement is much slower than the electrons
one,

b M 02 03, ©6)

te me
with ty the typical nuclear motion time-scale and t, the electronic one.
Then the nuclear coordinates are described as external terms which
vary slowly. This means that for each instantaneous configuration of
the nuclei the electrons are approximately in a stationary state. From
a mathematical point of view, it is possible to separate the electronic
motion from the ionic one, factorizing the wave function in an ionic
part ®(R) and an electronic one (r, R):

¥(r,R) = ®(R)(r,R). (7)
Then P (r,R) solves the following electronic equation:
]:lelp(n R) = [Te =+ Vee + \A/en(R)]lp(n R) = €(R)1l)(f> R)) (8)

in which \A/en)ext(R) assumes the role of an external potential, since
the coordinates of nuclei result as fixed parameters. Eq. [8| can be
derived by substituting the wavefunction equation[7in[5} The details
of the formal derivation are described in Refs. [44} 45]. After having
solved the electronic problem, the adiabatic motion of the nuclei is
governed by the following expression

Ha®(R) = [T + Viin + €(R)I®(R) = E(R)D(R). (9)

We get an effective Hamiltonian which depends on the position of
nuclei only. This method is based on the principles of Mean Field
Theory (MTF), in which the effect of the electrons on the nuclear mo-
tion is described introducing a mean field potential acting on nuclei
[Vins = Van + €(R)]. Despite this first simplification Eq. |8 cannot be
solved exactly, except in some cased'} at least with the means available

We know analytically the exact wavefunction for a single particle in a vacuum or im-
mersed in potentials which show particular symmetries and for the hydrogen atom.

11
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nowadays. For this reason we have to introduce DFT which allows
to study the many-body systems, through sensible approximations
and rigorous theorems. The main idea of DFT is not to calculate the
wave function of the whole system, but to calculate handier quanti-
ties which can describe the system properties in the ground state. In
the next section we will discuss the main aspects of DFT, which is
nowadays the most used first principles approach.

2.1.2 Density Functional Theory

DFT was formulated by Hohenberg, Kohn and Sham to obtain the
ground state (GS) properties of many-electron systems without mak-
ing any explicit reference to the wave function.[47, 48] This method
has the electron density as fundamental quantity. The advantages of
such a theory are clear. Whereas the complicated many-body wave
function depends on three spatial variables for each of the N elec-
trons, the electron density only depends on three spatial variables,
making the electron density a quantity that is easier to deal with.

Subsequently, in 1965 Kohn and Sham showed that the electron
density of a system of interacting particles under the influence of
external potential can be reproduced by a system of non-interacting
particles under the influence of an effective potential. According to
Hohenberg-Kohn theorem this effective potential is also a functional
of the electron density. Besides, the Kohn-Sham formulation allows
one to write the Schrodinger equation (Eq. [8) as a set of single-particle
equations (i.e. non-interacting particles) that are solvable in a self-
consistent way.

The effective potential is composed by the external potential, the
Hartree potential (which is the mean Coulomb potential generated by
all the electrons) and by the so-called exchange-correlation potential
(which contains all the remaining small contributions). Moreover, the
latter potential is the functional derivative of the exchange-correlation
energy with respect to the electron density. Since we do not know the
exact form of the exchange-correlation energy and of the equivalent
potential we have to use some approximations.

In this section we will discuss the two basic theorems of DFT, the

Kohn-Sham equations, the main approximations of exchange-correlation

term, and how DFT is implemented in a plane-wave code such as
Quantum Espresso[49].

While with numerical software we can calculate the wave-function for systems which
have a reduced number of particles, indeed when studying more complex systems
we meet the one which Kohn defines an “Exponential Wall” [46] which reduces the
actual possibilities to systems containing about 10 electrons.
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The Hohemberg-Kohn Theorems

Hohenberg and Kohn (HK) showed in 1964 through two theorems as
follows:

The total energy of a N-electron system is a unique functional
of GS electron density p(r).

The GS energy can be obtained variationally: the electron den-
sity that minimizes the total energy is the exact GS density.

that the internal potential is a functional of the electron density. As
a result every ground-state property, in particular the GS energy, is a
functional of the electron density.[47] Indeed, from the first theorem
we can then write again the time independent Schrodinger equation
(8), as:

E[Vext“q’[vext]) = (T_‘i‘\/\/ext +\7ee)|\y[vext]> = (T_+Vext+vee)|\y[p]>)
(10)

in which T, Vext and Ve, are the operators corresponding to the ki-
netic energy, the external potential and to the interaction among elec-
trons, respectively. While we can write the total energy as

Elp(1)] = Vext[p(1)] + Tlp(r)] + Vee p(r)] = Jp(r)vext(r)dw Frlp(r)],
(11)

where Fyk is defined the universal HK functional. Furthermore, from
the second theorem we can obtain the GS energy Ey by the minimiza-
tion of the functional Ey,_,[p(r)], i.e.,

nf Up(r)vext(r)drww[p] (12)

Eog= inf E =1
o= inf Veri [P] inf

P
with TT the set of the V-representable electron density} Now the
necessary step is to determine the density and the external potential.
But in order to do this, we have to know the form of the functional
E[p(r)], which unluckily is unknown, since we do not know the exact
form of Frk[p]. Mostly it is not clear how we can define the kinetic
functional for many particles system. This is the reason why Kohn
and Sham (KS) reformulated the kinetic term and opened way to
practical applications of DFT [50].

An electron density is called V-representable if it is the density of a GS of the Hamil-
tonian in Eq. with N and Ve, specified.

13
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The Kohn-Sham Approach

Hohemberg and Kohn (HK) have provided us with an elegant evi-
dence to obtain the GS density and energy through the minimum
principle, Eq. However, we do not know practically any appli-
cable forms of Fyk[p]. Kohn and Sham proposed a scheme to be
able to find a good expression for Fyx[p], defining the main terms of
that functional and reducing the approximation only to a particular
addend which was called exchange-correlation energy Ey.[p]. Their
idea was that:

The GS density p(r) of a system of interacting particles with
external potential Vex(r) could be reproduced in a system of
noninteracting particles whose p(r) is built by the eigenstate
of an single particle effective Schrodinger equation through a
suitable local potential Vs (r).

Based on KS postulate, we get a set of three equations, that can be
solved in a self-consistent way, after having chosen the form of the
functional E«.[p] We have an exact closed expression of the kinetic
energy function for single electron for a system of non-interacting
electrons

hZ

1: <—2V2 +V5(r)) Yi(r) = eqpi(r) (13)
m

where the charge density can be represented as a sum over one-

electron orbitals VP (r):

N

2 pl) =Y (ol (14)

1

and the effective potential as follows
3 Vs(r) = Viu(r) + Vie (1) + Vext (1) (15)

where V. = 0Exc[pl/p and Vy is Hartree potential. Indeed, the iter-
ative method starts examining a proof density with which we calcu-
late the effective potential Vs(r). Afterwards we resolve Schrodinger
equation (Eq. , obtaining a series of orbitals \; (r), the so-called KS
orbitals, which approximate better the electronic density (Eq. and
then the cycle starts again using the new density. This process goes
on up to get some values of the electronic density within the fixed
threshold. Then we can find the GS quantities of the system with the
density obtained in this way.

We want to clarify that the Kohn-Sham wave function constructed
from the N lowest KS orbitals is not intended to be an approximation
to the true GS wave function and that the KS eigenvalues are not
generally related to the excitation energies of the system. However,
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the eigenvalue corresponding to the highest occupied KS orbital has
a clear physical meaning [51, 52]. Furthermore, it can be shown that
the eigenvalues of the other occupied KS orbitals are a good estimate
of the true energies of ionization [53]. In the following section we
will show the most used approximations for Ey.[p], in particular we
will focus on GGA which is the most accurate in the study of elastic
properties in alloys compared to its rival LDA[54].

Functional Approximations for the Exchange-Correlation Energy

In order to apply the theory outlined in the previous sections we need
an approximation for the exchange-correlation functional E.[p].

The first approximation has been introduced by Kohn and Sham
in 1965, the so-called Local Density Approximation (LDA). In this
approximation E,.[p] is given by

ELDA[g] = J ar exe (p(0)o(x), (16)

in which ex(p(r)) is the exchange-correlation energy per unit volume
of a homogeneous electron gas of density p(r). The corresponding
exchange-correlation potential is given by

Oexc(p)

ViE M o) = exelp(r) + plr)—
p

: (17)
p=p(r)

From the above mentioned expressions, it is clear that LDA approxi-
mates locally the true non homogeneous system with a homogeneous
electrons gas. It is a very rough approximation which works well for
systems that have an electronic density varying very slowly (i.e. met-
als). Vice versa that approximation is not suitable for the atoms and
the molecules (where the electrons are localized), because of the sud-
den variations of density.

So far the KS equations have been considered independent of spin,
but the DFT can be also extended to calculate GS properties of spin-
polarized systems. In this case the electronic density is decomposed
into two spin terms

p(r) = p' (1) + p*(r), (18)

and the energy is a functional of both these components, E = E[p', p}].
So in the Local Spin Density Approximation (LSDA) the exchange-
correlation functional can be written as

ELSDAp) — jdr exe(pT(), 0 (r)o(D), (19)

where e is the exchange-correlation energy per unit volume of a
homogeneous electron gas at densities pT(r) and p¥(r). An important
quantity is the local polarization

_o'r) —pH(r)

= om

(20)
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If it is equal to one, all the spins are oriented along the same direction
and the system is completely polarized.[55]

A well-known failure of LDA and LSDA is the systematic under-
estimation of the band gap of semiconductors and insulators. More
precisely, LDA and LSDA do not show derivative terms which en-
able to describe the correct jumpf} caused by the supplement or the
removal of an infinitesimal fraction of the integer number of electrons
(561

The obvious way to go beyond the LDA and the LSDA is to extend
the exchange-correlation functional with terms containing gradients
of the density. This so-called Gradient Expansion Approximation
(GEA) [47, 571 has the following form

EGEA] = Exc[mm+Jdrf1(p(r))(vmr))2+

+Jdr £2(p(E) (V2p(0)? +--- (21)

where the functions fi(p(r)) are uniquely determined by the density
response functions of the homogeneous electron gas. However, the
GEA is often found to give results that are less accurate than the one
obtained with the LSDA, since this type of approximation does not
satisfy the charge neutrality and Slater’s theorem [58].

This problem of the GEA has been overcome with the so-called Gen-
eralized Gradient Approximation (GGA) [59]. In comparison with
LDA, GGA tends to improve total energies, atomization energies,
energy barriers and structural energy difference [60]. In GGA, the
exchange-correlation functional depends both on the homogeneous
electron gas density and on its gradient:

EGGA[p) = Jdr Flo(r), Vo(n), (22)

where F is a parametrized analytic function. To obtain reasonable
results the function F must be chosen with care among the conditions
we have the charge neutrality and Slater’s theorem.

With the idea to account both the advantages of the two approxi-
mations GGA and LSDA, we have used another exchange-correlation
functional Ey.[p], the so-called Perdew-Burke-Ernzerhof (PBE) func-
tional [60], due to good adaptability to metal alloys.[61, [62] Indeed,
PBE functional does not have any fitting parameters because it retains
the correct features of LSDA, but it combines them with the most en-
ergetically important features of nonlocal GGA.

3 They do not estimate accurately the electronic density discontinuity.
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2.1.3 Numerical Methods

The use of DFT in numerical calculation requests further approxima-
tions in addition to those regarding the exchange-correlation func-
tional. In carrying out a computational algorithm based on DFT we
must apply and know a lot of technical details, which are also pecu-
liar to informatics.

For our aims we will deal with only the main aspects of DFT soft-
ware used. If a reader is interested in a more detailed description, he
can find it in refs. [63-65]. In this dissertation, the electronic prop-
erties of systems have been calculated with Quantum Espresso code
[49] (and VASP code[66]).

In order to solve the differential equations (like KS equations) it
is necessary to introduce appropriate boundary conditions. In QE
as so as in VASP and in other DFT codes, the Periodic Boundary
Conditions (PBC) are applied. They correspond to the periodical re-
production of a supercell in three dimensions. This is useful when we
consider infinite systems (like crystals), but it is also extensible to the
management of finite systems. Indeed, we can consider a supercell
big enough to separate the objects of two near supercells. The key of
the supercell approach is Bloch’s theorem, which states:

For a periodic system the electronic wave-function can be writ-
ten as a product of wavelike part and a cell-periodic part

Vj k(1) = 1y (1) e, (23)
where j is a discrete band index and k a reciprocal lattice vector

belonging to the first Brillouin zone (BZ) corresponding to the
supercell.

The theorem allows for mapping the KS eigenvalue problem into the
reciprocal space, where one can separately obtain a discrete set of
eigenstates of the Hamiltonian for each k-point. Then the expectation
value of a generic one-body operator O can be written like this:

0)= 5| akom = ¥ o (24)

Qpz Jpz kEBZ

with

Z W = ]) (25)

keBZ

where the integral over the first Brillouin Zone (BZ) , with volume
Qgz, for practical purposes is approximated by a sum over k-points
with weight factors wy. In QE as in VASP, this discrete BZ sampling is
based on a so-called Monkhorst-Pack grid [67]. We can observe also
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that larger supercells have a smaller BZ. For large enough cells the
number of k-points required can be reduced considerably. In fact for
these supercells the use of the only I'point (k = 01+ 0 4 0k) already
enables a good description.

Most DFT implementations use pseudopotentials to get rid of the
treatment of core electrons in order to simplify the calculation. The
idea is to replace the actual atomic potential, which describes also
core electrons that are chemically inert, with an effective potential (the
so-called pseudopotential) which provides the same description for
valence electrons. In QE we prefer the use of UltraSoft PseudoPoten-
tials (USPP) decomposed on spherical Bessel-functions[68] because
they are widely used and tested for these systems.

Furthermore, to get some numerical results from the KS equations
we must calculate wave-functions on a basis. In QE as in VASP, we use
the plane-wave decomposition to define 1;, k(r) that guarantees that
the Hamiltonian and overlap matrix are sparse so that the variational
principle is computationally easy to evaluate. In this way, Eq.
becomes

W;, k(r) = Z CG,jei(k+G.r) , (26)
G

where G are the reciprocal primitive vectors. Considering this last
expression, we see that the solution for each k need to be evaluated
over an infinite number of possible values of G.

In order to make computational possible the 1, k(r) definition is
introduced a so-called energy cut-off. Since solutions at very high
energies are negligible. This energy cut-off is so defined

2
EWE =2 Gl (27)
The sum in Eq. then, is finite. Using the same procedure, an
energy cut-off is also defined for charge density and potential de-
scription with wave-function decomposition. This value for USPP is
normally from 8 to 12 times the value of the wave-function energy
cut-off.

Another important DFT computational parameter for metals is the
smearing. This is fundamental for the integration over Fermi-surface
at zero temperature because it shows a discontinuity there (e.g we
have a step function). So a super-dense grid of k-points would be
required to reach the right converged calculation, especially in the
case of metals (See Fig. [4), making the simulation unacceptable from
the computational point of view. A well accepted remedy in the DFT
field is the adoption of a function that smears out such discontinuity
by transforming the integrand so that it becomes continuous across
the Fermi level. This method is equivalent to having a fictitious finite
temperature or to introduce a fictitious entropy term in our system.
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p-type intrin. n-type
Metal Semimetal Semiconductor Insulator

Figure 4: Different occupation of the electronic bands. this behaviour
also defines the membership in the three 4 different macro-
classes.

This is the reason why the smearing is also associated to the electronic
temperature. So we have resolved the k-point convergence problem,
introducing a fictitious entropy term that diverges the value of energy
from the real one. For this reason, the use of smearing must be dosed
carefully always keeping in mind a good combination between it and
k-point sampling. However, given its importance in the treatment of
metals, different sophisticated smearing functions were born with the
aim of minimizing the entropic term, as shown in Fig. |5| In our case
we have adopted a Gaussian smearing.
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xT
— Fermi-Dirac — Methfessel-Paxton
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Figure 5: a: Different occupation functions[69, 70]. b: We show how
the different occupation functions damp the discontinuous
Fermi step-function at zero temperature.

2.2 MACHINE-LEARNING

Machine-learning (ML) is a term that encompasses a set of meth-
ods developed in various scientific communities with different names
such as: computational statistics, pattern recognition, artificial neural
networks, adaptive filtering, theory of dynamic systems, image pro-
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cessing, data mining. These methods give to the computer systems
the ability to "learn" from data, without being explicitly programmed
to execute it.[71H78]

The goal of ML is to improve a system without the need of human
intervention. Two components are required in order to learn:

e a set of data relating to the application domain;

e a learning algorithm capable of extracting knowledge from the
data set.

It is important to underline that the quality of the data on which
the algorithm works determines the outcome of the whole learning
process. A clever and efficient algorithm will never be able to extract
useful knowledge from a set of data that does not contain information
about the application domain.

The ML algorithms can use four learning methodologies depend-
ing on the type of "knowledge" we expect: Supervised Learning (SL),
UnSupervised Learning (USL), Semi-Supervised Learning (SSL), Re-
inforcement Learning (RL).

SL is the automatic learning methodology by which examples are
passed to the machine as a pair of data X, Y containing the input data
and the expected result. The task of the machine is to find the rule, X
(function or model), that establishes a relationship between the two
so that it can obtain a correct result even when presented with a new
sample

Y = K[X]. (28)

Possible applications of SL can be classification, regression, and im-
age, speech, and pattern recognition.

As can be deduced from its name, USL, unlike the previous one,
does not use data classified and labelled a priori. We do not know,
therefore, to which category they belong. The machine is required to
extract a rule that groups the cases presented according to character-
istics that are derived from the data itself. For this reason it is also
called “feature learning”. Example of USL methods include cluster-
ing, dimensionality reduction, anomaly detection, and latent variable
analysis.[79]

Located halfway between the two previous ones, SSL is based on
mixed data in which a small part is already labelled and a large ma-
jority consists of unlabelled data. This approach is used to improve
the machine’s predictions of unlabelled data. Its possible applications
are generally an extension of those of SL, where the cost related to
the labeling evaluation might make a fully labeled training set infea-
sible.[80]

RL is an automatic learning technique that aims to develop sys-
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tems capable of learning and adapting to changes of the environ-
ment in which they are immersed, through the distribution of a "re-
ward" called “reinforcement”, given by the correct evaluation of per-
formance. It has potential applications in the fields of: game theory,
control theory, operations research, information theory, simulation-
based optimization, multi-agent systems, and swarm intelligence.[81]

ML algorithms make it possible to disentangle all the regularities
and correlations hidden in simulation data. Applications of ML al-
gorithms to computational solid state physics have already been suc-
cessfully proposed in literature[82-89]

2.2.1  Neural Networks

A particularly promising class of models for ML of materials prop-
erties consists in the so-called deep-learning methods (DLMs) [86,
90, [91], where the term “deep” comes from the fact that there are
multiple layers (at least two hidden layers, i.e. intermediate) (non-
)linearly connected with simple nodes/objects. This kind of multi-
layered networks organized hierarchically are capable of learning
very complex functions. For these reasons, they can be applied as
fitting algorithms [92]. Unlike other alternative estimation methods
of the high-dimensional functions[84, 93, 94], DLMs are able to fit
a real-valued function of any dimension making the evaluation sta-
tistically and computationally more efficient. The curve-fitting of a
high-dimensional function (as a DFT-PES can beff) requires an enor-
mous amount of input data, that is often limited for computational
reasons. In fact, when the dimensionality of a function increases, the
volume of the space increases so fast that the available data become
sparse. In order to overcome this lack of information and to get a sta-
tistically reliable result we must increase exponentially the data set.
This problem is known as curse of dimensionality and DLMs are not
liable to it.

Moreover, hierarchical organization allows to catalog information
(similarly to object-oriented programming). Along the hierarchy we
can select specific features and discard unnecessary details in order
to maximize the invariance.[95]

DLMs take their cue from the functioning of the human brain to
create models capable of solving complex problems related to the
perceptual sphere. This is why they are also commonly called Neural
Network methods. Dated studies suggest, in fact, that the sensory
cortex of mammals is approximately organized in a hierarchical way.
The lower layers of this complex hierarchy extract elementary infor-
mation from the sensory input: in the visual system, for example,
neurons of the primary visual cortex encode some characteristics of

4 For example an atomic structure of 100 Al-atoms, its PES lives in a 300D space.
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the stimulus as a set of simple spatially oriented bars. [96] As the hi-
erarchy is moved up, sensory input is represented in an increasingly
abstract way, thanks to the progressive extraction of invariances and
statistics of a higher order. Think about how the brain organizes ideas
and concepts, how it learns new knowledge, starting from simple ba-
sic concepts that it composes and extends in order to obtain more
advanced concepts (See Fig. [6).
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Figure 6: We show the similarities between an artificial and biological
neural network. Artificial NN can manage the modelling
of complex data through the use of probabilistic graphic
theories, capable of learning the representation of data in
input at different levels of abstraction.

NN methods can be subdivided according to the type of ML task
they perform. In fact, we can have “discriminatory” feed-forward

models for classification (or regression) by supervised or semi-supervised

training (e.g Fully Connected Neural Network [97], Convolutional
Neural Network[g8|], Hierarchical Temporal Memoryl[99|), generative
models trained to reconstruct input and to produce salient features by
unsupervised training (e.g. Stacked Auto-Encoders[100], Restricted
Boltzmann Machine[101] and Deep Belief Networks[102]), and recur-
ring model by reinforcement training in order to learn behaviour (e.g.
Recurrent Neural Network[103], Long Short-Term Memory[104], and
Deep Q-Learning[105]).

For the purposes of this thesis, we will deal with the feed-forward
models and, in particular, only the Fully Connected Neural Networks
(FC-NN), also called in literature in certain cases “Multilayer Percep-
tron” and often only Neural Networks (NN). Owing to a simpler
structure, they are easy to implement. Furthermore, it is not obvious
how the local connectivity of a convolutional NN might be helpful in
an AIMD context. By always referring to AIMD simulations no mem-
ory or recurrency is involved: the energies and forces estimation at
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given time do not require any knowledge of the earlier states of the
system.

The feed-forward FC-NN was the first and simplest type of NN
devised. In this network, the information moves in only one direc-
tion: forward through the layers. An example feed-forward FC-NN
is shown in Figure [f[bottom right), consisting of an input layer, two
hidden layers and an output layer. Nodes are represented by circles,
while the arrows display the connections between the nodes, includ-
ing the direction of information flow. Each connection is associated to
an appropriate weight ajn:)]i’j that represents the connection correla-
tion between the two nodes (however, not all weights are shown here).
We also observe that each node in a layer is connected to all nodes
in the subsequent layer. For simplicity of notation and to avoid con-
fusion, hereafter we will always name FC-NNs as Neural Networks
(NN) that is their simplest and more common name.

In a NN, each artificial neuron (node) is sketched as in Figure
B(above right). It mimics a single biological neuron and we can ex-
press, for example, the i-th node of the j-th layer by a mathematical
formulation as follows

M
Yy =)=+ ( Y A xm +b1;f;]) , (29)
m=1

where x, are the outputs of the nodes in the (j — 1)-th layer. The sum
runs over all M nodes(/initial inputs) in the previous layer since NN
is fully connected. Instead, ajn:;’j and bjﬂ:l’j are the weight connect-
ing the m-th node in the (j — 1)-th layer with the i-th node of the j-th
layer, and its bias value, respectively.

In this framework, each complex multivariate function has a one-to-
one correspondence with the associated NN diagram. In other words,
any topology of NN diagram can be mapped as a specific function
as long as there is no feedback loop in the NN diagram, namely, the
information must travel in one direction through the layers. For the
sake of clarity, we report the full expression of NN diagram shown in

the Fig. [p(bottom right):

5 5 4
Eot ( S a2t ( Sl (Z Q%1 xm + bﬁ;}r> + b1;§> + 1@) .
k=1 r=1 m=1

(30)

Of course, if we add a node or, even better a layer, we increase
the complexity/flexibility of NN. This increased flexibility allows to
fit more complex functions thanks to the universality of NN dia-
gram[106]. But to do it, we are including more parameters on which
both the NN and the estimated function depend, leading to side ef-
fects that fall under the terminology of overfitting. Overfitting occurs
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when a set of points in a zone of configuration space is fit very accu-
rately at the cost of a poor fit for the points in another zone. In Fig. [7
we show a typical example of overfitting.

—— training error
—— testing error

overfitting

v

lteration

Figure 7: The early-stopping method. We see that at the beginning
both errors (testing and training) decrease until the testing
error reaches a minimum and, then, starts increasing. After
that optimization step, we improve the fit of a set of points
at the expense of others.[107]

In the NN framework, we can solve this problem by the early-
stopping method: We train the NN on a sub-part of the whole input
database (also called training set) and we use the remaining sub-part
to test the optimized NN (also called testing set). The comparison of
error obtained from training and testing sets is a good criterion of the
quality of our NN. For more information see Fig.

Activation Functions

As we can see in Eq. [30] the activation functions are the core of artifi-
cial NN, they calculate the output response according to the weighed
sum that reaches the input. In order to learn non-linear complex func-
tional mappings and to remove the linearity relationship between
input and output, the activation function cannot be a simple linear
function.

The activation functions are nothing more than non-linear math-
ematical functions that respect the following characteristics to ful-
fill the NN universality (the so-called universal approximation the-
orem [106]):

e f € C! where C! is the the space of continuously differentiable
functions;

e bounded;

o ' >0.
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These properties are also essential to use backpropagation as an opti-
mization strategy, discussed in the next section.
Examples of commonly used activation functions:

e Sigmoid function

1
) =37 (31)
e Hyperbolic tangent function
1—e 2%
f(x) = Tre2x’ (32)
e Rectified linear units (ReLu)
f(x) = max(0,x) . (33)

In NNs the most (historically) used activation function is the sig-
moid. In very deep networks, sigmoid use is problematic for gradient
back-propagation (vanishing gradient problem). The sigmoid deriva-
tive is typically lower than 1 and the application of the chain rule at
the derivative leads to a multiplication of many terms lower than 1,
with the result of reducing quite the gradient values in levels far from
the output. In addition, its output is not zero centered and it makes
optimization harder. Finally, sigmoids have slow convergence which
facilitates error fluctuations during the training stage.

The hyperbolic tangent is often preferred to other functions since
calculating the gradient is inexpensive.

The rectified linear units has, instead, become very popular re-
cently, after it proved to be 6 times better in convergence than tanh
function. It overcomes the vanishing gradient problem. But it does
not have an upper bound and has an isolated singularity, and there-
fore does not satisfy the universal approximation requirements. Be-
cause of this it can only be used in the hidden layers. Also, it can
occur that ReLu manifests the problem of dead neuron [1o8]

2.2.2  Training and Optimization

In the case of NN, the learning is achieved by interactively feeding the
network with input data. With the help of certain learning algorithms,
the parameters of network will be then optimized in order to extract
salient information from the inputs. In material science we make
use of NN for regression: the goal is to interpolate inputs of atomic
coordinates with first-principles energies and forces to evaluate inter-
atomic potentials with comparable accuracy. Interpolation through

A dead neuron has a associated gradient with o value due to this fact it will never
be adjusted by the optimizer
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NN is essentially an optimization problem, where the NN parameters
(e.g. weights and biases) are refined iteratively to minimize the error
in reproducing a set of expected energies values. This procedure
is defined as training. Like any optimization algorithm we need to
define a cost function to be minimized during the procedure. In our
case, we can write this such as the mean squares error

N
1
7NZ NN —EiDFT)?, (34)

where N is the number of data points in the train set, E; nn is the
energy calculated by NN and E; prr is the reference energy calcu-
lated by DFT. This cost function, if it is differentiableﬂ can be mini-
mized by a wide class of algorithms. Among these we can find the
Gradient Descent (GD), the Conjugate Gradient (CG), BFGS method
(such as Simple and Limited-memory BFGS), the Stochastic Gradi-
ent Descent (SGD) and its variants (such as Momentum, Adadelta,
Adagrad, AMSGrad, Adagrad, Nadam, Nestov accelerated gradient,
and RMSprop) and the Kalman Filter (KF) category (such as Simple,
Extended KF, and Decoupled Extended KF).

The GD applied to NN normally does not guarantee the conver-
gence to a minimum if we do not tune correctly its step size during
search procedure. It mainly aims at finding local minimums at the
expense of the global one. CG, as also GD, are often redundant in
operations and BFGS is inefficient from the point of view of memory
consumption. Limited-memory BFGS can be a good alternative to
solve the memory management, but a clear convex dynamics is still
needed.

The intrinsically non-convex nature of NNs makes hard to optimize
their cost function. In order to put a remedy to this, we have to
use SGD and its variants. The SGD category, indeed, works well for
non-linear dynamics, as in NN context, and is often used where the
dynamics are not evident too. On the other hand, like all gradient-
based algorithms, it tends to be slow (e.g. it is model free and relies
on noisy measurements of the gradient).

The KF category is among the main ones used in the deep learn-
ing framework, despite the adaptive approach of SGD (e.g Adagrad,
Adadelta and Adam) are widely used for the NN training, aslo thanks
to their robustness and their excellent management of the sparse data,.
In our case we used a KF methods since they are less likely to get
trapped in shallow local minima. For example, from a recent study
it was discovered that the training by extended KF does lead to a bet-
ter positioning performance and it requires a lower effort than SGD
algorithms.[109]

6 The cost function is differentiable only if the activation function is differentiable.
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Having discussed possible optimizers, now we need to explain how
to calculate the gradients of the cost function. In the feed-forward NN
field, this customary procedure is referred to as back-propagation. In
back-propagation, an input sample is propagated forward through
the NN to produce an output. This output is compared to the ex-
pected output (reference value), and the error is then propagated
backwards through the layers to obtain the estimation according to
which each parameter must be adjusted, hence the name. The method
can be seen as an implementation of the chain rule, and it allows us to
calculate the partial derivatives of the cost function with respect to all
the parameters, thus obtaining the gradient of the network. We define
the derivatives of the cost function with respect to all the parameters
(weights and biases) as follows

or

ATV = (35)
’ aainyi’]
Y ar

gl = O (36)
, -1,
abin)i]

Now, we get the following equations if we apply the chain rule and

we use Eq.
j+1

or oxI g oar Xt ayl oX)

: —T, +1 =13
oX} 0a) ;” — X, oy} gﬁ a})
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(37)
. Nj-H ) . .
S R - ) SR L2\ I 0
mio T ax) o X oy oxi o) D

i m,i T , i \/1/ m,i

2 3 4
(38)
By carrying out the partial derivatives of the previous equation and
going deeper into the network, we obtain the full gradient of the NN
for each node in any layer

Nj+1
1 . /)’ node )’+‘| ]' ar
=) i )— )
‘Am,i = Ym Yy Z ai,r an+]’ (39)
M~ T NY—— T
4 3 2 1
j+1
y Cote LT
=1 — g 1+1y)
BLi" = 1 vy Z ai r T (40)
NN T N T
4 3 2 1

2.2.3 NN Potentials

NN potentials built to predict atomic-scale properties are revolution-
izing molecular modelling, making it possible to get first-principles
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accuracy, at a fraction of the costs.[110-114] But before we attain a
level of quality that makes it highly competitive in the MD field,
we need to adopt additional precautions. The first NNs applied to
the world of atomistic simulations found many limitations associated
mostly with the low extensibility of the method.[115, 116] They used
a single NN to estimate energy by feeding directly on the atomic
coordinates of the system. This type of single NN, once fitted, is
dependent on the number of atoms, in other words, it can map just
PES at fixed dimensionality. If you wish to apply a single NN to
systems with thousands of atoms, it would require the adoption of
thousands of input nodes, an excessive number of hidden layers and,
consequently, hidden nodes, which destabilize and give even to the
most advanced optimization algorithms a hard time.

It is clear that their direct implementation is not feasible in the
regime to which we wish to apply it. Typically, kinetic-Monte Carlo
simulations used to deal with the precipitation issue involve sam-
plings with variable compositions for different (large) system-size.
Creating a new NN each time, based on the number of atoms and
chemical species included, makes the procedure costly and hard to
control.

The first NN scheme, which was really practicable to deal with
extensive high-dimensional PES, has been suggested by Behler and
Parinello[117], concurrent with the equally promising Bholoa’s one[118]].
In the next section, we will focus on Behler’s algorithm because it is
one of the two used in this thesis, togheter with the alternative imple-
mentation of Kobayashi (See Sec. [2.2.3).

Behler-Parinello NN

Behler and Parinello propose to replace the single NN by a set of
atomic NNs, where each NN provides the energetic contribution E;
of the i-th atom to the total energy E of the system. In this way, we
have again that the NN architecture is fixed but for each element (for
example, in the case of Al-Mg-Si alloy we have 3 fixed NN). So we get
a set of NN potentials generated ad-hoc for each atomic species (that
is an atom-centered approach) in a similar way to when we achieve
a standard class of DFT pseudo-potential. In addition, as usual, to
achieve a FF potential, they assumed that the main contribution to E;
and, therefore, to E came from the atoms closest to the i-th atom.
Then, we can express the total energy as

Nas NX

E= Z Z Ei[ri)']) (41)
X i

where N5 is the number of atomic species and N is the number of
atoms for the X-element; while 1i; are the atomic distances between
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the atoms i and j, in which the j-th atoms are placed within a sphere
centered on the i-th atom with a cutoff radius . of the order of 10A
(in order to have a tractable chemical environment), and the positions
are written in the Cartesian coordinate system.

Another problem which arises when Cartesian coordinates (that are
typical format in the atomistic simulations) are adopted as NN inputs,
is the need to preserve the invariance of the total energy with respect
to symmetry operations: e.g. exchanges of equal atoms, rotations and
translations of the entire system. This is viable applying a function
which turns all the Cartesian atomic distances ry; in a vector of values
{G1}, which respects these invariances/symmetries. This new set of
vectors {G§<} are then the input nodes of the i-th X-atom for an atomic
NN that computes the atomic energy E; (See Fig. [§).

Eq. [41] can be re-written as follows

Nas Nx

E= ; Z E[GY] (42)

Using these “symmetry functions” as inputs decouples the number
of input nodes from the number of neighbouring atoms, by storing
angular and radial information of the various local environments.

Through this process, each atom has a specific atomic NN with
a fixed set of symmetry function as input but with different {GL}
values. All atoms of the same atomic species have the same atomic
NN diagram and the symmetry function set. For example, in the case
of Al-Mg-Si alloys, we have only three exclusive NNs that need to be
trained. In this manner, the total energy E is invariant compared to
exchanges of the positions of equal atomic species.

Cartesian Symmetry Atomic Atomic Short
Coordinates Functions NNs Energies  Range
Energy

00—
00—
-0
o0

Figure 8: The NN diagram for mapping a potential energy surface
in atomistic simulations. It is implemented in RuNNer

package [119].

Now, we just summarize briefly the form and parameterization
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of two important families of Symmetry Functions (SF), proposed by
Behler and Parrinello, which will be used in our results.

All the symmetry functions describe the correlations between atoms
in a neighbourhood of a central atom with index i. The first func-
tional form, called G, following the convention used in previous
works [112} 120} |121]], provides information about pair correlations
between the atoms

; _ P 2
Gy =) e MRy RIT £ (Ry), (43)
i

where the parameters 1 and R control the width and the position of
the Gaussian with respect to the central atom, and f.(Ry;) is a cutoff
function that ensures that the symmetry function smoothly decreases
to o in value and slope at a fixed cut-off r.. The sum is over all
neighbouring atoms which are closer than r.. The second type of
symmetry functions, called G3, provides information about angular
correlations, and has the form

G% = ZI_CZ Z(] +7\‘C0591jk)c-

i k#i
_ 2 2 2
e MRGTRUARI) £ (Ri)fe (Ru) e (Rix),  (44)

where ¢, n, and A are the three parameters that determine the shape
of this type of symmetry function. The indices j and k run over all
the atoms in the neighbourhood of the tagged atom i. The cut-off
function that we have used has the form

tanh> |1 — Ri for Ry <r
fe(Rij) = { e ] vsTe (45)
0.0 for Ry > e

From what we can see from Egs. and SFs have analytic
derivatives. This is indispensable in order to get properties such as
forces and stress. Indeed, we can write the force along the k-direction
acting on atom m with atomic positions R™ by applying the chain
rule

Nas Nx Nas Nx NG

- JE, G
Fe = W:_ZZaRm:_ZZZaGwL Rm’( 46)

where Nx and Ng are respectively the number of atoms and the
atomic species within local environment of the atom m included it-
self; instead G; and Ng are the SFs of all Nx atoms and their corre-
sponding number. The first term of Eq. 46|is easily given by the NN
scheme while the second one is given by the SF definition.
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With regards to the static contribution to the stress tensor, we can
get its expression along « and 3 Cartesian coordinates using the Virial

theorenm’| [122]] and Eq. [46}
Ow,p :ZZ(Rm_Rj)oc El; (47)

n and m are atomic indexes.

Kobayashi NN

The NN potential developed by Kobayashi is basically the same as the
one originally developed by Behler and Parrinello, shown in previous
section.[21, |113] It is implemented in the NAP (Nagoya Atomistic-
simulation) package.[123] However, since there are some differences,
here we describe the structure of the NN potential.

The energy of an atom-i in a structure-s is defined as

Ef = ) WinUim (48)
m

yg,m = fa <Z W:nnGiZ’n) . (49)
n

Here w!, ., is the weight of a line from a node-n in the (1 — 1)-th layer
to a node-m in l-th layer of the NN, and y{)m is the value of node-m
in 1-th layer, Also, G5™, the so-called symmetry function, is the n-th
input which depends on the interatomic bond distances Ry; from an
atom-i to surrounding atom-j. The activation function f,(x) is defined
using the sigmoid function as

1 1

T 14ex 2 (50)

fa(x)

where 1/2 is subtracted from the sigmoid function so that yl’m be-
comes zero when all the inputs are zero, resulting in the energy being
zero.

There are many choices of symmetry functions. Here we employ
the Gaussian function

Gy =3 e R (Ry), (51
j#t
where 1, and R;, are the parameters that are determined heuristically
before training the network. The cutoff function f.(R) is defined as

1, for R < R¥,
fo(R) =4 1 [cos MR 41|, for R“<R<R, (52)
0, for R > R..

The Virial theorem is valid since the total energy is a function of inter-atomic dis-
tances.
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where R. is the cutoff radius and R* = 0.9R..
As in Behler-based algorithm, the objective function to be mini-
mized in training of the NN potential is

M

s N3 xyz s
clo = 5 | (22 DREHC )| e

_ ,NN _ ps,ref — FsS,NN __ fs,ref
where AES = (E® ESrel) /NS and AF§ | = FOUN — FPref are the
differences in energies and force components, respectively, as ob-
tained by the NN potential and the DFT calculations. The super-
script s indicates the index of a sample, N is the number of atoms

in the sample-s, and M is the number of samples. The quantities ¢§
and ¢} are the convergence criteria for the energy per atom and the
force component for a sample-s, respectively; the objective function £
becomes less than one when AE®S and AFf’ » are smaller, on average,
than these convergence values.

A parameter-rich model like the NN can often show overfitting, in
which the model is well optimized to the training set data but re-
produces very poorly data not included in the training set. This is
also known as low transferability of the interatomic potential. There
are various ways to avoid overfitting, such as the early stopping ap-
proach[107, |124]], which stops the optimization before the overfitting
begins, and the weight decay approach[124] which adds a penalty term
to £ to suppress the parameters having large values that usually
causes the overfitting. Because it is not easy to determine when to
stop the optimization in the early stopping, we adopted the weight de-
cay approach by adding a penalty term, the so-called ridge penalty, to

Eq. (53) as
L({wh) = L(wh +A Y wi (54)

where A is the penalty parameter to improve the generalization or
transferability of the NN potential. The hyperparameter A is deter-
mined heuristically to be as large as possible so that the penalty term
is small enough not to exceed the £ value. The minimization of the
function £*({w}) is carried out using a quasi Newton method, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.[125]]
Parameters which are not trained from data, the so-called hyperpa-
rameters, must be specified before optimization. In this NN model,
the hyperparameters are the number of hidden layers, the number of
nodes in a hidden layer and the set of symmetry functions. In gen-
eral, these hyperparameters are determined by trial and error, which
validate the obtained NN potential using several physical values. The
resulting hyperparameters of the NN potential proposed were even-
tually chosen as follows: the number of hidden layers is 1 and the



2.3 KINETIC-MONTE CARLO

number of nodes in a hidden layer is 30; while for what concerns the
SFs selection see Sec

2.3 KINETIC-MONTE CARLO

As we have seen in Sec MD integrating the equations of motion,
is not so feasible due to the timescale. Indeed, the time step needs
to be in the order of fs for a meaningful integration of the equa-
tions of motion limiting the simulations in the best cases to some
us and in our case (that is AIMD) to some ns (See the fig. @) The
challenge in MD simulations is to find reliable ways to capture in-
frequent processes and extend them to longer time scales with rea-
sonable computational resources. This known issue of time scale of

1*

0.001f-

Kinetic Monte Carlo

length (m)

D
107 HAb=initio"MP

| | )
10-15 10-12 10-9 10-6 0.001 1
time (s)

Figure 9: The computational limits of three theories.

AIMD can be overcome by other sophisticate techniques such as Ac-
celerated Molecular Dynamics (AMD) or by the Kinetic Monte Carlo
(KMC) technique. KMC simulations appear very promising because
they provide the ability to perform atomic-level simulations of the
defect kinetics and microstructure evolution over relevant length and
time scales. KMC manages to be more efficient than MD to study
state-to-state kinetics without significant loss in accuracy by using an
accurate list of process rates.[126, 127] On the other hand, the main
disadvantage of KMC is the need to know a priori the list of all possi-
ble events/processes and their respective rates. The determination of
these rates is feasible through Transition State Theory in the context
of validity of the harmonic approximation. In this framework, the
rates of transition for a given i-th event, ki, in the list can then be
calculated using
O0o(—Ei/kpT)

ki =vie (55)
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where V¢ is the prefactor and E; is the activation energy for the i-th
process and kg is the Boltzmann constant and T is the temperature.
The challenge of this model, which is more manageable from the
mathematical point of view w.r.t. the equations of motion, is to know
how to represent the vector of the rates in the best way. It is precisely
that vector that characterizes our system and reproduces its dynamics.
From Eq. we can understand that the description of an event
depends on two parameters:

1. The activation energies
2. The prefactors

Afterwards we are able to evaluate these reaction rates, they are intro-
duced into a discrete-state KMC model to explore the diffusion and
aggregation phenomena in the contest of alloys.

2.3.1 Transition State Theory

TST provides the basis for the calculation of transition process rates,
assuming only knowledge of the equilibrium and saddle point states
by using the Arrhenius expression, previously seen in the Eq. It
also defines the overall rate of all possible process of the system as

R = Z R; = Z nik;i (56)

where Rj is the global rate and r; is the local rate (as reported in the
Eq. associated with the i-th process, while n; is the number of
particles in the system that are candidates for this kind of process. As
discussed in the previous section, a complete knowledge of the rates
vector, eqs. [55/and [56} is a prerequisite for all KMC methods. In order
to know the rates vector, it is necessary to have a complete awareness
of the energy landscape. An energy landscape is a d - N dimensional
PES with the N number of bodies (e. g. atoms) in a d-dimensional
system. In a typical state-to-state motion, the system crosses the en-
ergy space between two adjacent minima via a saddle point, which
is a critical point where the Hessian has both positive and negative
eigenvalues. It is generally assumed that only the transition states
(e.g. PES points wherein only one eigenvalue of Hessian is negative)
describe the relevant kinetics of the system.

There are different approaches to determine the transition state en-
ergies[128] (e.g. Drag method, Nudged Elastic Band (NEB), Climb-
ing Image-NEB (CI-NEB), Conjugate Peak Refinement (CPF) , Ridge
method, and Dimer method) and for the purpose we want to achieve,
we follow the Ci-NEB approach, which it will be presented more
clearly in the Sec. [2.3.1]
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Since the early stage precipitate structures (as Si-clusters and/or
GP zones) are coherent phases within the Al-matrix, which is peri-
odic, the full energy landscape can be defined by identifying all the
possible permutations of nearest-neighbor atomic arrangements.

An on-lattice based approach (that is an Al-sites grid), then, would
be enough to study the dynamics of Al-Mg-Si alloy precipitation.
However the precipitation sequence is not so trivial and KMC must
know how to represent also semi-coherent phases such as 3", that do
not fit within the on-lattice picture.

The value of the rates is much more influenced by a small variation
in the energy barriers than a small one in w, and so in many cases
the prefactor has been assumed to be a constant value in the range
between 1 and 10 Thz.[129, |130]

Nevertheless, in order to describe all accessible defect diffusion
mechanisms, it is necessary to have a careful calculation of the pref-
actor; as shown in recent studies, where the prefactors can space in a
more extensive range (1 Thz-10” Thz).[131, 132] The standard proce-
dure to determine the prefactor imposes the validity of the harmonic
regime of the TST and the use of the Vineyard equation. This reduces
the determination of the prefactor to the calculation of the normal
modes as follows

M LMS(i)
[T=1 w;

0
V= (57)
= o™
here ijMs(i) and ijSm are the vibrational normal modes at the

Local Minimum States (LMS) and Transition States (TS) for each of
the possible events, respectively.[133] The normal frequencies used in
this equation at the LMS and TS are derived from the eigenvalues of
the Hessian H using a finite-difference construction.

1 Fi(+8;) —Fi(=5;)  Fi(+8:i) —Fj(=54)

5 — < ) ) + ) ) , (58)
/T 20 26

in which F;(49;) is the force acting on i-th component due to the pos-

itive position displacement in the j-th component, 5 is the displace-
ment, and m,; is atomic mass of the i-th atom. The value of  has to

j‘fij =

be chosen small enough to get correct finite-difference derivatives.

NEB method with Climbing Image

A model of defect stability and migration barriers is accomplished
better using first-principles evaluation of the electronic structure of
the material. A first-principles theory, which also considers the elec-
tronic structure of the material, is suited to predict the plausible de-
fect energies, the stability and migration barriers. This was confirmed
by the fact that the use of theories based on Embedded Atom Model
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has often led to predictions in disaggreement with the results from
ab-initio theories and experiments.[134, 135]

Since the whole process is strongly vacancy diffusion governed|[20],
we have limited ourselves to evaluate the events involving the dis-
placement of a vacancy. In a lattice, the displacement of a vacancy
takes place through an exchange with one of the sites adjacent to the
one of vacancy. In the case of ternary metal alloy these possible ex-
changes/events are reduced to three if one neglects the effect of the
atoms that are not directly involved in the exchange. These events
have a known final and initial state that has prompted us to choose a
NEB approach with climbing image in order to search for these three
saddle points and their energy barriers.

In our case, we will use the CI-NEB implemented in the QE [49]
package to evaluate all Minimal Energy Paths due to vacancies mi-
grations.

The general scheme works by linearly interpolating a set of images
between the known initial and final states, also called Linear Energy
Path (See Fig. [10), and then minimizes the energy of this string of
images, following this force definition for i-th image

F = —VV(R)|, +F- Ay, 9

where 11 is the tangent versor to the path, —VV(R})|, is the perpen-
dicular component of the gradient of the potential with respect to fi
, and F is the spring force between two adjacent images.

Figure 10: MEP and LEP between reagent and product. Each image
finds the lowest energy possible minimizing the force due
to the potential perpendicular to this elastic band as in

Eq

In this way, the choice of the spring forces is arbitrary since it only
influences the division of the images along the path.

However, if the energy of system changes suddenly along the path
and —VV(R;)|, is small, the MEP searching could have convergence
problems. Indeed, the images perceive a strong parallel force that
tries to slice them down while the NEB maintains constant the image
spacing. In this regime, the NEB chain could reach the convergence
only by a strong stretching and, then, “breaking” the chain. So, the
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consequential evaluation of new tangents may become problematic.
A possible solution to this problem introduces an additional term to
the equation [59|that smoothly turns on the perpendicular component..

F'EP = F) +£(0;) (F{ —F - A7), (60)

with f(0;) s a switching function which goes from o for a straight path
to 1 if two subsequent segments along the path form an angle of 9o°.
A small amount of the perpendicular spring force is often enough to
get out of pathological curvatures of PES.[136]

The CI-NEB, which does not differ much from the NEB method,
leads to a better estimate of the exact saddle point for the highest
energy image. This image does not feel the spring force along the
band and its tangent force is inverted. In this manner, the image tries
to maximize its energy along the band, and minimize in all other
directions. [137]

We will discuss our results for these barriers, that are consistent

with previous literature, in Sec.

2.3.2  Markov Chain and Poisson Process

KMC evolves a system through numerical sampling of (Markovian)
stochastic processes which generate a series of kinetic states, and de-
termines the physical time passed during this evolution by calculat-
ing the probabilities of each event. Since KMC deals with stochastic
processes that jump from one to other state in a continuous time, it
can be viewed as a method to solve the Master Equation[138]. Accord-
ing to the Markov state assumptions, Master Equation has to preserve
two important conditions: steady state and detailed balance.[138]

The steady state implies the sum of all the transition into
a particular state n equals the sum of all the transition out
of a particular state n’

Z Winpn(t) = Z Wmnp;x(t) (61)

where py, (t) is the probability to be at n-state at time t and Wy, is
the matrix of transition probability per unit time, namely the process
rate of going from configuration n to that m.

The detailed balance implies the ratio of the transition
probabilities at equilibrium for a move n — m, whilst the
inverse move m — n depends only on the energy change.

Win __ Peq,n
Wim Peq,m

(62)
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The detailed balance condition is fundamental because it ensures
the equilibrium distribution of occupied states is consistent with Boltz-
mann distribution.[139]

However, the mere imposition of having a Markovian stochastic
process is not sufficient to establish a connection between Monte
Carlo time-step and real physical time. For this reason, KMC pre-
dicts that the system evolves as if it were a one-step proceseﬂ and,
in particular, assumes a Poisson distribution of residence times. A
Poisson process, in addition to supporting the conditions of one-step
process, describes only independent events where the transition prob-
abilities depend only on the starting state. So, the probability that n
events happen depends only on the time interval. In this way, the
Master Equation assumes the following simple form

pn(t) = R(pnfl _pn) (63)

where R is the sum of rates as shown in Eq. The solution to this
equation, which is given by

Rt
_ DRt

Yl (64)

Pn(t)

clearly shows a stationary series of independent, random events oc-
curing with an average transition rates R in the framework of a Pois-
son process.[140, |141]

It is important not forget that the purpose of all this discussion is
to find the real time associated with the occurrence of a process. Now
this can be determined by integrating the probability density of Eq.
in a time T so we attain the probability for an event to happen
within a time t

T
Pr = L Re Rt'at/ =1—eR7. (65)

Therefore, the probability for an event not to happen within tis pr =
e RT. Since p could be any random number in the interval [0,1], the
real time of two successive events is estimated as

Inp~

= (66)

Based on the above theory, the KMC method is very well suited to
simulate the real-time evolution of slow process such as nucleation
phenomena and precipitation.[142-146] Indeed, the fact that KMC
has a kinetic character makes it possible to study non-equilibrium
dynamic processes, in particular those where energy barriers govern
the transition between subsequent states.

An one-step process allows to have one jump at a time and only jumps between
adjacent states.
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n this chapter we study the energetics of nanoscale 3”-phase pre-
I cipitates using ab initio electronic structure methods so as to iden-
tify the different contributions to the thermodynamic in-situ precipi-
tation energetics. We compute the energy contributions due to the
precipitate formation energy, the precipitate/matrix interface ener-
gies, and the elastic energy due to lattice and elastic mismatch be-
tween precipitate and matrix. We show that these contributions semi-
quantitatively capture the total energy of in-situ precipitates as a func-
tion of precipitate size. Our results demonstrate that — down to the
size of a single formula unit of the 3 phase, fully encapsulated in
the Al matrix — the precipitate growth process can proceed without
energetic barriers. Since the nucleation process of the 3" phase has
nearly zero barrier, control of precipitation kinetics should focus on
aggregates of atoms of even smaller size.

The remainder of this chapter is organized as follows. In Section[3.1]
we describe the details of our ab initio simulations. In Section [3.2) we
report a few benchmarks on the bulk properties of the different sto-
ichiometries proposed for the 3" phases. In Section [3.3] we discuss
a classical-nucleation-theory (CNT) model of precipitate stability, in-
cluding surface energies and the continuum elasticity model of lattice
mismatch relaxation, and compare with DFT results for needle-like
precipitates. In Section [3.4) we present ab initio simulations of fully-
encapsulated clusters. We finally draw conclusions.

1 This Chapter is adapted from Ref. .
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3.1 COMPUTATIONAL DETAILS

Density functional theory (DFT) has been shown to provide reliable
energetics for aluminum and its alloys [11, |14} 18, 147]. We have used
self-consistent DFT as implemented in the Quantum ESPRESSO (QE)
package[49]]. We used a gradient corrected exchange and correlation
energy functional (PBE)[148], together with a plane-waves expansion
of Kohn-Sham orbitals and electronic density, using ultra-soft pseu-
dopotentials for all the elements involved [149-151]. All calculations
were performed with a k-point sampling of the Brillouin zone using
a grid density of ~ 5-107° A=3 and a Mokhorst-Pack mesh[152].
The plane-wave cut-off energy was chosen to be 35 (280) Ry for the
wavefunction (the charge density) when evaluating the energetics of
defects (i.e. for computing formation, surface, and precipitation ener-
gies). Test calculations performed at larger cutoffs showed that these
parameters are sufficient to converge the atomization energy of Al at
a level of 0.3 meV/atom. Cutoffs were increased to 50 (400) Ry so as
to converge the value of the elastic constants to an error below 1 GPa.
Comparison with previous literature results, where available, will be
presented below.

3.2 BULK PROPERTIES OF MATRIX AND PRECIPITATE PHASES

Bulk properties (lattice structure, lattice constants, elastic constants)
of Al and the various 3”-precipitates studied here have been previ-
ously computed in the literature. Here, we present our results as
a means of benchmarking our methods, verifying literature results,
and most importantly obtaining reference values that are fully consis-
tent with our computational details — which is crucial to evaluate the
energy differences that determine surface and defect energies.

For bulk fcc Al, we computed the lattice parameter to be 4.057 A, in
excellent agreement with the experimental value and with previous
modelling using the same functional [153, [154]. These lattice param-
eters are used throughout our study to build supercells representing
the Al matrix. All of the 3" phases we consider can be described by a
monoclinic cell containing two formula units (f.u.). We consider three
compositions, Mg.Sig, Mg_Al,Si, and Mg, Al;Si,, as shown in Figure
We computed the crystal structures of these (3/-precipitates start-
ing from the geometries proposed in previous works [4]. The equilib-
rium lattice parameters and monoclinic angles are shown in Table
and agree well with existing literature [155]. Inside the Al matrix, the
main crystallographic directions (lattice vectors) of the precipitate are
aligned with those in the fcc lattice of aluminum as follows:

(1001~ || [203]a1  [0101gx || [010]a  [00T1g || 301]a1  (67)
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Figure 11: A view along the b lattice vector of the monoclinic unit cell
of B” phases. The red and blue circles represent Si and Mg
atoms, respectively, while the different shading indicates
the position of the atoms at a height of zero and |b|/2 along
the b vector. Circles with dashed outline indicate the atoms
that can be substituted to obtain the three " stoichiome-
tries (that is, Mg_Sig, Mg_Al,Si, and Mg, AL;Si,)[11].

The ideal monoclinic unit cell can be deformed, relative to the fully
relaxed structures, to substitute for 22 Al atoms. The corresponding
lattice vectors and lattice constants of the 22-atom Al are shown Ta-
ble il The difference between the ideal monoclinic unit cell and the
22-atom Al unit cell uniquely determines the misfit strain tensor of
the precipitate in the Al lattice, which will be used below to deter-
mine the corresponding elastic energy of precipitates in the matrix.

Composition a [A] b [A] c[A] B [°]
Mg_Sig (DFT [11]) 15.14 (15.13) 4.08 (4.07) 6.93(6.91) 109.9 (110.1)
Mg5A125i4 (DFT [11]) | 15.33 (15.32) 4.05 (4.07) 6.84 (6.77) 106.0 (105.8)
Mg4AIBSi4 (DFT [11]) | 15.13 (15.11) 4.12 (4.13) 6.65 (6.60) 106.6 (106.4)
Al matrix (Exp. [4]) | 14.63 (15.16) 4.06 (4.05) 6.41(6.74) 105.3 (105.3)
Table 1: The fully-relaxed bulk lattice parameters of the 3" phases,
compared with those that correspond to an ideal embedding
within the Al matrix and, in brackets, with those already
presented in literature (i.e. they come from a previous DFT
study and from HR-TEM analysis .

We computed the elastic constants of all bulk phases by evaluating
the stresses generated by small displacements of the unit cell around
the equilibrium structure. A suitable set of displacements was usedP}
and the stresses were then modelled as a linear function of the dis-
placements to obtain the elastic constants [156]. The elastic constants
for bulk Al and for the three 3" phases studied here are shown in Ta-
ble |2, and were computed according to a reference system consistent

We used a set of 12 displacements of which six are not equivalent. These correspond
to the three axial strains and the three shear strains.

41



42 POST-P'/-PHASE PRECIPITATION

[GPa] Ci1 Ca2 C33 Ca4 Cs5 Ces
Al 106.1 (114.3) 31.9 (31.6)

Mg_Siq 98.4 846 880 219 291 51.2
Mg5AIZSi4 107.1 94.7 99.1 26.9 36.3 49.4
Mg4A13Si4 106.7 96.5 97.1 259 356 463

Ciz Gz Gz Cis G G35 Cye
55.9 (61.9) 0.
50.0 47.7 457 82 58 54 -10.1
403 456 43.0 -13.1 43 11.9 54
465 480 488 93 57 93 63
Table 2: Elastic constants obtained by a linear fit of ab-initio stress ten-
sors for small cell deformations. The values in parentheses
are the experimental ones, extrapolated to oK.[157]

with the Al matrix, as shown in Fig.[13] Our values are in good agree-
ment with available experimental values [157] and previous compu-
tations [11} (158, |159].

In order to define a reference state for the thermodynamics of the
precipitates we define the solid solution energies as

_ rtot
EAl = EAl, /M (68)
By =ERY g — (M—TEL, (69)

for x = Si,Mg. Here, B9’ and E}9’ , are the total energies of a
bulk-Al supercell containing M Al atoms and (M — 1) Al atoms and
1 atom of x = Si, Mg, respectively. The energy E§° | is computed
using a single solute in a 4x4x4 unit periodic cell with the cell volume
held fixed. The cell develops a small pressure due to the misfit vol-
ume of the solute, but this contribution to the energy is negligible for
the large cell size used.

The formation energy for a precipitate can then be defined as the
total energy of a precipitate formula unit relative to that of the total
energies of the precipitate atoms in the solid solution state. Thus, the
formation energy is

1
Eform = E E]%Q/t - Z Ty - Eis) (70)

x=Al1,51,Mg

where E' is the (DFT) total energy of a fully-relaxed unit cell of the
" phase containing 22 atoms (2 formula units), n, is the number
of atoms of element x in one formula unit, and E$* is the energy of
solute x in the (dilute) solid solution state. Knowing all the terms
in eq. we can compute the formation energies of the three pro-
posed B”-phase compositions as shown in Table [3). The precipitates
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[eV/fu.] [m]/m?] dilute N :1 4 16
1 x1 1x1 2x2 4 x4
A B C | 96x96 5x5  7x7 12X12

Eform v [meV/AZ] Estrain [meV/fu.] (size: fu./Lu.)

Mg58i6 -2.607 8.36 211 2.69 140 171 203 223
134 338 431

Mg5AIZSi4 -2.769 11.8 23.5 9.11 128 161 198 223
189 376 146

Mg4AIBSi4 -2.366 10.1 20.4 8.24 74 89 106 117

162 327 132

Table 3: Bulk, strain, and surface-energy terms computed for the
three stoichiometries of the 3" phase which we considered
in this study. The elastic strain energy Egrqin has been com-
puted for the dilute case and for the three periodic cases with
varying numbers of formula units (N). The precipitate size
is reported in formula units (f.u.) and the matrix size in fcc
lattice unit cells (1.u.).

are strongly favorable, with negative formation energies in excess of
-2eV/f.u., or greater than -0.2 eV/atom on average. Precipitate forma-
tion is thus thermodynamically highly preferable relative to the solid
solution state.

3.3 IN-SITU PRECIPITATES

Bulk properties provide important information on the thermodynamic
driving forces for precipitation, but are incomplete for understanding
in-situ precipitation nucleation and growth. The system of precipitate
plus matrix has additional energetic contributions from the precipi-
tate/matrix interfaces, precipitate/matrix lattice and elastic constant
mismatches that give rise to elastic energies when the precipitate is co-
herent, and precipitate/matrix edge and corner energies. All of these
additional contributions determine the total thermodynamic driving
force for precipitate growth as a function of precipitate size, shape,
and density. While not addressed here, the elastic interactions be-
tween precipitates at finite densities also influences their spatial ar-
rangement and orientation [160-162].

We thus need to predict the size, shape, and energy of a critical
precipitate nucleus. At some critical precipitate size, the precipitate
becomes thermodynamically unstable to further growth, i.e. increas-
ing size leads to decreasing total energy. Below the critical precipitate
size, the precipitate is unstable and should re-dissolve in the solid so-
lution. Here, we take a model based on classical nucleation theory
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(CNT) to assess the precipitate stability as a function of size, shape
and density (which influences the elastic energy). In this analysis, we
ignore edge and corner energies. Also assuming, for the moment, a
low density of precipitates, the total energy of a precipitate contain-
ing N formula units, relative to the SSSS, can be written as

Eprec(N) = NEform + NEstrain + Esurf(N)~ (71)

There are two new terms in Eq. First, there is the elastic strain
energy Egirqin due to the lattice and elastic mismatch between the
precipitate and the Al-matrix per " formula unit for a single pre-
cipitate in an infinite matrix (the dilute limit). Second, there is the
surface (interface) energy Egyr¢ Of the precipitate, which will depend
on both the size and the shape of the nucleus. In order to evaluate the
precipitation energy, we first obtain quantitative values for the strain
and interface energies. Then, we will make predictions for the ther-
modynamics in the dilute limit. Finally, we will perform DFT studies
of in-situ precipitates and compare the DFT energies versus the CNT
model, adapted to the geometry of the DFT supercells.

3.3.1 Interface Energies for "' Precipitates

Based on TEM analyses [7, 9, 163], and the correspondence between
B” structure and the closely-related 22-atom Al unit that accommo-
dates one precipitate unit cell, we study three interface orientations
as shown in Figure The orientations are denoted A = (103)4 =
(100)g~, B = (010)a1 = (010)g», and C = (302)a1 = (001)g». Given
the relatively complex structure of the 3" phase, there are many possi-
ble ways to terminate the precipitate. Previous computational studies
of the B”-Mg_Si¢/x-Al interface have found that the associated sur-
face energies can change significantly between different choices [164].
To compare with previous studies of finite-size precipitates, we chose
the interfaces used in Ref. [11]. Figure [12|shows only one monoclinic
unit cell of the precipitate and one for the matrix for Mg ALSi, but
all three compositions were studied, and simulations were performed
with much larger supercells of sizes 43" +4Al unit cells for the A ori-
entation, 63" + 6Al unit cells for the B orientation, and 6B" + 6Al
unit cells for the C orientation.

Since the precipitate and matrix have a structural mismatch, the to-
tal energy computed in a given simulation cell includes an elastic de-
formation energy. This energy must be computed independently and
subtracted from the total energy obtained in the interface simulation
to estimate the specific interface energy ya—a g,c. First, we compute
the energy per formula unit of the partially-relaxed 3" phase. For
each interface orientation, we define EE’\N as the energy per formula
unit of a B cell that is fully coherent with the Al matrix in the A
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(100]a [203]n

A=(103),=(100)5»  B=(010)4=(010)g- C=(302),=(001)g-

Figure 12: We considered three orientations for the interfaces the
between (" precipitate and the Al matrix: the A orienta-
tion (left), the B orientation (center), and the C orientation
(right). While we chose to represent only the Mg AlLSi,
phase, for simplicity, the other two compositions can be
obtained by performing the substitutions indicated in Tab.

1

plane, and relaxed in the orthogonal direction. We then prepared an
interface between the Al matrix and the 3" phase, once again fixing
the dimensions parallel to the interface to be fully coherent with the
matrix, and relaxing it in the orthogonal direction. The interface en-
ergy can then be obtained from the total energy of this supercell E5¢
as

ESC —naESS —np ER )

280 ’

supercell

YA=A,B,C = (72)
where Sé\uper cell 18 the cross-section of the simulation supercell cor-
responding to the orientation of the interface, na1 is the number of
Al atoms in the matrix, and ng~ is the number of 3" formula units
inside the supercell. The computed surface energies for each orienta-
tion are shown in Table 3]

As previously noted [164], the B surface energy is relatively large
but the anisotropy is not sufficient to fully explain the observed needle-
shaped habit of the precipitates. Given the large range of values ob-
served for different terminations [164], a change in composition or
some degree of interface reconstruction may significantly lower the
energies of the A and C interfaces, leading to larger anisotropy. For
instance, we obtain a considerably lower surface energy for the C in-
terface in Mg_Si¢ than any of the values reported in Ref. [164]. For
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this specific case — that is associated with a relatively large mismatch
in the unit cells between the B’ phase and the matrix — we observe
significant relaxation of atoms at the interface, extending for several
layers in the bulk, that was probably not captured fully in the smaller
supercell used in Ref. [164]. The issue of interface energies of 3"
phases in Al thus merits further study.

3.3.2 Elastic Strain Energies of Needle-like 3" Precipitates

During the aging process, 3" precipitates show a strongly anisotropic
habit, extending along the b = [010] direction forming needle-like
semi-coherent particles. The lattice mismatch between Al and ("
along the crystallographic b direction is also quite small. For this
reason, two-dimensional slices along the a,c axes of the precipitate
capture the main contributions to the energetics of large precipitates,
and have already been studied to characterize both the energetics and
elastic deformation of the matrix in this regime [164, 165]. To com-
pute the magnitude of the elastic strain energy contribution for such
a two-dimensional slice, we will use anisotropic continuum elasticity.
The boundary value problem is formulated to correspond to the di-
rect DFT studies below. We study a periodic two-dimensional plane-
strain problem with a fully three-dimensional eigenstrain within the
precipitate due to the misfit between the precipitate and the matrix.
Figure [13| shows a schematic of the geometry with the relevant coor-
dinate axes.
The Al matrix Q. qtrix 1S modeled as linearly elastic,

0 = Chatrix€ N Qpatrix, (73)

where o and € are the Cauchy stress and strain tensors and C, qtrix
is the anisotropic fourth-order stiffness tensor of the matrix expressed
in the global frame of reference é’x—éy -&, aligned with the cubic lattice
vectors of the pure aluminum matrix. The precipitate Qprec is also
linearly elastic, but with an additional eigenstrain € relative to the
reference Al lattice that accounts for the size and shape misfit of the
precipitate,

o = Cprec(e —€&) in -O-prec- (74)

Determination of the eigenstrain € and the rotation of the stiffness
tensor Cprec into the global frame of reference are described in the

Calculations in Ref. [164] used 44+44 atoms supercells, while our calculations for
the C interface contained 132+132 atoms. We verified that when using a supercell
with 66+66 atoms the surface energy for MgBSi6(C) increased to 63 mJ/m?Z, getting
closer to previous results.
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Aly Qmatrix
Qprec
A a
8%
. C
\ey €8
& lﬁ

Figure 13: Schematic of the computational domain and definition of
frames of reference. The directions of the vectors ¢ and @
are drawn as defined by @, vectors b and &, point out
of the sheet (not depicted). The global frame of reference
is é’x-éy -é’z while the elastic constants listed in Table || are
measured in the material frame €-¢ B-é’z.

As a plane-strain problem, there is zero out-of-plane displacement
u, = 0. Therefore the total strain tensor has ex, = €y, = €, =
0. The eigenstrain € retains these components, however, so that the
effects of the mismatch in the z direction are included. We impose
periodic Dirichlet boundary conditions on the displacement i in the
horizontal and vertical directions

—

(%) = WX +nl+mly), n,mezZ, VgeoQ, (75)

where T, and fy are the vectors linking the bottom left corner to the
bottom right and the top left, respectively. We fix an arbitrary point
u(Xp) = 0 to exclude solid body motion. The static equilibrium stress
and strain fields throughout the body are then determined by solving
the standard equilibrium equation V - & = 0. With the computed
stess field, the strain fields are obtained from the constitutive models
above and the elastic strain energy (per unit length in the out-of-plane
direction) Eggrain is then computed as

1
Estrain = E <J €Cratrix€dQ + J € — E)Cprec (e—¢€) dQ)
Qmat'rix Qprec
(76)

Note that the energy per unit length is independent of absolute model
size and so the energy only depends on the size of the precipitate
relative to the size of the computational cell, or equivalently on the
area fraction (equal to the volume fraction) of the precipitate.
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The boundary value problem is solved using the finite-element
method (see[7.2). Note that, although the problem is nominally two-
dimensional (plane-strain), the evaluation of the elastic strain energy
remains fully three-dimensional due to the eigenstrain €. Using the
above implementation, we first computed the elastic strain energy per
formula unit in the dilute limit where interactions among precipiates
are negligible. This is done by using one formula unit in a cell of 96
x 96 fcc unit cells, and the results are shown as the “dilute" limit in
Table 3} The elastic energies are small compared to the chemical en-
ergies, but are not small compared to differences in energies among
precipitate compositions.

3.3.3 In-situ Energetics of Dilute Needle-like 3" Precipitates

Having evaluated separately the bulk, surface, and elastic relaxation
energies for a needle-like precipitate of the 3" phases, we can then
proceed to estimate the overall energetics of a nucleus. Assuming for
simplicity the surface area of the interfaces to be that of the matrix-
coherent unit cell (that is 26.02 A2 for each formula unit along the A
facets, and 29.7 A2 for each formula unit along the C facets) we find
that a needle-like precipitate with a cross-section of a single formula
has already a negative formation energy. Considering the elastic en-
ergy associated with the infinite-dilution limit, one obtains Eprec =
-1.872 eV for 1 f.u. of MgSSié, Eprec = -1.486 eV/fu. for Mg5A12814,
and Eprec = -1.278 eV/fu. for Mg4Al3Si4. The formation of the B”
phases starting from the SSS is so exoenergetic that needle-like pre-
cipitates can form without overcoming a free energy barrier. Due
to the much lower surface energy for the C interface, in the small-
precipitate limit Mg _Si¢ forms the most stable precipitate. In the limit
of macroscopic precipitates, the energy per f.u. tends to the precipi-
tation energy plus the dilute-limit elastic contribution, given as E, =
-2.467 eV/fu. for Mg58i6, Ex = -2.651 eV/f.u. for MgSAIZSi4, and
Exw = -2.292 eV/fu. for Mg4A13Si4. Thus, Mg5A125i4 is predicted
to be the most stable form in the large-precipitate limit. The elastic
strain energy does not change the order of stability but does narrow
the energy difference between the most and least stable down to 0.35
eV/f.u. or 0.032 eV/atom

3.3.4 DFT of Needle-shaped Precipitates and Comparison to CNT Model

The CNT model of precipitate energetics we have introduced in Eq.
including self-consistent elasticity terms, could be very useful to ex-
amine the interaction between growing precipitates. In order to as-
sess its accuracy, we use the same needle-like geometry to evaluate
the energetics of precipitates using DFT, and perform a comparison
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with the results of the model. To be consistent with the definition
of formation energies used above, we define the precipitation energy
using the SSSS as reference, i.e.

Eprec(N) =ESLN) = MES —N > n,-ESS, (77)
x=SiMgAl

where M is the number of Al atoms in the matrix for a give simulation
supercell, and n, and E$* indicate the 3" composition and the solid-
solution energy for Al, Si and Mg, as in Eq. (70).

To benchmark the model across different precipitate sizes, we study
three systems whose cross-section contains 1, 4, and 16 formula units
of precipitate in an equiaxed geometry. These precipitates are embed-
ded in an Al matrix supercells of sizes (a x b xc)5x1x5,7x1x7,
and 12 x 1 x 12 fec unit cells, respectively, as shown in Fig. a) for
the supercell containing 16 f.u. of the 3" phase).

As noted above, the elastic energy depends on the precipitate den-
sity or cell geometry. The DFT cells are not in the dilute limit. There-
fore, for comparison to the DFT energies, the CNT model is modified
to account for the elastic energy changes in the non-dilute limit as

Eprec(N) = NEform + NEstrain(N> V) + Esurf(N)> (78)

where Egtrqin(N, V) is the elastic strain energy per formula unit in
a supercell of volume V containing a precipitate of size N formula
units. Elasticity calculations have been performed using the method
described earlier for precisely the geometries studied in DFT, and the
strain energies Egtrqin(N, V) are shown in Table |3l These values are
generally larger than the dilute limit, and increase with increasing N
due the larger fraction of 3" precipitate included in the supercell.

Figure [14| compares the DFT precipitate energies, per formula unit,
versus precipitate size with predictions obtained using (i) surface en-
ergy terms only (CNT(y)) and (ii) surface energies terms plus elastic
strain energy in the DFT simulation cell (CNT(y + €)). The results gen-
erally follow the expected trend, in that larger precipitates are thermo-
dynamically more stable due to the reduction in relative importance
of the interface, edge, and corner energies with increasing size, and
the energies approach the (size-independent) formation energies plus
dilute-limit elastic energies for each of the three stoichiometries (Ta-
ble 3). A CNT model that uses only the surface energies captures
qualitatively the asymptotic behavior for different 3" compositions,
as well as relative ordering. However, it under-estimates the energy of
the precipitates in the large-precipitate-size limit, due to the absence
of the positive contribution of the elastic energy.

The CNT(y + €) model predicts quite accurately the energetics of
the larger precipitates. However, it significantly overestimates the en-
ergy at the smaller sizes. The full DFT energies are up to 0.4eV/f.u
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Figure 14: (Top) A view along the b direction of an infinite needle-
shaped B precipitate with 16 (4x4) formula units cross-
section, embedded in a 12 x 1 x 12 Al supercell for the
three precipitate compositions. (Bottom) Precipitation en-
ergies per formula unit, Eprec(N)/N, calculated from ex-
plicit DFT calculations using Eqn. [77] and estimated from
the thermodynamic CNT model in Eq.

lower than predicted by Eqn (78). One would normally expect that
edge and corner terms would destabilize the nucleus (increase the
energy) at the smaller sizes. Thus, the fact that the self-consistent
energetics leads to stronger stabilization suggests that the surface en-
ergies computed assuming ideal interfaces provides only an upper-
bound to the actual y2BC. Further relaxation (which is hindered for
the larger precipitates, and for periodic surface calculations) could
significantly lower the interface energy. Searching for reconstruc-
tions of the B’ ||Al interfaces with a top-down approach and using
electronic structure calculations constitutes a formidable challenge.
We expect that the development of machine-learning models[21] for
classical inter-atomic potentials, together with Monte Carlo sampling
techniques, might help elucidate this important contribution to the
stability and morphology of precipitates in the Al-6000 series.
Comparison between the calculations we report here and those pre-
sented in Ref. underscores the importance of accounting for elas-
tic relaxation in this kind of simulations. While part of the discrep-
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Figure 15: Precipitation energies per formula unit, Eprec(N)/N, cal-
culated from explicit DFT calculations using Eqn. Re-
sults from literature calculations that apply the same equa-
tion but include relaxation of the supercell are shown for
comparison [165]]. Symbols and colors are consistent with

Fig.

ancy could be attributed to minor differences in the computational
details, we note a general trend where the energies for the 4 x 4 pre-
cipitates reported by Ref. [11] are considerably lower than those for
the smaller 2 x 2 precipitates, values — and in all cases but for Mg_Sig
— lower than our values. As shown in the Appendix, this trend can be
understood in terms of the boundary conditions chosen for DFT cal-
culations. Simulations in Ref. [11] allowed the supercell dimensions
to relax, which underestimates the energy of the encapsulated precip-
itate relative to the dilute limit. In our calculations, instead, we fixed
the cell parameters to match the Al bulk lattice parameter, which, con-
versely, overestimates the energy. Use of a fixed supercell simplifies
the comparison between calculations, and the definition of consistent
surface energies. However, only a multi-scale analysis that includes a
FE model makes it possible to compute the elastic corrections to the
“dilute” limit and to interpret quantitatively DFT results in terms of
the physical contributions to the precipitate energy.

3.4 NUCLEATION OF A PRECIPITATE IN 3D

The analyses in the previous section show that there is no barrier
for the growth of needle-like precipitates starting at the smallest size
N = 1 for the in-plane precipitate structure. The inclusion of inter-
face and elastic energies was essential in this analysis to verify that
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nanoscopic precipitates are stable despite the high interface and elas-
tic energy contributions. We note that possible lower-energy inter-
faces will only enhance the stabilization of the smallest precipitates.
Therefore, nucleation of all three 3 phases studied here occurs at
the in-plane unit cell level or below. However, the in-plane analy-
sis neglects the additional energy cost of the high-energy B [010]g~
interface. We thus investigate here the formation energy of 3D pre-
cipitates, to better understand the precipitate nucleation process and
possible nucleation barriers.

We simulated 3D precipitates composed of a single formula unit
fully-embedded in the Al matrix. As shown in Table [4 the fully-
relaxed DFT energy is negative for all compositions. This confirms
that precipitation is barrierless down to a single 3D formula unit even
when considering the high-y B interfaces. At this scale, the CNT(y)
model is very inaccurate, predicting positive formation energy for all
the stoichiometries except Mg_Sis. The elastic strain energy computa-
tion requires a full 3d analysis, and is not performed here since the
elastic term would increase the energy relative to the CNT(y) model.

It is not surprising that a mesoscopic model cannot capture the
energetics of a precipitate that consists of just eleven atoms. It is
however interesting that — just as for the needle-like geometry — the
mesoscale model overestimates the energy cost associated with the
precipitate-matrix interfaces, indicating that local relaxations can sig-
nificantly lower the interface excess energy as compared to the ideal
unreconstructed interfaces.

Eprec [rneV] Mg5Alzsi4 M94A13Si4
DFT -558 -351
CNT(y) 513 497

Table 4: (Top) Snapshots of the simulation cells used to model single-
formula-unit precipitates fully-encapsulated in the Al-matrix.
(Table) Precipitation energies of one formula unit precipitates
computed from DFT calculations (Eqn. (77)) and the CNT
model with and without the finite element strain term.
The area of the different interfaces has been assumed to cor-
respond to those of half of the monoclinic unit cell.
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tomistic simulations such as AI-MD, and ab-initio KMC are pow-
A erful tools for studying the early stage of clustering of solutes
and the interaction between dislocations and solutes, clusters and
precipitates. Ab initio methods, as we have seen, provide chemical
accuracy for arbitrary atomic arrangements but are computationally
prohibitive, with respect to both sizes and times, for addressing prob-
lems related to clustering, and strength. Thus, FF-like MD or even
FF-like KMC methods must be used, but these methods require the
existence of interatomic potentials for all the interactions among al-
loying elements, and must be accurate enough to provide realistic pre-
dictions. The development of accurate multi-component interatomic
potentials has proven to be a serious challenge, and thus a signifi-
cant impediment to the application of FF-like MD and FF-like KMC
methods to alloys.

In spite of these challenges, many efforts to create interatomic po-
tentials have been made. For pure metals and solid solution alloys,
the Embedded Atom Method (EAM) potentials have been widely
used because of their reasonable accuracy and simple form. The Mod-
ified EAM (MEAM) approach enables additional directional

1 This Chapter is adapted from Refs. and .
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bonding and so has been pursued for binary alloys that form in-
termetallic compounds[168, 169]. However, it is difficult for both
EAM and MEAM methods to reproduce a wide variety of compound
phases for alloys with more than two components. For instance, Je-
linek et al. developed an MEAM potential with pair and triplet in-
teraction parameters for the five elements Al, Mg, Si, Cu and Fe that
reproduces several properties of binary compounds. However, gener-
ally these potentials do not provide “chemical accuracy” at the level
needed (~ kgT) for realistic simulations at characteristic temperatures
(T ~ 300—600K). For the particular AI-Mg-Si ternary system, the lat-
tice constants and heats of formation of important precipitate phases
are not well-predicted. Thus, there continues to be a great need for
accurate multi-component interatomic potentials.

In this chapter, we develop a Neural-Network (NN) interatomic
potential for the ternary Al-Mg-Si system that is useful for the study
of precipitation processes and strengthening of the Al 6xxx alloys. In
fact, as already mentioned in Sec. it will be the engine of our
KMC algorithm allowing a deeper understanding of the dynamics
of the first precipitation sub-sequence, ie the one that leads to the
formation of a single formula unit ”-phase. As shown in the Chap.
it also represents the smallest precipitates and the lower description
limit of our CNT-type model.

The NN potential approach, developed by Behler and Parrinello[170],
introduced in Sec. is one of several classes of machine-learning
potentials, such as the Gaussian Approximation Potential (GAP) [84,
171] and the linear regression potential[172]. These potentials intro-
duce a large number of functions and parameters with no direct phys-
ical interpretation, rather than a few functions based on physical con-
cepts, but the high flexibility then allows for the fitting of complex
potential energy landscapes that govern the observed structures and
the evolution of a material system.

In order to be efficient in the interpolation between reference struc-
tures, and to achieve some degree of transferability, these functions
(that are the input of ML algorithms) should encode the physical
features, and the mandatory symmetries of the problem, such as in-
variance with respect to rotations, translations, and permutations of
identical atoms [117, |173H175]. To satisfy this requirement, many de-
scriptors (e.g Symmetry Functions)| have been introduced that are
able to characterize, to a various degree, atomic-scale systems, iden-
tify their similarities and differences, and form the basis for effective
statistical learning schemes of energies and other properties [176H178].

We want to point out that in this dissertation we will use interchangeably the term
descriptor, which represents a more general concept, with the term “symmetry func-
tions”, which indicates a sub-class of the environment descriptors. The methods,
we will present, can also be applied to other types of descriptors, although we will
present just the particular case of the SFs.
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Therefore, the accuracy, speed and reliability of NN potentials, de-
pends strongly on the way atomic configurations are represented, i.e.
the choice of these descriptors/SFs. Choosing the set of parameters
that characterizes the possible configurations that is simultaneously
economic and thorough is one of the crucial steps in the optimization
of ML schemes.

In Sec. we will discuss automatic protocols to select a reduced
number of descriptors out of a large pool of candidates, based on the
correlations that are intrinsic to the training data. We will demon-
strate this recipe in the particular case of the achievement of an accu-
rate, fast and reliable NN potential for Al-Mg-Si alloy, although this
procedure can be applied to any multi-component interatomic poten-
tials. In the same section, we will discuss and compare the results
obtained with those of Sec. where the SF selection and the con-
sequent achievement of NN potential are based on a combination of
physical intuition and trial-and-error. In simple terms, we want to
compare a protocol that is completely human supervised and time
consuming with an automatic machine-driven one.

Finally, in Sec. we show some open problems in building a
NN potential associated with its strong dependence on the training
DataBase (DB) and with the lack of description of long-range charge
transfer. We will reveal these limitations by analysing the real effect
of charge fluctuations for high symmetry systems containing point
defects (for example, solute atoms in the Al-matrix). Since the NN
technology for inter-atomic potential does not currently provide a un-
biased description of electrically charged systems, we have adopted
some solutions that act directly on the DFT training DB. These are
based on having a coherent database of structures, where the effects
of the charge fluctuations are reduced in order to minimize spurious
terms in the interpolation stage.

4.1 SIMULATION METHODS AND GEOMETRIES

Energies and forces of all the structures used for training the net-
work are calculated by DFT using the same computational frame-
work shown in the Sec. To estimate the uncertainty within the
DFT scheme, some computations were repeated using the so-called
PBEsol exchange-correlation functional[179]P}

Calculations using the NN potential and optimization of param-
eters in the NN potential are performed using the MD program,
NAP[123]. Calculations using the MEAM potentials of both Jelinek’s
and Kim’s[180] are performed using the Large-scale Atomic/Molecu-
lar Massively Parallel Simulator (LAMMPS).[181]

It is based on a simple PBE with a final fit of the exchange-correlation energy to that
of surface jellium
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In calculations of pure bulk structures and ordered compounds,
the minimum conventional cells are used with PBCs in all the direc-
tions. In finite temperature calculations of pure Al to compute the
thermal expansion coefficient, we use 3 x 3 x 3 cubic FCC cells and
equilibrate the system to the target temperature using the Langevin
thermostat[182] and the target pressure (o GPa) using the Berendsen
barostat[183] over a total time of 10 ps. Atomic volume at a given
temperature is obtained as the average volume during 10 ps after the
initial 10 ps equilibration time.

In calculations of single solutes/vacancies and solute-solute or solute-
vacancy interactions, we use 4 x 4 x 4 cubic FCC cells with one or two
Al atom replaced by solutes as appropriate. In calculations of “ran-
dom” distribution of solutes, 2 x 2 x 2 cubic FCC cells are used and
a half of the atoms (16) are chosen randomly and replaced with two
vacancies and 14 solute atoms, Mg and Si. In both cases, PBCs are
applied to all the directions and atom positions are relaxed with the
lattice constants being fixed to that of pure Al. These are reference
calculations of specified structures for input into the NN algorithm,
and so there is no need to relax these structures fully.

In calculations of stacking faults, the simulation cell is oriented
with axes along [110], [112] and [111] as x, y and z directions, respec-
tively. PBCs are used along x and y and the surfaces along z are free
with a vacuum region wider than 11 A. There are 12 atomic layers
along z and the stacking fault is introduced by the rigid shift of upper
half atoms in z followed by relaxation of all atoms only along the z
direction.

In calculations of the properties for the (111), (0o1) and (110) sur-
faces, the energy versus separation is calculated by rigidly separating
upper and lower halves of atoms. The slab was made thicker than 8
A to reduce spurious interactions between surfaces. The cell size in
the plane of the surface is fixed to the bulk equilibrium value.

In calculations of precipitates, the geometry of the system follows
that employed in the Chap. [3] (also shown in Fig. [21)).[20]

Sample configurations used to train the network should contain
structures that well represent the environments which are relevant
for the phenomena of interest. To create the potential used for the
study of precipitation strengthening of Al-Mg-Si alloys, we used the
following base structures: (i) FCC, BCC and HCP structures of Al and
Mg, diamond structure of Si; (ii) the Generalized Stacking Fault (GSF)
structure along the {111} plane of Al; (iii) several surfaces of FCC Al;
(iv) FCC Al structures containing one, two, and more vacancies or
solute atoms; and (v) binary compound phases among Al, Mg and Si.
From each of those base structures, we created deformed structures
by changing the cell vectors of the system and displaced structures
by random displacements of atoms or from MD snapshots. These
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displaced structures are necessary additions to the equilibrium struc-
tures because otherwise the NN could give unphysical lower energies
for deformed structures relative to the true low-energy structures. In
total, we generated 10,237 structures and divided them randomly into
a training set used for the training and a test set used for monitoring
the convergence.

4.2 2-BODY NN POTENTIAL

In this section, we use a NN potential based on the implementation
by R. Kobayashi. This potential has a simpler form for the SF than
that of Behler and collaborators. Indeed, as discussed in Sec.
the implementation in NAP represents the environment of the co-
ordinates with a family of functions that only consider correlations
between two objects (i.e. atoms). The use of a two-body schemes,
that does not consider correlations to three atoms, makes it possible
to reduce the number of free parameters and generate a reasonable
set of SF just based on physical intuition and trial-&-error validation.

The SF parameters of the NN potential were chosen as follows: The
number of symmetry functions for each pair is 20, so the total number
of symmetry function is 120 because there are six pairs among three
elements. For all the symmetry functions, n, = 10.0 A2, There are
20 Ry, for each pair at regular intervals from 1.5 to 5.7 A. We set the
cutoff radius R. = 5.8 A to cover 3rd neighbors interactions, which is
important to distinguish FCC and HCP structures and to reproduce
the generalized stacking fault (GSF) energy curve.

4.2.1  Optimization of the Potential

Figure[16|compares the energies of sample structures predicted by the
optimized NN potential against the reference values DFT. The Root
Mean Square Error (RMSE) for the training data is 0.5 meV/atom.
More importantly, the RMSE for the test data is 2.0 meV/atom. This
indicates that the present NN potential is able to accurately reproduce
all the structures in the entire sample data set, which is designed to
include many structures and configurations that are relevant for mod-
eling of evolution and mechanical performance in the Al-Mg-Si sys-
tem. Because the present NN potential has 120 symmetry functions,
3600 1st-layer weights and 30 2nd-layer weights per atom, the speed
of calculating forces of the NN potential implemented in the code,
NAP. is about 8x slower than that of the Al-Mg-Si MEAM potential
implemented in LAMMPS|

4 The NN potential is implemented also in LAMMPS (it is available on request).
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Figure 16: Energies per atom of sample structures obtained by the
NN potential and the DFT calculation. The y = x line
indicates ideal matching between NN and DFT values.

4.2.2  Properties of Aluminum

There are a number of interatomic potentials for bulk Aluminum that
reproduce most important properties with good accuracy. It is im-
portant that the NN potential give similar, or better, properties for
the matrix Al material of the Al-Mg-Si alloy. Here, we thus present
validation of the NN for pure AL

Table [5| shows the bulk properties of FCC Al as obtained by DFT
(the reference data), the Jelinek et al. MEAM potential (as an exam-
ple), and the present NN potential. Although the present DFT value
of cohesive energy is lower than that of experimental data, the lat-
tice constant, bulk modulus, and other elastic moduli are in good
agreement with experimental and previous ab initio values. The NN
potential reproduces the DFT values of elastic properties with good
accuracy.

The generalized stacking fault (GSF) energy is an important prop-
erty relevant to the dissociation of a perfect dislocation into partial
dislocations and to dislocation emission at a crack tip. The GSF en-
ergy of a shift vector (x,y) on {111} is defined as

EINI(x,y) — Nea
A

vEx,y) = (79)

where N is the number of atoms, A the area of xy plane of the calcula-
tion cell, and ex the chemical potential of species-X, which is the cohe-
sive energy of the most stable structure of the species. Table |5 shows
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Table 5: Pure Al bulk properties from experiments or ab initio calcula-
tions and as computed using the present NN potential and
two MEAM potentials (Jelinek and Kim). The structures rele-
vant to these properties are in the traning data.

Al Exp /ab initio NN  Jelinek Kim
a(A) 4.05 [44], 4.06 405 405  4.05
Ec (eV) 3-39 l44], 3.056 3.057 3353  3.360
B (GPa) 79-1 [44], 72.2 769 784 79.0
C11 (GPa) 114.3 [44], 106.1 [[20] 109.9 111.1 113.8
C12 (GPa) 61.9 [44], 55.9 [20] 55.5  60.9 61.4
Cs4 (GPa) 31.6 [44], 31.9 [20] 31.6  28.6 31.4

135-166 [44]],

122-164 [29,34-38], 125.8 116.4 141.9 147.1

Yst (m]/m?)

Yus (m]/m?) 224 [184} 1185], 166.2 156.7 280.9 236.2
Y(111) (m]/mz) 710 [185]/720'21 7429 716'1 5163
Y(oor) (mJ/m?)  873.8 878.0 1071.6  743.9
V(o) (MJ/m?)  927.7 945.1 11048 8209
« (107°/K) 23.6-25.4 [186] 233 14.4

the stable and unstable stacking fault energies and Fig. [17/shows the
GSF curve along the (112) direction. The NN potential slightly un-
derestimates the ab initio results but reproduces the GSF curve well,
especially in the range from 0.5 to 1.0 that includes the stable and
unstable stacking fault energies.

The surface energy is defined as

E[N](d) — Nea
2A

yri(a) = (80)
where d is the separation of two surfaces. Figure [18/shows the energy
versus rigid separation of two blocks of Al as computed by DFT, by
two MEAM potentials (Jelinek and Kim), and by the NN potential.
The fully-relaxed surface energies v (111, Y(001) and y(11¢) obtained
from the largest d are shown in Table |5, Although the two MEAM
potentials reproduce the order of stability of these surfaces, y(111) <
Y001) < Y110, the Jelinek potential has large unphysical barriers for
separation in all the directions and, although they are much smaller,
the Kim potential also has unphysical barriers. The NN potential
reproduces the DFT curves along all directions and all distances. The
NN potential thus accurately reproduces the surface energies but also
forces during separation which are the cohesive tractions relevant in
fracture processes.

We have also performed MD simulation at finite temperatures up
to 500 K, which is higher than the normal paint bake temperature
of ~ 450 K used during aging of Al 6xxx alloys, to confirm that the
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Figure 17: Generalized stacking fault curve for bulk Al along the [112]

Figure 18:

direction, as computed using DFT, two MEAM potentials,
and the present NN potential. These structures are in-
cluded in the training data.
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Energy versus separation for rigid block separation across
the (111), (110), and (100) surfaces of bulk Al, as computed
via DFT, two MEAM potentials, and the present NN poten-
tial. These structures are included in the training data.
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present potential is suitable over the necessary temperature range and
also to measure the thermal expansion coefficient. The thermal expan-
sion coefficient is extracted from the slope of the volume-temperature
relation as

1 [da
"% Lam (8”
where ag is the equilibrium lattice constant at o K. The o value ob-
tained using the NN potential, shown in Table[5} is in good agreement
with experimental values. This indicates that the NN potential cap-

tures the anharmonicity around the equilibrium lattice constant as
well as the harmonic region (related to the bulk modulus).

4.2.3 Binary and Ternary Al-Mg-Si Systems

We now turn to comparison of the predictions of the NN potential ver-
sus DFT for many properties of the Al-Mg-Si ternary system. Note
that, although a lot of important structures are included in the train-
ing data set, it is impossible to include all the structures of interest
because they require large number of atoms or configurations that
are not easily calculated by DFT. We will mention in each subsection,
figure and table if the structures are not in the training data.

The alloy phase with the lowest heat of formation AH is the one
most likely to form at zero temperature. For accurate modeling of
the evolution of the system toward precipitation of the thermody-
namically favorable phases, the potential must reproduce the heats of
formation of many possible alloy phases. The heat of formation of a
compound is defined as

E[{NxJ] — > x Nxex
Zx Nx

where Ny is the number of atoms of species X. Table [6| shows the
lattice constants and heats of formation of binary compound phases,

AHCOMP —

(82)

and Table [7|shows the equilibrium cell parameters, heats of formation,
bulk moduli and elastic moduli of precipitate phases, as computed by
DFT and as predicted by the Jelinek et al. MEAM potential and the
present NN potential. Even for the complex MEAM potential that is
calibrated to various binary phases, the predictions of other binary
and ternary phases is challenging. In particular, the lattice constants
and heats of formation of important Mg-Si phases such as Mg,Si and
Mg:Sig are significantly different from the DFT values. The NN poten-
tial, on the other hand, reproduces well the DFT values of the equilib-
rium cell parameters, bulk moduli and heats of formation for the im-
portant precipitate phases such as Mg;Sig, Al,Mg:Si, and Al;Mg,Si,
as shown in Table [} Table [| and [7] include some ab-initio values of
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Table 6: Lattice constant a (A) and heat of solutions
AH®™P (meV/atom) for binary and ternary compounds
calculated using DFT-PBE, the Jelinek et al. MEAM potential,
and the present NN potential. Ab-initio values computed
using DFT-PBEsol are indicated in parentheses. These
structures are in the traning data.

Composition  Structure ab initio NN Jelinek

a AHCOmp a AHCOmP a AHCOmp
AlMg B1 5.745 424 5.760 425 5714 236
AlMg B2 3.388 66  3.396 66  3.440 -31
AlMg L1, 4.138 4 4145 0o 4.238 -39
AlMg; L1, 4375 5 4146 4 4448 46
Al,,Mg,, 10.506 -18  10.539 -18  10.315 389
AlSi B1 5.217 261 5.229 261 5.241 280
AlSi B2 3.160 239  3.164 239  3.188 142
ALSi L1, 3.994 96 4.000 96  4.059 113
AlSi; L1, 3-899 333 3.907 333 4.194 532
MgSi B1 5.505 384 5532 383 5.507 192
MgSi B2 3.308 144  3.313 144  3.384 64
Mg;Si L1, 4.263 -7 (-4)  4.267 -8 4367 24
MgSis L1, 3.988 269  3.988 269  4.176 322
Mg,Si C1 6.365 -136 (-105)  6.362 -136  6.530 44

heat of formation obtained using the PBEsol functional, from which
we see that the difference between DFT with PBE and NN potential
is smaller than the difference between DFT with PBE and PBEsol; i.e.
the NN potential is within the accuracy of the DFT itself. The differ-
ence in lattice constants for Mg;Sig and FCC Al for the NN potential
is less than 1%, indicating that the precipitates of MgsSig in Al ma-
trix will be stable and remain coherent when using the NN potential.
Some of the shear elastic constants of NN potential differ from those
of DFT and could contribute the difference in formation energies of
precipitates in Al matrix, which are evaluated in Sec.

Heats of solution of isolated solutes in FCC Al are important be-
cause they are relevant to the solid solution phase and thus to the sta-
bility of ordered phases relative to the solid solution state. The heat of
formation of a vacancy is related to equilibrium and non-equilibrium
vacancy concentrations and thus to vacancy-mediated diffusion of so-
lutes and matrix atoms. The heat of solute or formation energy is
computed as

AH' = E[Al(y_1)X1] — (N = T)ea; — ex. (83)

where X denotes the solute or vacancy, and we hereafter treat a va-
cancy as a “solute” with ey, = 0. Table |8 shows the calculated heats
of solution via DFT, the two MEAM potentials, and the present NN
potential. The Kim MEAM potential gives quite good values for the
heats of formation for Mg and vacancy, whereas the Jelinek MEAM
potential is not good for these solutes. This shows the difficulty in
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Table 7: Equilibrium cell parameters, heat of solutions AH“™P
(meV /atom), bulk modulus B (GPa) and elastic constants C;
(GPa) of precipitate structures obtained using the DFT-PBE,
the present NN potential and Jelinek et al. MEAM poten-
tial. The geometry of the precipitate systems follow that em-
ployed by Ninive et al.[11] (also shown in Fig. [21). Heat of
solutions computed using DFT-PBEsol is indicated in paren-
these. Elastic constants Cy;’s by the ab initio calculation are
taken from D. Giofré et al.[20] The structures relevant to these
properties are included in the training data.

Mg:Sis Al,Mg;Si, Al;Mg,Si,

ab initio NN Jelinek  ab initio NN  ab initio NN
a (é) 15.138 15.173  17.012 15.209  15.343 15.095  15.109
b (A) 4.081 4.074 4.322 4.054 4.052 4.122 4.131
c(A) 6.982 6.940 7.142 6.818 6.846 6.633 6.651
o 90.0 90.0 89.2 90.0 90.0 90.0 90.0
B 110.4 109.9 89.6 105.9 106.0 106.5 106.6
Y 90.0 90.0 89.9 90.0 90.0 90.0 90.0
volume (A3) 400.4 403.2 525.0 405.7 408.9 395.0 397.7
AH®©™P (meV/atom) 13 (24) 17 311 -71 -67 -44 -39
B (GPa) 62.1 58.5 125.0 61.2 62.5 63.8 64.4
Cy1 (GPa) 98.4 109.4 107.1 118.3 106.7 110.1
C22 (GPa) 84.6 94.0 94.7 98.6 96.5 102.6
C33 (GPa) 88.0 103.6 99.1 112.4 97.1 108.5
Cy44 (GPa) 21.9 29.8 26.9 27.4 25.9 30.3
Css (GPa) 29.1 38.6 36.3 453 35.6 48.0
Ces (GPa) 51.2 68.1 49.4 60.8 46.3 52.7
Cy2 (GPa) 50.0 26.1 40.3 33.0 46.5 36.6
Cy3 (GPa) 47.7 46.2 45.6 60.0 48.0 55.6
C23 (GPa) 45.7 46.7 43.0 44.0 48.8 423
C15 (GPa) 8.2 -0.2 -13.1 3.6 9.3 5.9
C25 (GPa) 5.8 -2.5 43 9.5 5.7 7.0
Czs5 (GPa) 5.4 -1.6 11.9 -3.8 9.3 -6.2
Cy46 (GPa) -10.1 0.8 5.4 2.6 6.3 4.8

constructing MEAM potentials for more than two elements. The NN
potential predictions for the heats of solution for Mg and Si agree
well with those computed by DFT.

Table [8 also shows the misfit volumes of Mg and Si calculated by
DFT and the NN potential. The DFT misfit volumes are taken from
Leyson et al.[135] and the NN potential misfit volumes are calculated
using the same method. The NN potential underestimates the misfit
volume of Mg by about 10 %. This is acceptable for reasonable esti-
mates of the interaction energy of Mg with the Al dislocation or with
precipitate-induced pressure fields. The misfit volume of Si is in very
good agreement with the DFT result.

4.2.4 Precipitates

The interactions among solutes and vacancies is crucial to the early-
stage formation of solute clusters during aging. Trapping of vacancies
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Table 8: Heats of formation AH! (eV) and misfit volumes (A3) (in
parentheses) of a substitutional solute and vacancy in FCC
Al. These values are obtained from 4 x 4 x 4 cubic FCC cells
that are not in the training data, but the relevant structures
with 2 x 2 x 2 cubic FCC cells are included in the training

data.
Substitute  ab initio NN Jelinek  Kim
Mg 0.090 (5.71) 0.100 (5.15) -0.200 0.098
Si 0.375 (-2.65)  0.376 (-2.63)  0.500
Vacancy 0.654 0.647 (-3.39)  0.670 0.708

by clusters (so-called “vacancy prisons”[187]) has been suggested as
important in Al-6xxx aging in particular. A useful potential must
therefore reproduce these binding energies within approximately an
energy of kgT to provide accurate metastable energetics during evo-
lution of the system.

The binding energy between two solutes X and Y is defined as

_Elz(iggl{ = E[AlN_2)X7Y7] + Neyy
—E[Al(n_1)X3] — E[Al N1y Y] (84)

With this definition, a positive value indicates that X and Y tend to
bind to each other. Figure [19(a) shows the binding energies of pairs
among Mg and Si versus pair separation distance, and Figure [19{b)
the binding energies that involve a vacancy, as computed by the DFT
and as predicted by the NN potential. These values are obtained
using 4 x 4 x 4 cubic FCC cells and these structures are not in the
training data, but the relevant structures with 2 x 2 x 2 cells are in
the training data. The figures show that the differences between the
NN prediction and the DFT computation are less than 20 meV in all
cases, which is slightly below kgT = 254 meV at T = 293 K. The
sign of the nearest-neighbor binding of Si-Si is the opposite of the
DEFT results, but the absolute value is small so that this difference is
not of great consequence at the temperatures of interest. Of more
importance are the trends of strong binding between Si-Vac and Mg-
Si, and the repulsive interaction between vacancies, all of which are
predicted well with the NN potential. These results indicates that the
NN potential can be useful for meaningful simulations of clustering
of solutes.

To move beyond simple pair interactions toward larger clusters
such as those that might emerge during aging, we have also com-
puted the heats of formation of rather complex random Al-Mg-Si-
vacancy configurations via both DFT and the NN potential. The many
specific configurations studied here (consisting of 16 Al atoms, 2 va-
cancies, and a total of 14 Mg and Si atoms) are not important on their
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Figure 19: (a) Solute-solute binding energies as a function of distance
between solutes, and (b) solute-vacancy binding energies,
obtained by the NN potential (filled markers and solid
lines) and DFT (open markers and broken lines). These
values are obtained using 4 x 4 x 4 cubic FCC cells which
are not in the training data, but the relevant structures with
2 x 2 x 2 cells are in the training data.

own, and hence we do not show all the structures but rather con-
centrate on the spectrum of energies. Figure 20/ shows the difference
in formation energies of all configurations as computed by the NN
potential and by DFT. The formation energy is defined as

E¢ = E[Na1, Nmg, Nsil — Najear _NMg'Sl%/?g — Ngied, (85)

where sis = E[Al»55X1] —255¢4, is the solid solution energy of solute
X. Since these configurations are not included in the training data
set, these results provide a measure of transferability, or conversely
error prediction, for the present NN potential for solute clusters. The
mean difference is +6 meV/atom with a standard deviation of +/- 8
meV /atom. Figure |20 also shows the differences between PBE and
PBEsol DFT results, with a mean difference of +8 meV/atom and
standard deviation of +/- 4 meV/atom. The NN potential predictions
are thus somewhat larger than the differences among different DFT
methods, but are almost within the statistical scatter. In contrast, the
Jelinek MEAM potential predicts differences with DFT of mean +256
meV /atom and standard deviation +/- 108 meV /atom, which are not
only 10-20 times larger, but far too large to be suitable for studies of
aging.

In the early stages of precipitation in Al-Mg-Si alloys, the Mg/Si
ratio in a needle-shape precipitate is smaller than that of the larger
equilibrium Mg,Si precipitate, which has the C1 structure. The struc-
ture of the early-stage precipitate is thought to be Mg;Sic[188] or the
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Figure 20: Formation energies per atom of the system described in
Sec. obtained by the NN potential (red squares) and
the DFT-PBEsol (blue circles), as differences from the DFT-
PBE results. Since these structures are not in the training
data set, this can be treated as the prediction error of solu-
tion/precipitation energies by the NN potential.

same crystalline structure but with some Mg or Si atoms replaced by
Al as shown in Fig. a).[11, 20] We have thus computed the forma-
tion energies of these precipitates as a function of size when embed-
ded in the Al matrix using the NN potential and have compared the
predictions with DFT results of the previous Chapter. The simulation
cells here for both DFT and NN are identical, making direct compar-
ison possible. These structures are not in the training data set and
thus the comparison shows prediction errors of the NN potential for
precipitates.
The precipitate energy is defined as

Eprec = Ef/NFU (86)

where E¢ is defined in Eq. [85|and Ny the number of precipitate for-
mula units in the precipitate, as shown in Fig. [21{a). Figure [21c)
shows the precipitate energies obtained by DFT and by the NN poten-
tial as a function of Ngy. The DFT and NN results are in good agree-
ment for larger precipitates, but the NN potential underestimates the
precipitate stability for the smallest precipitates (one formula unit),
with a difference of ~0.2-0.3 eV/unit. These energy differences are
thus rather larger than those found for individual solute-solute inter-
actions on a per-atom basis as the one precipitate unit contains 11
atoms. If we assume that not only precipitate atoms but also sur-
rounding Al atoms, for example Al atoms interacting with the pre-
cipitate within the cut-off range of the NN potential, are contributing
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Figure 21: a) Typical simulation cell of Mg;Sis precipitate of Npy =
4 in Al matrix, which corresponds to 7 x 7 x 1 FCC Al
cell. The system is periodic in z-direction, [001]4;. The
green rectangle indicates a monoclinic cell of Mg;Sis. b)
Formation unit of Mg;Sie indicated in the red rectangle in
a). In case of MgsAl,Si,, Si; sites in MgsSig are replaced
by Al, while Mg, site is also replaced by Al in Mg,Al,Si,.
c) Size dependency of the precipitation energy of MgsSig,
Al,MgsSis and AlsMgsSis obtained by the NN potential
and the DFT ) These structures are not in the training
data set.

to the energy difference, it would decrease close to the uncertainty of
the DFT method found for the 32-atom Al-Mg-Si-vacancy clusters.

Proceeding further, the contributions to the precipitation energy
can be divided into four parts: the bulk formation energy, the strain
energy, and contributions from interfaces and edges. The Eprec, which
is the precipitation energy per Ngy, of bulk and strain parts are inde-
pendent of Ngy, while the interface and edge energies should scale as
N;[} /2 and NF_I}, respectively. Therefore, as Nyy increases, the bulk
and strain energies should dominate Eprec while the edge contribution
could be significant at small sizes, e.g. Ny = 1. The good accuracy
of the bulk formation energy and elastic constants as shown in Table
[5|and [7] the underestimation of the NN potential for the small precipi-
tates with Ngy = 1 imply that the NN potential overestimates the for-
mation energies of the precipitate edges and surfaces. Of course, one
precipitate unit (11 atoms) is nearly entirely “interface” and “edges”,
and hence deviations per atom are comparable to the deviations for
other solute-solute interaction energies. Nonetheless, the cumulative
effect of these per-atom energy differences (reaching 0.2-0.3 eV /unit)
can have an effect on overall aging behavior since the total difference
in precipitate energy is not negligible. Improving the error of these
energy differences is still challenging even for NN machine-learning
potential and may not be necessary because the uncertainty of the
DFT method could also result in non-negligible differences.
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4.3 3-BODY NN AND AUTOMATIC FINGERPRINTS

In this section, we explore the fitting of a NN potential within Behler-
Parinello framework for the same ternary system including also sym-
metry functions that describe 3-body interactions.[112} [121) 189 [190]
The structure of neural network involves 2 hidden layers and a num-
ber of nodes for each hidden layer which ranges from 15 to 25. As
evidenced from related studies, this NN structure is able to capture
well the manifold features of DFT PES. [114, 117, 191-196] Given
the presence of an enormous number of possible SE, choosing the
set of descriptors that characterizes the possible configurations in an
equally economic and thorough way is one of the crucial steps in the
optimization of ML schemes. The idea of doing this descriptors se-
lection by a non-automated method is, therefore, prohibitively time
consuming and does not guarantee an optimal result.

The reason for embarking in an alternative training that includes
3-body SF are essentially two:

1. showing an explicit comparison with a purely 2-body potential
and assessing the importance of 3-body terms

2. demonstrating an automatic protocol to select SFs for a complex
ternary NN potential where the number of possible parameters
is too high to proceed by trial&error validation

SF Database Generation

The SFs that are used in Behler-Parrinello NN potentials have been
already introduced in detail in the Sec. [112] The magnitude
and variability of these symmetry functions depends on the relative
distribution of one (for G, see Eq. or two (for Gz, see Eq.
elements around the selected reference atom. The order of magnitude
of a SF depends trivially on its spatial extent and on the concentration
of the species involved. To treat them on more equal grounds, we
decided to normalize the value of each symmetry functions based on
the value it would take if it were computed for a uniform ideal gas,

I, =4mpa JdTAf%Gz(TA)
(87)
I3 :87r2pApB Jdm\ drg derﬁ\rzg sin® G3(ra,rs,0),

where pa and pg are the average densities for the element corre-
sponding to the first and second neighbor considered in the evalu-
ation of G, and G3. We scale the symmetry functions by the square
root of the integrals so as to guarantee that the variance of the
values would be constant in a uniform gas.
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Given that the method we will show in Sec. |4.3.1]is based on the
sparsification of a large set of these SF fingerprints, a first preparatory
step involves the determination of a thorough yet manageable pool of
candidate SFs. The generation is done spanning over all of the mean-
ingful sets of parameters, using simple heuristic rules to represent
most of the possible correlations within the cutoff distance. We gen-
erate two separate sets of radial symmetry functions, G,. The first
group R(1) is centered on the reference atom (i.e. Ry = 0) and the

width varies as

2

M = (”m/n> , (88)

Te

where 1 is the number of intervals in which we have chosen to di-
vide the space and m = {0,1,...,n}. The second group R(2) is cen-
tered along the path between the central atom and its neighbours, at
increasing distances following

Tc

Rs,m - Tlm/n) (89)
while the Gaussian widths are chosen as
‘ (90)
Ns,m =
S (Rs,nfm - Rs,n—m—l )2

in order to have narrow Gaussians close to the central atom and wider
ones as the distances increases. This effectively creates a finer grid
closer to the central atom, where small variations in the position have
a larger effect on the potential (see Fig. [22).
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Figure 22: Examples of radial symmetry functions generated using
N = 5and 1. = 6 A. The blue curves are the symmetry
functions centered in the origin (Rs = 0) and n varying as
in Eq. 88} while the red ones have their center shifted using
R as described in Eq.[89|and 1 is described by Eq.[go} The
black dashed curve is the cutoff function for t. = 6 A.
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The G3 symmetry functions were generated with a similar proce-
dure, choosing values for n according to Eq. [88} setting A to both val-
ues {—1, 1} that were originally proposed and choosing a few values
of ¢ on a logarithmic scale, e.g. {1,4, 16}.

By increasing the cutoff radius and the number N of symmetry
functions that are generated, one can make the description of the
environment more and more complete. This comes however at the
expense of greater computational costs, since a large number of SFs
would then have to be generated at each potential evaluation. Less
obviously, using too many, strongly correlated symmetry functions
could lead to overfitting and difficulties in the regression process. We
will discuss in Section how to identify a small subset that con-
veys the essential structural information.

4.3.1 SF Selection

The SF DB discussed in the previous Section can easily lead to an
arbitrarily high-dimensional feature space. We can now turn to the
discussion of how one can select a N’-dimensional subset of the initial
descriptors, that captures the essential features of the atomic environ-
ments and can be used with little or no performance loss as the basis
of a statistical regression scheme to predict the properties of a given
set of materials. Symmetry functions can be selected, in a more or
less automatic fashion, by evaluating empirically the accuracy of a
ML model based on a trial set of SE. For instance, genetic algorithms
have been recently proposed as a method to generate an optimal se-
lection [197], similar to what has been done in Sec. to select an
optimal set of reference structures. [198] Here, we focus on an unsu-
pervised approach that relies only on knowledge of the geometries of
the reference structures (e.g. SF description), without using informa-
tion on energy and forces, nor on the performance of the ML model
that results from a given choice of input features.

The approach we will discuss here is based on a relatively simple
idea: given a set of M structures {A} that are representative of the
system one wants to study, and a large number N of fingerprints
{d)j}, one can build the M x N matrix X such that Xj; = ®;5(Ay).
The most effective fingerprints can then be chosen by using standard
linear algebra techniques to approximate X. The ML schemes we
discuss in this work are based on a decomposition of the energy of
the system in local contributions, each of which is associated with
an atom-centered spherical environment with cutoff radius r.. Un-
less otherwise specified, we will consider these environments, rather
than the entire structure, as the core of our discussion. The elements
of X refer to the fingerprints defining these environments, which we
consider, in order to simplify the notation, without explicit reference
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to the structure they are part of. A given set of features can be used
in a variety of regression schemes to predict atomic-scale properties,
ranging from linear fits to Gaussian Process regression [84] (GPR)
and neural networks [117,[199] (NN). It has been shown that in many
cases the quality of the input representation plays a much more im-
portant role than the regression algorithms in determining the accu-
racy of predictions [200]. Here we will consider as example the NN
scheme for an Al-Mg-Si alloy, using the two paradigmatic families of
SFs described in Sec.

We aim to find the optimal M x N’ feature matrix X’, where N’ <
N, that still provides a satisfactory representation of the space while
reducing the computational load of the ML scheme. This is essentially
a dimensionality reduction problem, that can be interpreted in terms
of the construction of a low-rank approximation X of the feature ma-
trix. Most of the dimensionality techniques available for this task,
such as Singular Value Decomposition (SVD), generate new features
that are a linear combination of the initial set and cannot be used for
our current purpose, as they would still require the evaluation of all
the N features and, only as a second step, project them onto a lower-
dimensional space. We have therefore considered methods that strive
to obtain a low-rank approximation of the feature matrix or its asso-
ciated covariance using only rows and columns of X. We discuss in
particular the CUR decomposition approach.

CUR Decomposition

CUR decomposition [201] is a feature selection method that has been
developed to deal with data where the information provided by the
singular vectors cannot be properly interpreted, such as gene expres-
sion data. In analogy with the low-rank approximation obtained with
a singular value decomposition, one writes

X~X=CUR (91)

where C and R are actual rows and columns of the original matrix
and U is just a small dense matrix which satisfies the equation. The
objective is still to find the best low-rank approximation to X, but in
this case only actual elements of the matrix are used, which implies
that X can be obtained without having to compute all N fingerprints.

We discuss in particular the procedure for selecting a reduced num-
ber of columns (i.e. fingerprints), but the method can also be used to
reduce the number of rows (i.e. reference structures) [171]. Each
column c of the initial feature matrix is given an “importance score”
calculated as

k

me=Y (v9)? (92)

j=1
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where ‘V‘(:j] is the c-th coordinate of the j-th right singular vector, and
k is the number of features that have yet to be selected and runs from
N’ to 1. We also found that a very effective selection can be obtained
by using a fixed number of singular vectors k = 1 at each iteration in
the procedure (CUR(k = 1)). Not only this makes the method numer-
ically more stable and significantly faster, but it makes the selection
independent on the target number of symmetry functions, so that one
can effectively perform a single selection with a large N’, obtaining a
list of SF that is sorted from the most important to the least important.
The importance score can also be weighted by a factor if one wants to
prioritize the selection of a certain type of features, e.g. if the cost of
evaluating different fingerprints varies greatly, and one would rather
take several “cheap” fingerprints than a single “expensive” one.
Most CUR schemes employ a probabilistic criterion for feature se-
lection, to guarantee e.g. that if several nearly-identical features are
present, any of them will have approximately the same probability of
being selected. To obtain a deterministic selection, we pick at each
step the column with the highest score, and avoid selecting multiple
nearly-identical features with an orthogonalization procedure. After
having selected the 1-th column with the highest importance score,
every remaining column in X is orthogonalized relative to it

X5 X5 — Xy (X1 -X5)/ X% (93)

The SVD is then re-computed based on the orthogonalized matrix,
and the column weights are re-evaluated. The procedure is iterated
until all N’ features have been chosen to build the C matrix, that cor-
responds to the reduced feature matrix X’. Since in this application
we are only interested in reducing the number of fingerprints, R =X,
and we can compute U = C*XX™", where A™ indicates the pseudoin-
verse. One can then compute the accuracy of the approximation as

e = |[X—CUR[ /X (94)

The total number of features to be selected, can either be fixed a priori,
or increased until € becomes smaller than a prescribed threshold.

4.3.2 Farthest Point Sampling of Train Structures

In this section, we discuss a way to determine the most representative
selection of train structures from a DB of initial structures. This can
be useful to reduce the cost of evaluating a ridge regression model,
or to minimize the number of property evaluations that need to be
performed in order to train the model [171} |202} |203]]. In order to do
so, it is useful to construct a set of fingerprints associated with the
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whole structure, rather than with individual atomic environments. A
straightforward definition of a “global” fingerprint associated with a
structure A, ®(A) is the average of all the local fingerprints for the
environments that compose the structure A, i.e.

®j(A)= ) ®j(X)/Nar(A). (95)

XeEA

In the case of Behler-Parrinello symmetry functions, that are de-
fined separately for each chemical species, we consider that the global
fingerprint is composed by concatenating sections corresponding to
each element. In other terms, one can see this as a sparse represen-
tation for a larger fingerprint vector that is padded with zeros in all
sections but the relevant one, even though in a practical NN imple-
mentation one only computes symmetry functions associated with
the identity of the central atom. The fingerprint vector for the entire
structure can then be built according to (95), summing these zero-
padded vectors over all atoms in the structure.

In this context, we select the structures that are most diverse within
an initial DB using a Farthest-Point Sampling (FPS) approach which
seems to be the most promising in line with other systems.[22] This is
analogous to the strategy with which one can select uniformly-spaced
reference points (see e.g. [204]), but here we apply it to the set of
vectors {®@;(A)}, so as to select the train structures that are as diverse
as possible for the DB being investigated. In a FPS scheme, successive
points are chosen so as to maximize the Euclidean distance between
them. After arbitrarily selecting the first structure, each subsequent
one is chosen as

k = argmax(min; |@;(A) — O (A)]), (96)

where j runs over all of the structures that have already been selected.
The procedure is repeated until the desired number of structures has
been chosen.

So, from the above diagram, one can use the FPS method (or even
the CUR method) to sparsify the train reference DB. The reference
DB we used as a starting point is composed of the 10551 structures
shown in Sec. supplemented by 609 structures of 3”-phase pre-
cipitates and interfaces shown in Chapt. [3| [20, |21] Given that many
of the resulting 11160 structures are taken from short MD runs and
are highly correlated, we selected 2000 structures with FPS, that have
been used both for the selection of SF and the training/testing proce-
dure. This sparser selection leads to a larger absolute magnitude of
the fit error, but does not affect the quality of the fit, while making
the optimization procedure faster and more stable.
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4.3.3 Optimization of the Potential

A NN potential for Al-Si-Mg alloys including only 2-body functions
has been already shown in Sec. [21], where all of the interac-
tions among the different species and defects must be accounted for
to obtain accurate predictions across the full range of relevant com-
positions. The presence of multiple interactions at different length
scales makes the manual selection of SF a particularly cumbersome
task. In the Sec. the problem was circumvented by restricting the
SF pool to the 2-body G, components, making it possible to obtain
a systematic - if not optimal - selection. [21] The automatic selection
procedure we introduce in this section makes it much easier to au-
tomatically determine an efficient feature set that includes both G,
and G3 SFs, which makes it possible to take into account the angular
dependence of the atomic interactions explicitly.

We follow the protocol discussed in Sec. for the initial gen-
eration of SF with random initial weights and a 3:1 random split
of train:test points. Six sets of G, SF have been generated using
N =4,12 and r. = 8,16,20 bohr, and two sets of G3 SF have been
generated using N = 8 - one with r. = 8 bohr and ¢ = 1,2,4,8,16
and the other with r. = 12 bohr and { = 1,2,4. Final results are not
sensitive to these choices, that we only made to have intermediate
files of manageable size. Duplicate SF have been eliminated, together
with those that had a width smaller than 1.06 A for the radial ones
and smaller than 1.32 A for the angular ones. We weighted the impor-
tance scores by a factor proportional to pa ppr3 for G, functions
between atoms A and B and papsg pcrg for G3 functions between
atoms A, B and C, to reflect the cost associated with evaluating them.
We note that these importance scores do not enter the functional form
of the SFs finally used in the fit.

The details of the fingerprints can be inferred from the input files
provided in the supporting information of Ref. [22]], and the perfor-
mance of the resulting NN potentials can be seen in Table gl The
test set RMSE decreases systematically as the number of selected SF
increases, up to 64 SFs per species. We also compared the results
with those obtained with the SF selection from Sec. To ensure
a fair comparison we re-optimized and tested the potential using the
RulNNer [119] software and the same FPS selection we discuss above.
We verified that the accuracy of the re-trained NN for the properties
we test here is comparable of better than that of the original poten-
tial. [21] Already at N’ = 96 (32 SFs per species) the automatic selec-
tion that includes 3-body SFs leads to a better test set error than the
systematic selection of 120 G, SFs.

While the test set RMSE is a good measure of the quality of a poten-
tial, it is important to also verify the stability of the NN when com-
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N/Al, Nﬁ/[g, Néi €Aly €EMg) €Si RMSE(E) RMSE(f)

x10% [meV/at]  [eV/A]
CUR selection
16,16,16 79,99,101 16.22 0.084
32,32,32 7.9,14,10 4.08 0.052
64,64,64 0.9,1.3,0.8 2.47 0.022
SFs of Ref. [21]
40,40,40 - 9.2 0.069

Table 9: The table reports, for different numbers of SF, the error in
the approximation of the feature matrix, and the RMSE for
energies and forces from a test set. Results from the SF used
in Sec. and in Ref. [21] are also shown for comparison.

puting a property for which configurations had not been explicitly
included in the train DB. As an example of the behavior of the differ-
ent potentials, that is very relevant for the potential application of this
NN in the description of the early stages of precipitation in Al-6xxx al-
loys [20], we computed the configuration energy along the minimum
energy pathways for the vacancy-assisted migration of Al, Si, Mg
atoms in a matrix of 256 Al atoms. Atomic configurations along the
pathway between the minimum energy states were obtained by linear
interpolation, and by local optimization using the NEB method [205]]
with the climbing image algorithm [206] as implemented in Quantum
ESPRESSO [49]. The details of the DFT calculations were the same as
described in Refs. [20, [21]. 7 images have been used for Mg and 13
have been used for Al and Si, and lead to relaxed vacancy migra-
tion barriers that are consistent with previous DFT calculations [207].
Keeping the configurations fixed, we computed the energy along the
migration barrier for both the linear transition path between the ini-
tial and final configurations and the corresponding relaxed positions.

As shown in Figure [23} there is a considerable improvement in the
quality of the fit when going from 16 to 32 SFs per species, whereas
the improvement is less dramatic when using a larger number of SFs,
and actually in the case of the vacancy-assisted diffusion of Si the
64-SF NN performs worse than the 32-SF NN. This observation un-
derscores the fact that refining the SF selection does systematically
improve the accuracy in the interpolative regime, as probed by cross-
validation, but not necessarily to a systematic improvement in the ex-
trapolative regime. For all of the vacancy-assisted diffusion processes
we considered, however, NN potentials reproduce the correct quali-
tative behavior. Excluding the case with 16 SF per element, which
is clearly insufficient for this system, the error in the relaxed barrier
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Figure 23: The energy barrier for the vacancy-assisted migration of
Al, Mg, and Si using an increasing number of symmetry
functions are presented on the left, compared to DFT and
the choice of SF for the Trail&Error protocol in Sec.
presented on the right. Dashed lines correspond to the un-
relaxed configurations, solid lines to the minimum energy
pathway. The energies are shown as a difference from the
minimum energy structure.

is below 0.1 eV, which is comparable to the typical DFT error. Auto-
matic SF selections that include 3-body terms as reported in Fig.
with a blue, brown and violet color, perform better in the case of 32
SF than the 2-body NN discussed in Sec4.2|(shown with a grey color)
in case of Silicon, and slightly better in the case of 64 SF in the case of
Aluminium and Magnesium than the same 2-body NN. Nevertheless,
the 2-body NN predicts diffusion barriers with a remarkably small
error.

4.3.4 Precipitates

In this section, we will benchmark the NN for the properties linked
to the phenomenon of precipitation that is central to this dissertation.
For an exhaustive list of comparisons of other properties obtained
from NN potentials generated through the two protocols see App.
We can however summarize App. by stating that the po-
tential obtained through an automatic protocol has a slightly better
accuracy in the prediction mode and a worse accuracy on the train-
ing set. Suggesting that the 2-body potential suffers from a degree
of over-fitting. Here, all the quantities determined use a 3-body NN
potential with 64 SFs for each atoms (e.g. 192 SFs as a total).
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Figure 24: Top) A view along the b direction of an infinite needle-
shaped B” precipitate with 16 (4x4) formula units cross-
section, embedded in a 12 x 1 x 12 Al supercell for the
three precipitate compositions. (Bottom) Precipitation en-
ergies per formula unit, Eprec(N)/N, calculated from ex-
plicit DFT calculations (as in the previous Chapter) and
estimated by the 2-body and 3-body NN Potentials.

As in Sec. we have computed the precipitation energy of
"-phase as a function of size. We can see in Fig. that both pro-
tocols underestimate the precipitation energies for the small precipi-
tates with Ngy = 1. This implies that even the 3-body NN potential
overestimates the edges energies of precipitates. The edge contribu-
tion scales as Npj and it could be prominent at 1 FU. On the other
hand, the 3-body NN potential seems to describe the interface ener-
gies much better. This is apparent in the results for 4 FU. Indeed, the
surface terms scale as NF_[} /% 50 that they predominate over the edge
energies at intermediate precipitates. This better accuracy of interface
terms is not only due to the fitting protocol; in fact in this later fit we
included in the train set structures that contain 3"/ /Al interfaces (i.e.
the ones shown in Fig. [12). This shows how the extensibility of NN
potentials in the introduction of new knowledge is the real strength
of this method compared to other fitting methods.

As reported in Sec. we calculate the solute-solute binding
energies, and we use the standard definition of binding energies.
Therefore, the values of the binding energies in Fig. [25(Right) are of
opposite sign w.r.t. those in Fig. From what we have understood,
the most evident errors between DFT and NN Potential appear to be
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related to interactions between solutes, which is troubling given the
importance of these terms during the early stages of precipitation.As
already discussed, an appropriate potential should reproduce these
binding energies within approximately an energy of kgT to provide
accurate metastable energetics during KMC evolution of the system.
Both the 2B and 3B potentials, while being much better than EAMs,
barely meet this target. This is surprising given that the structures
are part of the training set.

An important observation, which we will discuss in detail in Sec.
is that the interaction energy between solutes depends strongly
on the size of the supercell, more than would be expected based on
misfit volume and elastic terms. We traced the source of this discrep-
ancy to long-range charge oscillations induced by the solute atom.
These kinds of long-range effects cannot be captured by a short-range
NN potential, which partially explains the difficulty in accurately
learning solute interaction energies.

4.4 PARTIAL CHARGES AND SHORTCOMINGS OF THE NN

Long-range phenomena are problematic in Machine Learning algo-
rithms since they are strongly dependent on system sizes and ex-
ceed the range of the environments described by the symmetry func-
tions. [209-212] A preliminary study on electrically charged systems
and long-range interactions conducted through a Behler-Parrinello
NN Potential proved to be strongly charge definition dependent. [213,
214] It allowed one train the long-range term of NN Potential by
combing the numerical accuracy of NN with an electrostatic term
based on Hirshfeld charges.[215]

Both versions of the potentials we built do not include any infor-
mation about the charge density during the fitting mode which is
reasonable given that metallic screening should eliminate any long
range effect.

In the next sections, we will demonstrate the existence of long-
distance charge fluctuations in aluminium alloys, and discuss pos-
sible remedies to reduce the impact of these long range electronic
effects. In short, our aim will be to avoid the problem of electrostatic
long-range terms by smoothing out these charge fluctuations until
they have disappeared.

4.4.1  System-size Dependence of Defect Interaction Energies

In Secs. and we have seen that an Al-Mg-Si NN Potential
built with 2B interactions and 3B interactions is able to predict several
mechanical and thermodynamic properties of the aluminium ternary
system (6xxx-series).
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Substitute 1 Substitute 2 abinitio 2-BNN  3-B NN

Mg — 90 100 92
Si — 375 376 376
Vacancy — 654 647 673
Mg Mg 8(35) 23 63 (49)
-16 (-12)  -12 -3 (-9)
Si -30 (-38) -38 -29 (-50)
1(-1) 2 -1 (-14)
Vacancy -12 (2) -2 12 (0)
-3 (-16) -13 -26 (-41)
Si Si 14 (16) -17 49
3(9) 2 58
Vacancy -55 (-54)  -76 -74 (-63)
-5 (2) 9 -26 (-27)
Vacancy Vacancy 46 (78) 36 54
-15 (-22)  -19 30

Figure 25: Left: We show a 4x4x4 Al-supercell (e.g 256 Al-atoms)
where we substitute Al atoms with three impurities (Mg,
Si, and Vacancy). The substitute 1 is indicated by a black
sphere, while the substitute 2 is positioned based on the
color in four different relative positions with respect to the
substitute 1 and is indicated by a coloured sphere. The
grey spheres are Al-atoms. Right: Heats of formation of a
substitutional solute and the solute-solute binding energies
both expressed in meV units. The text color for substitute
1 and 2 is correlated to their positions in the image on the
left. The terms in brackets have been calculated consider-
ing an Al-matrix with 32 Al-atoms (e.g. Al supercell with
2x2x2 size). These structures are in the training data for
the 3-B NN and are not in the training data for the 2-B NN.
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Solute-solute interaction energies are the aspect that showed most
pronounced inconsistencies in the prediction mode for both NN po-
tentials. Since these are fundamental to simulate the dynamics of
the early stage of precipitation, their potential divergences have to
be understood. This section will be dedicated to an in-depth study
of the reasons behind this inconsistency. The initial idea that these
energetic discrepancies could be associated to the inaccurate training
of NN was definitely excluded by analysing the ab-initio simulations
of different-sized supercells, which have the same arrangements of
solutes at different concentrations in Fig. [25(Right).

We can note that the solute-solute binding energies calculated us-
ing a cell of 256 atoms (e.g. 4x4x4 Al-matrix) and a cell of 32 atoms
(e.g. 2x2x2 Al-matrix) differ significantly and their energetic discrep-
ancies are too large to be attributed to a simple misfit volume ef-
fect.[216] This kind of discrepancies is worrying, and can affect neg-
atively the accuracy of the Neural Network. In order to understand
the origin of these discrepancies, we firstly checked carefully all pos-
sible DFT convergence parameters. In particular, we focused on the
size dependent parameters such as the number of Kohn-Sham bands
and the k-points sampling. We discovered that the number of KS
bands defined as default by QE was not sufficient to fully represent
unoccupied states due to considerable smearing (See Sec. [2.1.3). This
affected the energy of the most excited states and, therefore, the cal-
culation of the Fermi level. For these reasons, we have increased the
number of KS bands equal to the total number of electrons.

The other computational parameter that needs to be reassessed ac-
cording to the system size is the the k-points grid. The comparison
between two systems having the same supercell should always be
done using the same k-point set, so that we can make vanish plausi-
ble errors from a non-converged k-point grid. A similar strategy can
also be applied when we compare structures with different unit cells
(e.g. we adopt the equivalent k-point sampling).[217] In addition, we
use 8 times denser sampling to ensure complete independence of the
total energy from the choice of the k-point set. Adopting this last pre-
caution to the whole train set has a positive effect on the stability of
the optimizer during the interpolation and on the predictive accuracy
of the potential NN too.[218] However, such discrepancies remained
even taking these measures into account as shown in Tab.

In the literature[219-222], similar results are traceable and strongly
correlated with the presence of long-range electrostatic terms. When
we incorporate the substitutes into the 2x2x2 Al-supercell and in the
4x4x4 Al-supercell, the interaction is so delocalized that, besides in-
teracting with each others at long distances, they feel the effects of
their periodic images.
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This is visible in the first two columns of Tab. in which the
binding energies do not tend to zero for solutes relatively far apart
and are very different for systems with different solute concentration
but identical placing. Eventually, we traced the problem to long-range
charge fluctuations, that we analyse in the following.

4.4.2  Which Atomic Charge Definition?

An unambiguous unbiased definition of the (first principles) atomic
charges has not been established yet.[214, 223] Their quantification
should be determined by many-atoms electronic density which, by
definition, does not belong to any atom. For these reasons, differ-
ent ways of dividing the space or the charge density lead to different
numbers for the atomic charges and therefore possibly to different
ways of interpreting the chemical bond.[214] Then the question is of
course which region of space should be attributed to a certain atom
and where we should use diffuse or discrete boundaries to define
the integration regions (i.e. overlapping versus non-overlapping re-
gions).[223]]

The oldest and also the best known definition of atomic charges
is based on the Mulliken population analysis. [224-226] The Mul-
liken population of (atom-centered) basis functions is obtained by
assigning half of each total overlap population between two atoms at
each atom. In this way, it does not take into account the difference
in electronegativity between the two atoms. Furthermore, this ap-
proach does not, in principle, converge with increasing basis set size.
Therefore, unrealistic atomic charges can result. [227-230] A possi-
ble improvement to this approach is the Natural Population Analysis
(NPA)[228] Both methods are based on a representation of the molec-
ular wave function using atomic basis functions.

A second class of methods, which is based directly on the elec-
tron density as a function of space, includes among those: Hirsh-
feld method [215], Bader approach[231] and Voronoi Population (VP)
analysis[223} 232]. These methods rely on the direct spatial integra-
tion of the electron density function over an atomic region. They do
not project the wave function on any form of basis functions, and are
more representative of our problem due to electronic charge density
fluctuations. We will evaluate the atomic charges using the electronic
charge density and two very different ways of approaching the prob-
lem of space partitioning: Bader approach and VP analysis. Both
approaches can be used for periodic or molecular systems.

The Bader approach uses the topology of the electron density to
define an atomic domain. It starts with locating the Bond Critical
Points (BCPs), which are the points of minimum charge density (zero
gradient) along a bond path and a maximum in the normal direction
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to the bond. The BCPs are used to determine the zero-flux surfaces,
which then divide the atomic system into atomic regions. Integrating
the electronic density p. within an atomic region we obtain the charge
assigned to that atom as follows

Bader _ JA pe(r)dr. (97)

In Eq. A is the region bounded by BCPs for the i-th atom. It is
also clear that atomic volumes obtained in this way are not spherical
and do not overlap.

For the VP analysis, we use a generalization of the Politzer method
based on Voronoi polyhedra.[232H234] The polyhedra cells are de-
fined following Voronoi process: we construct a plane at the bond
midpoint perpendicular to the line connecting two atoms. We repeat
this process for all atoms and we get a set of planes assigned to each
atom that defines a polyhedron around it, the so-called Voronoi poly-
hedron. In the standard process the perpendicular planes are put at
the bond midpoint. This overestimates the electronic charge trans-
fer between different kinds of atoms.[214] For this reason, we use a
modified Voronoi Population analysis[223] which is more reliable. It
consists in moving the perpendicular bisecting plane away from the
Bond Midpoint (BM) by a distance related to the relative sizes of the
atoms (e.g. “van der Waals radii”) as in Eq.

R} = )ﬁ)-(i-l)(jrij ) (98)
where X; and x; are the “van der Waals radii” of atom i and j and ry;
is their internuclear separation. We can, then, write the VP charges
in the following way

P = JQ pe(r)dr (99)

in which Q is the volume of i-th Voronoi cell.
Both Eq. 971 and Eq. [99] can be normalized subtracting the corre-
sponding valence atomic charge Z;.

4.4.3 Bader Versus Voronoi

In this section we compare the two techniques presented in the previ-
ous section. For the calculation of the electronic densityp(r) we will
use the same DFT computational parameters expressed in Sec. In
particular, we apply an energy cutoff of 280 Ry to electronic charge
density which implies a mesh density of 5-10'"A=3. This value
makes the calculation of atomic charges for both methods converge
within a tolerance of +o0.01 electron per atomP} We use the”Bader

5 This value has been confirmed in the case of Al-bulk at 300 K.
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Figure 26: In 4x4x4 Al-bulk, we show atomic charges calcolated by
Bader approach and by VP analysis. They have been anal-
ysed at zero temperature and for 4 frames at 300K after
a time of 10ps, 50ps, gops and 130ps. The dynamics were
driven by a velocity rescaling thermostat and our NN
potential, while the electronic charge density was evalu-
ated by a DFT approach.

code” in order to make the charge analysis consistent.[235H237] We
consider as test for both methods the electronic charge density asso-
ciated to a fully relaxed 4x4x4 Al-bulk at o K and a 4 configurations
of Al-bulk dynamics at 300 K (See Fig. [26).

It is clear from Fig. |26 that the Bader construction is very sensitive
to even moderate levels of disorder in Al bulk, assigning large formal
charges to different atoms that, given the metallic nature of the bond
in bulk Al, would be expected to be almost neutral. For this reason, in
the following we use VP charges that give a more physical description
for this system.

Through a similar process we have calculated the charge densities
and, then, the atomic charges of the configurations utilised to deter-
mine the solute-solute binding energies and the heats of formation of
a substitutional solute in Fig. |25} The atomic charge analysis by (both
Bader and) VP approach confirmed a strong charge oscillation due to
a charge “point”-defects into a high-symmetry perturbed system.

Having established a reliable method for defining atom charges in
this system, and leaving aside the fact that in different systems the
opposite conclusion has been reached that Bader charges are more
"physically meaningful" [239-H243]], we can now move on to discuss
the effect of lattice defects. As shown in Fig. vacancy-solute
clusters generate large atomic charges in their vicinity (that are even
more pronounced when studied in terms of Bader charges), that dif-
fer markedly depending on the size of the simulation cell. These
charge fluctuations are very long-range, can be seen as analogue of
Friedel that are introduced by the presence of a surface in a homoge-
neous electron gas. We believe that these effects are at the
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Figure 27: Atomic charges were calculated by Bader approach and by
VP analysis in the cases of a Mg-Vac system and the Si-Vac
one in 2x2x2 and 4x4x4 Al-supercell. In the previous sen-
tence the substitutes were carefully marked and coloured
so that it is possible to appreciate their relative positions in

Fig. [25(Left).
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origin of the large errors in the description of solute-solute interac-
tions, and of the discrepancies between cells of different size. While
this kind of electronic effects cannot included in a binding short-range
NN and in a straightforward manner, one to reduce their impact on
the stability and reliability of the fit which will be the subject of the
following section.

4.4.4 Solutions

In this section, we will discuss possible solutions in order to reduce
these charge fluctuations. We will use for our analysis the more reli-
able VP analysis, but similar conclusions could be reached based on
a Bader analysis (see App. [7.4).

Consistently with our interpretation of these charge fluctuations
as coherent phenomena related to Friedel oscillations, these effects
are very sensitive to disorder. As shown in Figure [28| small random
displacements of the atoms, or finite-temperature fluctuations reduce
or eliminate almost completely the charge inhomogeneity. This sug-
gests that the charge fluctuations, although physically real, might
be less relevant in finite-temperature conditions. However, highly-
symmetric minimum-energy geometries are important for building
and testing the potential, and so it is not possible to just ignore the
problem.

Another possibility to reduce the impact of the charge fluctuations,
that is also effective in the case of ordered minimum-energy configu-
rations, involves increasing the electronic temperature. Just as Friedel
oscillations, that are largely a consequence of the sharp Fermi edge
at T=o0 K, get smeared for finite electronic temperature, the fluctua-
tions of the charge around the solutes are considerably reduced as
the electronic smearing is increased (see Fig. . As shown in Ta-
ble 10, interactions energies between defects are better behaved when
using an electronic temperature of 0.2Ry. Interactions decay to zero
for far-away defects, and the discrepancy between small and large
simulation cell are sizeably reduced, except for the case of solute-
vacancy interactions that still show a discrepancy larger than 1omeV.
More tests are needed to determine if the error introduced by such a
large electronic temperature is preferable to the inconsistencies due
to charge fluctuations.
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Figure 28: We show atomic charges determined by VP analysis for
the solute atom systems (e.g one Al atom into 4x4x4 Al-
matrix is substituted with a Si, Vac and Mg atom). As
the case of Al-bulk, the atomic charges have been analysed
at zero temperature and, only, in the case of Mg-solute
system at 300K. Moreover, for all 3 solute atom systems
the label “Random” indicates that the atomic positions are
randomly displaced from the equilibrium positions for a
factor +0.01A. We observe that the charge fluctuations de-
crease when we introduce an entropic component into the
atomic positions.
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Figure 29: We show the atomic charges determined by VP analysis for
the Si-solute atom system and Mg-5i system into 4x4x4 Al-
matrix varying the smearing from 0.05 Ry to 0.25 Ry. In the
previous sentence the substitutes were carefully marked
and coloured so that it is possible to appreciate their rel-
ative positions in Fig. [25(Left). It is clear that the charge
fluctuations decrease when we raise the electronic temper-
ature.
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Table 10: First-principles solute-solute binding energies (in meV) cal-

culated for the various combinations of substitues and in
their various relative positions represented by four differ-
ent colours as shown in the Fig. [25(Left): in 4x4x4 Al-
matrix with 256 Al-atoms/in 2x2x2 Al-matrix with 32 atoms.
The values in the “standard” column were obtained using
the computational framework discussed in Sec. where
atoms have been required to relax in a super-cell with the
geometry of the Al-matrix.In spite of this framework, the en-
ergy effects of the misfit volume are not sufficient to explain
these discrepancies. Meanwhile, the values in the “con-
verged” column were obtained by adopting other two fur-
ther precautions discussed in Sec. i.e. paying attention
to the convergence of the KS bands and of the k-point sam-
pling. Finally, the values indicated in the “0.2 Ry” column
were obtained by simulations with the previous measures
and using an electronic smearing of 0.2 Ry.

Substitute 1~ Substitute 2~ Standard ~ Converged 0.2 Ry

Mg 8/ 35 7/ 34 3/18
-16 / -12 -17 / -13 -15 / -13
-1/ - -1/ - -1/ -
-2/ - 2 /- o/ -

Si -30/-38 -30/ -40 -26 / -30
1/ -1 1/ -2 2/2
4/ - 4/ - 3/ -
-1/ - -1/ - o/ -

Vacancy -12 /2 -13 /1 -16 / -22
-3/ -16 -4/ -17 -8/ -13
8/- /- 6/ -
8 /- 8/ 6/ -

Si 14 / 16 14 / 15 17 / 14
3/9 2/7 2/6
3/~ 2/~ o/~
3/~ 2/ - o/~

Vacancy =55/ -54  -56 / -56 -35 / -45
-5/ 2 5/ 1 9/0
9/ - 8/ - 5/ -
2/ - 8/ - 4/ -

Vacancy Vacancy 46 / 78 45/ 77 31/ 49

-15 / -22 -16 / -23 -4/ -17
4/ - 5/ - 5/ -

6/~ 7/~ 3/~




PRE-B’-PHASE PRECIPITATION AND KINETIC
MONTE CARLO

I n the previous chapter we dealt in detail with all the construction

of an accurate and robust Al-Mg-Si NN potential. The results
have confirmed its adaptability and accuracy suggesting it as an ef-
fective strategy to avoid expensive first principles techniques. In this
Chapter we exploit its accuracy combined with its low cost to de-
scribe diffusion-controlled phenomena. In fact, the use of KMC meth-
ods driven by the NN potential make it possible to achieve this at the
atomic level.[246-248] The KMC methods, as discussed in chapter
are suitable to study a wide variety of materials up to experimentally
relevant length and time scales [249-252], shedding light on the re-
sulting (micro and) nano-structural and (micro- and) nano-chemical
evolution during operational conditions, e.g ageing.[253-256]

Clustering during natural ageing in Al-Mg-Si alloys is a low tem-
perature reaction that is driven by diffusion and we use ab-initio KMC
(AI-KMC) simulation to understand its kinetics. The simulation is
based on the diffusion of a single vacancy, characterised by both dif-
fusion activation and atomic interaction energies.[257]

Even if KMC approaches are in principle well suited for the inves-
tigation of the underlying atomic-scale mechanisms, the task, in this
case, is complicated by the chemical complexity of the alloy. Specif-
ically, in AI-KMC, the evolution of the alloy proceeds through mi-
gration events of single defects[257-259], which are stochastically se-
lected at each step based on their transition rates.

In the specific case of Al-Mg-5i alloys, KMC model has to take
into account that all proposed crystal structure of the 3’/ phase or
post B’/ phase cannot be simply projected on the sites of Al lattice
(namely we still have an issue of commensurability). The solution we
adopt consists in determining possible states and transition based on
a lattice model. However, we recalculate on the fly the minimum local
energy associated with each lattice state so as to update the vector of
the rates preserving the detailed balance principle (see Sec. [2.3.2).

A similar vacancy-diffusion model has previously been developed
for the same ternary system. [257] However, it relies on a rigid lat-
tice, and considers only DFT pair interactions between first nearest-
neighbours (calculated in the case of isolated solute atoms) in order to
estimate the rates. Our previous analysis of the importance of elastic
relaxation in the early stages of precipitation, and the analysis of pair
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interactions that extend well beyond the first neighbour, both suggest
the need to go beyond this over-simplified model.

The cost of this minimization procedure is only affordable thanks
to the use of a NN potential. At the same time, this raises the question
of whether the NN is transferable enough to describe the multitude
of pre-nucleation clusters observed in a typical KMC run. For this
reason, after having discussed the details of our KMC implementa-
tion in Sec. and presented some qualitative preliminary results
in Sec. we will re-assess in Sec. the quality of the NN by
testing directly on selected structures from these preliminary runs.
This check demonstrates the need to extend the training dataset to
include representative configuration from the KMC run, suggesting
an iterative strategy to refine the simulations.

5.1 ON-LATTICE ALGORITHM FOR ALMOST OFF-LATTICE SYSTEMS

The general theory behind a KMC simulation has been presented in
Sec. Here, we show how this can be applied specifically to the
study of aluminium alloys. Our KMC simulation algorithm carries
out elementary swaps on a virtual 3D grid with PBC applied. This
grid is on-lattice and follows the Al-sites. It can represent an ide-
alized picture of vacancy migrations and precipitation sequence for
Al-alloy with Mg- and Si-trace elements. The defects as Mg- and Si-
solute atoms and Vacancies, are artificially and randomly introduced
into the system to represent an initial state that corresponds to a Su-
persaturated Solid Solution (SSS). Since we are looking to the vacancy
mediated diffusion in a Face-Centered Cubic (FCC) crystal in a fixed
volume, which evolve according to a finite set of physical swaps, the
number of configurations available at any KMC step is finite and enu-
merable. The so-called configuration space is discrete. Furthermore,
at each KMC step, we can determine all of the potential events that
the system can possibly undergo. For example, in the Fig. we
show how we classify all meaningful events at a possible KMC step.

Next, the energy of local minima is calculated for all these tracked-
down process. The energy minimization cycle is performed by a fixed
number of steps of the Limited memory BFGS (L-BFGS) optimization
algorithm. It is in the family of quasi-Newton methods that approxi-
mates the Broyden Fletcher Goldfarb Shanno (BEGS) algorithm using
a limited amount of computer memory.

Implementation of this scheme was achieved by incorporating the
KMC algoritm into i-Pi, which is a universal force engine interface
code written in Python, designed to be used together with an ab-initio,
force-field, or NN potential evaluation of the interactions between the
atoms.[260] Our choice to adopt the NN potential implemented ac-
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Swap Process

Figure 30: The criterion for assigning events. The arrows represent
the possible events which are weighed according to the Eq.
so as to construct the vector of rates which adds up to
R.

cording to the procedure presented in Ch. [4} instead of an ab-initio
potential, is only because of the computational cost and the real time
we wish to simulate. The rates are, in turn, estimated based on activa-
tion barriers, which are a correction to those calculated with the NEB
method for the vacancy-assisted jump of an isolated solute atom. The
new activation barrier for a swap involving a solute X is given by

(EN s +1) —Efs() | _prr
3y +EX ,

Exi= > (100)
where ENI< (n) is the local minimized NN energy at KMC step n and

ENMs(n+1) is the minimized NN energies for the i-th candidate at
step n+1. ERTT

late atom (e.g Vacancy/Al-atom, Vacancy/Mg-atom, or Vacancy/Si-

is the DFT energy barrier for a swap of an iso-

atom). Rates computed based on these barriers are consistent with
detailed balance.

Clearly this model that assumes constant prefactors for each solute,
and an activation barrier that only depends on relaxed initial and
final states and the dilute limit diffusion barriers is an approximation,
but one that would affect kinetics and not the relative stability of
clusters.

After this intermediate stage of revaluation of the rates, our KMC
continues following the normal KMC steps:

e extraction of two normalized random numbers p; and p»,

e evolution of the system according to the process k chosen through
the condition:

K K—1
ZniTi Z PR > Z niri, (101)
i=0 i=0
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e updating of the clock according to Eq. [66| with p; = P~.
In Fig. 31/, we show the complete scheme of our KMC algorithm.

L-BFGS

determine all possible pro-

cesses for the given configu- —>@ R=3%, rn;

ration and build process list
U I random numbers py, p2
‘ delete obsolete processes ‘

saiB4au3

from the list

Single point energy
calculation by
NN Pofential

find process k such that
K k-1
Dio Tini = ptR>30 g Ting

update clock |
1>ty t—t— R 'logpy

Figure 31: Scheme of KMC algorithm interfaced with LAMMPS pack-
age[261] by means of i-pi code. The geometry optimiza-
tion is internally managed by i-pi that communicates with
LAMMPS only the new atomic positions receiving back
from it both the energies and the forces (and even stress
tensor if necessary).

In calculating the rates, we used as prefactors, v?, and DFT activa-
tion barriers, EQFT, the values quoted by Mantina et al. [262] since
the barriers are very similar to our results as reported in Fig.

5.2 RESULTS

Using this NN driven vacancy-diffusion model, we run KMC simula-
tions of the annealing of supersaturated Al-Mg-Si solid solutions. In
order to avoid unphysical interactions between periodic images, we
consider two Al-supercells: one with {6,6,6} primitive vectors and one
vacancy, and the other with {8,8,8} primitive vectors and two vacan-
cies. Alloys corresponding to a supersaturated solid solution contain-
ing 2.8 at.% Mg and 2.8 at.% Si (case of {6,6,6} Al-supercell) and 2.3
at.% Mg and 2.3 at.% Si (case of {8,8,8} Al-supercell) are prepared.
This concentration of vacancies (i.e. around 4-103) is almost an or-
der of magnitude greater than the estimated vacancy concentration at
equilibrium (i.e. 7.2-10*4 in a pure aluminium at a heating temper-
ature of 873 K. However, in a SSS the total concentration of vacancies
at thermal equilibrium due to substitutional impurity atoms is given

by

—Svac —€1 —Svac —Evac
Nvaec ~ | (1—13ng01) + 121016 *8 e*8 | e *8 e T , (102)

1 At equilibrium, the vacancy concentration at a given temperature is given approxi-
mately by the equation nyqc = exp(—Svac/kp)exp(—Evac/kp T), where E, q¢ is the
heat of formation of a vacancy, Syac is the entropy of formation of a vacancy (e.g.
Svac = 1.5kp for closed packed metal [263], T is the temperature and kg is the
Boltzmann constant.
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where 1,1 is the concentration of solutes and &1 is the vacancy-solute
binding average energy at first nearest neighbours. [263] Based on this
expression, we can estimate n,qc at equilibrium to be 3.4-10*3 for a
supersaturated solid solution containing 4.6 at.% solute atoms at 873
K.

Starting from these SSS conditions, we ran KMC simulations at
room temperature and observed the formation of some agglomerates
containing Al-atoms in the core after ten milliseconds. As it was de-
duced from the previous study [257], we can assert that the clustering
is a fast process where the most significant agglomerations take place
within few hundredths of a second.

In the case of {6,6,6} Al-supercell and one vacancy (see Fig.
above: “1Vacancy”), we observe that the precipitate with composi-
tion MggAl,SigVacy is the most stable during the first hundredth of
a second of ageing, although it later dissolves. In the case of {8,8,8}
Al-supercell with two vacancies (see Fig. below: “2Vacancies”),
we could also study the phenomenon of vacancies trapping by solute
atoms. In particular, in the area marked in blue in the figure we have
observed as a Si-Si dimer can strongly trap a vacancy for more than
one millisecond (seed 2) and a small cluster of two Si atom and one
Mg atom can trap both vacancies (seed 1). In both cases it has been
noticed that this phenomenon happens in the first 10 milliseconds of
simulation that is when clusters of two/three atoms move to aggre-
gate. After ten milliseconds, the two simulations lead to two different
nucleation mechanisms. In the first case (seed 1), the solute atoms
cluster forming a single precipitate with a needle-like shape which is
coherent with the Al-matrix. This looks similar to what D. Maison-
nette et al. [8] have observed and it was reported in Fig. These
preliminary observations must be validated by a self-consistent proce-
dure of refinement of the NN Potential but until then we can identify
it provisionally as a possible GP zone. Given the finite concentra-
tion of solutes, the object is not stable throughout the simulation and
eventually, dissolves. In the second case (seed 2), we have the forma-
tion of two precipitates instead of a big one. We observe that these
pair of precipitates around 20 ms have the same energetics of the big
needle-shaped precipitate, and Al;Mgs5SisVac as chemical composi-
tion. These precipitates have the same size of 1 FU of "-phase and
the most stable ones, around 25 ms, have one less Al atom in the
core (i.e. AIMgs5Si4Vac). In both case the core of these precipitates
contain Al-atoms, this is comparable to what has been published in a
KMC study [259] regarding ternary aluminium-zinc-scandium alloys,
where L1, ordered stable precipitates of Al3Sn and AlzZn (typical
of their binary alloys [264]) are encapsulated within a more complex
agglomeration.
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Figure 32: The evolution with time of the total energy per solute for a

KMC simulation with two different SSS state (e.g different
seed) in the case of {6,6,6} Al-supercell (above) and of {8,8,8}
Al-supercell (below). We show some frame of the precip-
itate morphology during the evolution. They are plotted
by sitting on the centre of mass of the solutes making up
the precipitate and using two cut-off radii to indicate prox-
imity of atoms to that centre of mass. The first cut-off ra-
dius of 6A shows all atoms as solid spheres (e.g Al atoms
as grey, Mg atoms as blue, and Si atoms as red spheres).
While the second cut-off radius of 10A shows all Al atoms
within the spherical shell of these two spheric regions as
grey circle and all solute atoms as spheres with reduced
radius according to distance from the centre of mass.
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These qualitative observations obviously require longer simulations,
larger cell sizes, and more sampling of different starting conditions.
Before doing so, however, it is important to verify that the NN po-
tential is transferable enough to determine precisely the energies of
different configurations encountered during the KMC procedure, be-
cause in our simplified diffusion model they determine entirely the
height of the barrier as well as the relative stability of different clus-
ters.

60

50+

40+

Eiims T [meV/sol]

Eims"N [meV/sol] Eims"N [meV/sol]

Figure 33: Energies per solute atom of 50 KMC structures evaluated
by the 3B NN potential and the DFT calculations (left im-
age), and by the extended 3B NN potential and the DFT
calculations (right image). Each point has an oval that
circumscribes its tolerance associated with the DFT error
(1mev/at) and with 3B-NN error (£ 2.47 meV/at) (right
image) or extended 3B-NN error (3.35 me/at) (left image).
The y = x indicates ideal matching between NN and DFT
values and the red line is the orthogonal regression be-
tween these values, while the dashed lines represent its
validity range.

To achieve such validation we extracted 50 random frames from
two KMC simulations with 10’000 steps each, in the same tempera-
ture and concentration conditions. For each of these configurations
we performed a DFT calculation with the same computational details
used to generate the reference database for the NN, and compared
the energy predicted by the NN and by DFT. As shown in the left
panel of Fig. there is little to no correlation between the two sets
of energies (the R? coefficient is just 0.21). Even though the energy
errors in terms of energy per solute atoms are only marginally higher
than those seen in the NN validation set, it is clear that this lack of
correlation makes KMC results untrustwortyh. To remedy this, we
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proceeded to generate new configurations to supplement the previ-
ous reference dataset and fit an improved NN potential without re-
doing the CUR selection of SF. To obtain a more thorough catalogue
of possible pre-precipitation clusters, we ran a further set of simula-
tions with 2% and 3% Mg and Si concentration, and temperatures of
300, 500, 1000 and 2000K. From these KMC trajectories we extracted
72’000 configurations, out of which we further selected by FPS 350
diverse configurations. For each, we ran new DFT calculations. We
then added these structures to the reference database, and performed
a NN fit using the same selection of 64 symmetry functions we used
for the 3B NN discussed in section[4.3} with a 3:1 train:validation split.
We could achieve a RMSE on the validation set of 3.35 meV per atom.
We then re-computed the energetics of the same 50 random configu-
rations extracted from the 72000 database using this extended NN; as
shown in the right panel of Fig. |33} the correlation with DFT reference
values is dramatically improved, with a R? of 0.82. Compared to the
previous train data set, the new one also contains 350 structures/pre-
cipitates that are in an intermediate stage between the simple dimers
and the complex 3”’-phases. These typology of structures was not
present in the first database.

This extended NN can provide the basis for a more extensive set of
KMC calculations, that will be the subject of future work. Additional
validation with selected reference DFT calculations shall determine
whether an additional iteration of re-training, including additional
reference configurations, is needed to achieve the level of accuracy
that is needed to determine precipitation energetics and kinetics with
DFT accuracy.



CONCLUSIONS

n this thesis we have engaged in a thorough analysis of the early
I stages of precipitation in the ternary Al-6000 family of alloys,
with a multi-scale study involving ab-initio calculations, continuum
elasticity corrections, the optimization of a neural network interatomic
potential and the implementation of a quasi-on-lattice kinetic Monte
Carlo model.

By clearly identifying the chemical, surface, and elastic strain en-
ergies that contribute to the total precipitation energy versus size
and composition, and demonstrating that the overall trends are con-
sistent with a thermodynamic classical-nucleation-theory-like model,
we have provided new insights into the early stages of the formation
of B” precipitates in Al-6000 alloys.

The in-situ needle-like 3" precipitates are found to be stable rela-
tive to the solid solution down to the smallest in-plane formula unit,
indicating barrier-less growth at and above this size. The composition
dependence of the total energies is subtle, with two compositions be-
ing quite close in energy. Thus, the inclusion of surface energies and
elastic energies due to the different precipitate structures and com-
positions is essential for interpreting the DFT results and for then
determining the energetics in the more-dilute limit of real materials.
The benchmarking of the CNT-type model also provides a validation
for the use of such mesoscopic models in other systems.

The largest discrepancy between the thermodynamic CNT model
and DFT calculations is seen for the smallest precipitates, with the
ab initio energies being consistently much lower than those predicted
based on surface energies computed for a coherent interface between
the precipitate and the matrix. Together with the fact that the anisotropy
of v is not sufficient to justify the aspect ratio of needle-like 3" pre-
cipitates, this observation hints strongly at the need for consideration
of more complex models of the interfaces of the precipitates — includ-
ing variable composition and a significant degree of reconstruction —
that may help reduce the interface and elastic energies and further
stabilize the small precipitates.

We further show that, down to a single formula unit that is fully
encapsulated in the Al matrix, the DFT energy of a nanoscale precip-
itate is lower than the reference supersaturated solid solution. This
underscores the fact that precipitation kinetics is likely to be diffusion-
limited. Aggregates of a few solute atoms that can act as vacancy
traps [187] would thus slow vacancy-mediated solute diffusion that
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is necessary to form larger precipitates, greatly affecting the aging
times. This conclusion of dominance of diffusion-controlled aging is
also consistent with recent findings that the addition of 100 ppm of
Sn to Al-6061 can significantly delay aging, attributed to trapping of
the quenched-in vacancies by the Sn atoms [18, 265]. Our results thus
point toward the need for a systematic study of the energetics of ag-
gregates in the GP-zone regime, and the interactions between those
aggregates and vacancies and/or trace elements in the alloy to under-
stand and fine-tune the behavior of Al-6000 alloys in the early stages
of precipitation.

In order to follow this lead we have developed a NN potential for
studying mainly the precipitation strengthening in the pre-f" stages.
The NN potential is trained to reproduce DFT energies and forces
for a diverse set of structures including several bulk phases, surfaces,
vacancies and solid solutions. The NN potential is accurate in its
prediction of (i) the lattice constant, bulk modulus, elastic moduli and
surface energies of pure Al, (ii) the solute/solute and solute/vacancy
binding energies to within 20 meV/pair, relative to the DFT results.
Errors for properties included in the training DB are smaller than the
uncertainties in the DFT method, as assessed by comparisons of DFT
using two exchange-correlation functionals for a subset of properties.
Errors for properties not included in the training data set are slightly
larger but still generally comparable to the uncertainty of the DFT
method.

In order to determine an appropriate NN parametrization to take
into account 3 body interactions, we have introduced an unsuper-
vised protocol that can be used to select the most important features
out of a large initial pool of SFs candidates. This protocol is based
on preserving the features that retain the most information, and are
identified using relatively standard linear algebra methods, which
makes the approach fully automatic and transferable to different sys-
tems and families of descriptors. Given that our strategy determines
a low-dimensional description that requires the evaluation of only a
small number of features, it can also reduce dramatically the cost of
the property prediction. This is really apparent when considering a
ternary system such as Al, Si and Mg alloy. The 3B-NN potentials
based on AF-Protocol outperform a previous 2B-NN potential, both
in terms of test RMSE and in terms of the accuracy of predicting new
features (e.g. vacancy-assisted atom migration barriers).

Only the solute-solute binding energies show differences for both
NN potentials that could be important for quantitative predictions of
strengthening. The energies of small Al-Mg-Si clusters are also less
accurate than other quantities, although not significantly on a per-
atom basis, but trends with size and composition are followed quite
well especially in the case of the 3B-NN potential. Since the machine
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learning-type potentials are basically interpolating a potential energy
landscape, these inaccurate properties could be improved by includ-
ing training data such as dislocation core structures, interfaces and
small precipitate structures. An unsolved problem remains in the
modelling of solute atom interactions, due to the presence of long-
range Friedel-like charge oscillations that lead to large finite-size ef-
fects that are difficult to incorporate with a short-range NN potential.
We proposed a few remedies to this problem, including disrupting
the coherent oscillations by randomization of the atomic positions or
an artificial increase of the electronic temperature.

The overall success of the NN potential indicates that it can drive
a KMC model for the studies of precipitate strengthening of Al-Mg-
Si alloys involving the evolution of solute clusters, early formation
of nano precipitates, and their interactions with dislocations. More
broadly, these results show that machine learning-type potentials such
based on the Neural-Networks can be quantitatively successful, and
thus powerful tools, for modelling complex alloys that have proven
to be extremely challenging cases for the other physics-based inter-
atomic potential formulations.

Preliminary results on the first sub precipitation sequence (e.g. pre-
" phase) obtained by an almost off-lattice KMC model shed light
on the mechanisms of vacancies trapping by solute atoms/clusters.
In particular, their binding energies determine both the morphology
and the size of the precipitates over time. Aggregates, which have
similar composition to the more stable 3"-phase proposed, are grossly
observed in the first hundredths of a second.

While it was clear that a NN potential that is not fit to comparable
precipitate structures as those encountered in a KMC run is not accu-
rate enough to reproduce the correct energy trends between different
configurations, we showed that a relatively straightforward extension
of the data-set to include a few of such structures was sufficient to
recover predictive energetics. Future work will focus on a more quan-
titative analysis of the pre-nucleation kinetics, and on a further cycle
of validation and refinement of the NN potential.

The multi-scale analysis that we have presented here, leveraging
state-of-the-art machine-learning potentials, ab initio energetics and
coupling to continuum elasticity, open up to atomistic investigation
the understanding of the microscopic phenomena that are crucial to
the technology of precipitation-hardened alloys.
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APPENDIX

7.1 CALCULATION OF EIGENSTRAIN AND STIFFNESS TENSORS

he eigenstrain € is the strain required to compensate for the mis-
fit between the matrix and precipitate lattices, i.e., the strain that
deforms a formula unit of precipitate into the shape of a formula unit
of undeformed matrix. Subsequently, we show how to compute € in
the global frame of reference €-¢y-¢, described in Figure The
formula unit geometries of the matrix and the precipitates are mono-
clinic cells for which the directions of ¢ and b coincide but differ in the
angle 3 and the edge lengths a, b, c. We start by determining the ma-
terial frame of reference €4-€p-¢; as it simplifies both the expression
of the edge vectors &, b, ¢ and, since the elastic constants reported in
Table 2| are computed in that frame, is required to compute stiffness
tensors in the global frame.
The basis vectors & s and €, are collinear with the formula unit cell
edge vectors defined in (67), ¢ and b, respectively, and the third basis
vector € is chosen to complete a right-handed orthonormal basis

A ¢

& = =310,

. _ b

& = +=0017, (103)
&y = éﬁxéz:ﬁm,s,of.

We use the basis vectors to express the edge vectors in the global
frame of reference using Table

C’ZC?S,B:bé’Z,6:a<sin[33a+cos[33[3). (104)

The eigenstrain € corresponds to a displacement gradient Vi that
transforms the precipitate edge vectors into the matrix edge vectors,
see Figure [34] (left). After defining matrices composed of the edge

vectors for a precipitate Vprec = ( dprec, bprec, Epmc> and the matrix

—

Vinatrix = <amatrixabmatrixyematrix>/ the displacement gradient
Vi can be expressed as

Vmatrix = Vi Vprec + Vprec = Vi= Vmatrix Vp_T]eC - I) (105)

where I is the identity matrix. The eigenstrain € is the symmetric
part of Vil

=% (Vi+Vi'). (106)
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Aa = u(@prec)
: 4 a'prec
Cprec /
Figure 34: Schematic illustration of eigendisplacement (left). Mesh
for finite element analysis of the elastic problem (center).
Note that the structured mesh follows the boundary of the
precipitate (red parallelogram). Deformed elastic problem
(right). The displacements have been magnified by 5 for
better visibility. Note the periodic deformation.

The elastic constants of the precipitates have been calculated in the
material frame of reference €4-€p-¢, and the corresponding stiffness
tensor has to be rotated into the global frame of reference for the
finite-element analysis. The stress o and strain € in the global frame
of reference are related to the material frame stress o’ and strain €’
by the rotation R = ((3?0(, (3,'[3, é’z>

e’ =ReR', o' =RoRT, (107)
and the relationship between o’ and €’ is governed by elasticity
o' =C'é€, (108)

where C" is the stiffness tensor in the material frame of reference. The
stiffness tensor in the global frame of reference C' can be obtained by
combination and in index notation (Einstein summation
applies to repeated indices)

I
RijOjkRik = CitmnRmo€opRnp,
RiaRi' Ok leRlb = RiaC-’ R €opRnpR
1 mo Cop MnpRlby
) ) — ilmn P P
8 dxb

/
Oab = RiaR1v Cumano Rnp €opy

/
Cabop = RiaRlemoRnp Cilmn' (109)
7.2 ELASTIC CALCULATIONS

The elastic calculations use the finite element method and have
been performed using a modified version of the open-source finite-
element code Akantu [267]. This section explains the chosen proce-
dure.

We modeled the elastic problem using a structured, quadrilateral,
and periodic two-dimensional mesh of bi-quadratic serendipity ele-
ments with eight nodes [268]. The element type was chosen over
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linear elements for its high accuracy in static problems. In order to
enforce periodic boundary conditions, we define the boundary nodes
is of the upper and right boundary as slave nodes to their counter-
parts on the bottom and left boundary (master nodes i,,). During the
evaluation of nodal forces on master nodes f;,_, the forces acting their
slave nodes are also assembled on the master f_fl‘: = fi, +fi, and the
slave node displacement is set to be equal to the displacement of their
master 1;, = U;, . In order to preclude solid body motion (and, thus,
a singular stiffness matrix K), the center node in the precipitate is
fully blocked 1i; = o.

Figure 34| (center and right) shows such a mesh in its original and
deformed state where the displacements have been amplified by a fac-
tor five for better visibility. The structured mesh follows the boundary
of the precipitate, such that any element is either of matrix material
(blue) or precipitate material(red). Note the periodic deformation
of the simulation cell. The precipitate is preloaded with the eigen-
strain € as described in Section [7.1]and the stiffness tensors for matrix
Cinatrix and precipitate and Cl e are assigned to the blue and red
elements respectively. In absence of external loads, the assembled
system of equations to solve is

KU=0, (110)

where K is the assembled stiffness matrix and U is the vector of all
displacement degrees of freedom. We solve this system using the
direct solver Mumps [269]. The calculation of strain energy exploits
the quadrature routines of Akantu using the shape functions of the
elements to evaluate the integrals in (76). Figure 35 shows the distri-
bution of strain energy density egain for the geometries considered
using the example of Mg, AL;Si,. A mesh that is eight times finer than

Egtrain = 0.1614eV /f.u. Estrain = 0.1976eV /f.u. Egtrain = 0.2232eV /f.u.
0.25
0.20 =
. =
O 0.15 %
‘ X 0.10 £
10 A 10 A 0.05

Figure 35: Distribution of strain energy density egrain for different ge-
ometries in the example of Mg,ALSi,. The blue frame
marks the boundaries of the precipitate.

the one represented in Figure |34 was used for smooth visualization.
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7.2.1 Relaxation of Boundary Conditions

In order to compare our results more readily to those presented in
[11], we have additionally performed elastic calculations with fully re-
laxed periodic boundary conditions, in which the simulation box was
allowed to expand and tilt as needed to have no average stress. This
was done by following the procedure described in Appendix but
with an additional uniform eigenstrain added to all elements. This
additional eigenstrain was used as a degree of freedom in a minimiza-
tion of the total strain energy.

Table [11| compares the strain energies per formula unit obtained
with fixed periodic boundary conditions like the ones used in all DFT
calculations in this work to the energies obtained using the relaxed
boundary conditions used in [11]. One can see that the relaxed condi-
tions lead to a consistent underestimation of the strain energy, while
the fixed periodic conditions lead to overestimated energies.

Composition | dilute 4x4 ‘ 2x2 ‘ 1x1

[meV per f.u.] fixed ‘ relaxed | fixed ‘ relaxed | fixed ‘ relaxed
Mg4AIBSi4 74 117 53 106 59 89 66
Mg5A125i4 128 223 89 198 98 161 113
MgBSi6 140 223 114 203 122 171 132

Table 11: Comparison of elastic strain energies Egtrqin Obtained for
all considered geometries with periodic boundary condi-
tions of fixed dimensions (as the DFT calculations in this
work) or fully relaxed conditions for which there is no mean
stress on the simulation box (as in [11])).
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Table 12: As in Sec. pure Al bulk properties from ab initio cal-
culations [20] and NN potentials with 2-body and 3-body

interactions.

Al Exp/ab initio 2-B NN 3B-NN
a(A) 4.05, 4.06 4.05 4.05

E. (eV) 3.39 , 3.056 3.057 3.055
B (GPa) 79.1, 72.2 76.9 72.4
C11 (GPa) 114.3, 106.1 109.9 105.4
Cy2 (GPa) 61.9, 55.9 55.5 55.9
Ca4 (GPa) 31.6, 31.9 31.6 31.4

Table 13: As in Sec. lattice constant a (A) and heat of solutions
AH®™P (meV /atom) for binary and ternary compounds cal-
culated using DFT-PBE and NN potential and NN poten-

tials with 2-body and 3-body interactions.

Composition ~ Structure ab initio 2B NN 3B-NN

a AHCOmp a AHCOmp a AHCOI‘I\P
AlMg B1 5.760 424 5.760 425 5799 424
AlMg B2 3.389 66 3.396 66 3.397 63
Al;Mg L1, 4.138 3 4.145 0 4.182 5
AlMg; L1, 4376 6 4146 4 4379 3
Al,Mg,, 10.506 -18  10.539 -18  10.520 -20
AlSi B1 5.217 260 5.229 261 5.218 262
AlSi B2 3.160 239 3.164 239 3.169 235
Al;Si L1, 3.994 95 4.000 96 4.000 93
AlSi, L1, 3.899 333 3.907 333 3899 331
MgSi B1 5.507 384 5.532 383 5.522 382
MgSi B2 3.308 144 3.313 144 3.309 142
Mg;Si L1, 4.256 -7 4.267 -8 4.285 -8
MgSi, L1, 3.988 269 3.988 269 3.989 271
Mg,Si C1 6.365 -136 6.362 -136 6.364 -138
Mg:Sig 4.081 13 4.074 17 4.099 10
AlMg;Si, 4.054 71 4053 67 4055 72
Al;Mg,Si, 4.122 -44 4.131 -39 4.112 -46
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7.4 ATOMIC CHARGES BY BADER METHOD

Charge

NN GGG
©
=

Figure 36: We show the atomic charges determined by Bader ap-
proach for one-solute atom systems (e.g one Al atom
into 4x4x4 Al-matrix is substituted with an Al, Mg, Si,
and Vac atom). In the “Relaxed” cases the atomic posi-
tions are fully-relaxed and the smearing is 0.05Ry, instead
in the “Random +0.01A” cases the atomic positions are
randomly displaced from the equilibrium positions for a
factor +0.01A and the smearing is five times lower (e.g
0.01Ry). It is even clear that the charge fluctuations de-
crease when we introduce an entropic component into the
atomic positions even if we decrease the electronic temper-
ature.
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We show the atomic charges determined by Bader ap-
proach for the Si-solute atom system and Mg-5Si system
into 4x4x4 Al-matrix varying the smearing from 0.05 Ry
to 0.25 Ry. In the previous sentence the substitutes were
carefully marked and coloured so that it is possible to ap-
preciate their relative positions in Fig. 25| It is clear that the
charge fluctuations decrease when we raise the electronic

temperature.
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7.5 EQUILIBRIUM SHAPE OF 3"-PHASE CLUSTERS

We can use the surface energies indicated in Table [3]in order to ap-
ply the Wulff Construction (WC) by presuming that these
surfaces are associated to the cusp points in WC plot.

If we also assume that the real clusters are a simple stacking of
single formula units of 3"-precipitates, we can get their shape and
express their 3D structure as a single size parameter which is trivially
associable at the diagonal of their base. Now, we can estimate the
structure of these finite-size precipitates imposing a diameter of 60
A as reported in previous studies performed by means of a High-
Resolution Transmission Electron Microscopy [4) [17]. We show the
structures thus obtained in Fig. 38/and their 3D WC plot.

120
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Figure 38: The equilibrium shape of three proposed precipitates, e.g.
MgsSig, MgsAl351,, and MgsAl1,S1i,, in Al-matrix
(on the left) and the associated Wulff Construction (on the
right).

76 A PILOT TESTING OF KMC ALGORITHM

We show the “simple” case of one Si solute atom and one Vacancy in
an Al-matrix as a criterion to test the potentialities of our KMC algo-
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rithm. In this system we can map all possible interactions between
these two defects based on their respective distance in the Al-matrix.
We chose to consider a supercell of {4,4,4} primitive vectors contain-
ing 64 atoms because it is the smallest supercell where distances to
the eighth Nearest-Neighbours (N-N) can exist. The NN Potential has
a cut-off radius of 10.58 A which, in Al-matrix, allows to consider the
interactions between eighth N-N without being definitively damped
to zero. its predictability and its major functionality

The simple case of the dumbbell (i.e. two defects) allows to exclude
misunderstood cohesion terms from the discussion so as to illustrate
more clearly how the non-locality of our model works. In Fig. 39, we
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Figure 39: We plot the frequency counting of the various energy lev-
els associated to different Si-Vac interactions (i.e. arrange-
ments), €; (the i index specifies the membership of neigh-
bours), for a KMC simulation running on 8'o0oo steps (i.e
few tenths of a second of real time at room temperature).
In the same picture, we indicate also the theoretical expec-
tation by a Boltzmann distribution. On the top left side,
a picture of i-N-N for Al-supercell with {4,4,4} primitive
vectors in the plane that contains its shortest size is show
for clarity purposes. The atomic sites on the bottom level
have a black dot in the center of the circle. Vice versa, on
the right side we have Si-Al radial distribution function
averaged over frames and without applying the PBCs.

see all possible energy levels associated with this dumbbell. These are
a consequence of the non-local effects introduced by NN potential
through the minimisation cycles. This energy detail, which is not
predictable by a basic model at first N-N, enriches the representation
of the dynamics acting during the process. In this simple case, we can,
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after an in-depth study, classify the possible configuration in which
we can find the system. First of all, we notice that the interaction
at seventh N-N is too damped to make significant contributions to
energy and we can consider the energy of 4 eighth N-N (i.e. 4eg)
as reference (i.e. it represents two isolated defects). This analysis
clears up another important aspect that concerns the quarter, fifth
and sixth N-N interactions for this supercell. They are associated by
construction with configurations where an Si atom is approached by
two fictitious vacancies (and vice versa), one the periodic image of the
other. These two periodic images create a three-point system aligned
in the case of fourth N-N arrangements, and desalinated in the other
two cases. In the latter cases, this generates a transverse force. This
combination of forces may be a possible explanation for why they
deviate so much from the energy of isolated defects, 4 eg.

In the same image we have also indicated the theoretical values
of expectation by Boltzmann Distribution (BD). They were obtained
counting the degeneracy of non-equivalent states. We note that both
simulations at different temperature (i.e. 300K and 500K) respect this
distribution. This ensures that the distribution of states is adequately
simulated, essential requirement for properly developing a KMC al-
gorithm.
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