19 research outputs found

    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

    Get PDF
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants

    Craig Interpolation for Decidable First-Order Fragments

    Full text link
    We show that the guarded-negation fragment (GNFO) is, in a precise sense, the smallest extension of the guarded fragment (GFO) with Craig interpolation. In contrast, we show that the smallest extension of the two-variable fragment (FO2), and of the forward fragment (FF) with Craig interpolation, is full first-order logic. Similarly, we also show that all extensions of FO2 and of the fluted fragment (FL) with Craig interpolation are undecidable.Comment: Submitted for FoSSaCS 2024. arXiv admin note: substantial text overlap with arXiv:2304.0808

    On the Completeness of Interpolation Algorithms

    Full text link
    Craig interpolation is a fundamental property of classical and non-classic logics with a plethora of applications from philosophical logic to computer-aided verification. The question of which interpolants can be obtained from an interpolation algorithm is of profound importance. Motivated by this question, we initiate the study of completeness properties of interpolation algorithms. An interpolation algorithm I\mathcal{I} is \emph{complete} if, for every semantically possible interpolant CC of an implication A→BA \to B, there is a proof PP of A→BA \to B such that CC is logically equivalent to I(P)\mathcal{I}(P). We establish incompleteness and different kinds of completeness results for several standard algorithms for resolution and the sequent calculus for propositional, modal, and first-order logic

    Time For Stubborn Game Reductions

    Get PDF
    corecore