10 research outputs found

    Interplay between upsampling and regularization for provider fairness in recommender systems

    Get PDF
    Considering the impact of recommendations on item providers is one of the duties of multi-sided recommender systems. Item providers are key stakeholders in online platforms, and their earnings and plans are influenced by the exposure their items receive in recommended lists. Prior work showed that certain minority groups of providers, characterized by a common sensitive attribute (e.g., gender or race), are being disproportionately affected by indirect and unintentional discrimination. Our study in this paper handles a situation where (i) the same provider is associated with multiple items of a list suggested to a user, (ii) an item is created by more than one provider jointly, and (iii) predicted user–item relevance scores are biasedly estimated for items of provider groups. Under this scenario, we assess disparities in relevance, visibility, and exposure, by simulating diverse representations of the minority group in the catalog and the interactions. Based on emerged unfair outcomes, we devise a treatment that combines observation upsampling and loss regularization, while learning user–item relevance scores. Experiments on real-world data demonstrate that our treatment leads to lower disparate relevance. The resulting recommended lists show fairer visibility and exposure, higher minority item coverage, and negligible loss in recommendation utility

    Fairness in Recommendation: Foundations, Methods and Applications

    Full text link
    As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond.Comment: Accepted by ACM Transactions on Intelligent Systems and Technology (TIST

    Robust reputation independence in ranking systems for multiple sensitive attributes

    Get PDF
    Ranking systems have an unprecedented influence on how and what information people access, and their impact on our society is being analyzed from different perspectives, such as users’ discrimination. A notable example is represented by reputation-based ranking systems, a class of systems that rely on users’ reputation to generate a non-personalized item-ranking, proved to be biased against certain demographic classes. To safeguard that a given sensitive user’s attribute does not systematically affect the reputation of that user, prior work has operationalized a reputation independence constraint on this class of systems. In this paper, we uncover that guaranteeing reputation independence for a single sensitive attribute is not enough. When mitigating biases based on one sensitive attribute (e.g., gender), the final ranking might still be biased against certain demographic groups formed based on another attribute (e.g., age). Hence, we propose a novel approach to introduce reputation independence for multiple sensitive attributes simultaneously. We then analyze the extent to which our approach impacts on discrimination and other important properties of the ranking system, such as its quality and robustness against attacks. Experiments on two real-world datasets show that our approach leads to less biased rankings with respect to multiple users’ sensitive attributes, without affecting the system’s quality and robustness

    Human and Artificial Intelligence

    Get PDF
    Although tremendous advances have been made in recent years, many real-world problems still cannot be solved by machines alone. Hence, the integration between Human Intelligence and Artificial Intelligence is needed. However, several challenges make this integration complex. The aim of this Special Issue was to provide a large and varied collection of high-level contributions presenting novel approaches and solutions to address the above issues. This Special Issue contains 14 papers (13 research papers and 1 review paper) that deal with various topics related to human–machine interactions and cooperation. Most of these works concern different aspects of recommender systems, which are among the most widespread decision support systems. The domains covered range from healthcare to movies and from biometrics to cultural heritage. However, there are also contributions on vocal assistants and smart interactive technologies. In summary, each paper included in this Special Issue represents a step towards a future with human–machine interactions and cooperation. We hope the readers enjoy reading these articles and may find inspiration for their research activities

    Unfairness Assessment, Explanation and Mitigation in Machine Learning Models for Personalization

    Get PDF
    The last decade has been pervaded by the automatic applications leveraging Artificial Intelligence technologies. Novel systems have been adopted to automatically solve relevant tasks, from scanning passengers during border controls to suggesting the groceries to buy to fill the fridge. One of the most captivating applications of Artificial Intelligence is represented by voice assistants, like Alexa. They enable people to use their voice to perform simple tasks, such as setting an alarm or saving an appointment in an online calendar. Due to their worldwide usage, voice assistants are required to aid a diverse range of individuals encompassing various cultures, languages, accents, and preferences. It is then crucial for these systems to function fairly across different groups of people to ensure reliability and provide assistance without being influenced by sensitive attributes that may vary among them. This thesis deals with the design, implementation, and evaluation of Artificial Intelligence models that are optimized to operate fairly in the context of voice assistant systems. Assessing the level of performance of existing fairness-aware solutions is an essential step towards comprehending how much effort should be put to provide fair and reliable technologies. The contributions result in extensive analyses of existing methods to counteract unfairness, and in novel techniques to mitigate and explain unfairness that capitalize on Data Balancing, Counterfactuality, and Graph Neural Networks Explainability. The proposed solutions aim to support system designers and decision makers over several fairness requirements. Specifically, over methodologies to evaluate fairness of models outcomes, techniques aimed to improve users’ trustworthiness by mitigating unfairness, and strategies that generate explanations of the potential causes behind the estimated unfairness. Through our studies, we explore opportunities and challenges introduced by the latest advancements in Fair Artificial Intelligence, a relevant and timely topic in literature. Supported by extensive experiments, our findings illustrate the feasibility of designing Artificial Intelligence solutions for the mitigation and explanation of unfairness issues in the models adopted in voice assistants. Our results provide guidelines on fairness evaluation, and design of methods to counteract unfairness concerning the voice assistant scenario. Researchers can use our findings to follow a schematic protocol for fairness assessment, to discover the data aspects affecting the model fairness, and to mitigate the outcomes unfairness, among others. We expect that this thesis can support the adoption of fairness-aware solutions in the voice assistant pipeline, from the voice authentication to the requested task resolution

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model

    Get PDF
    © 2020, The Author(s). The evaluation of machine learning (ML) pipelines is essential during automatic ML pipeline composition and optimisation. The previous methods such as Bayesian-based and genetic-based optimisation, which are implemented in Auto-Weka, Auto-sklearn and TPOT, evaluate pipelines by executing them. Therefore, the pipeline composition and optimisation of these methods requires a tremendous amount of time that prevents them from exploring complex pipelines to find better predictive models. To further explore this research challenge, we have conducted experiments showing that many of the generated pipelines are invalid, and it is unnecessary to execute them to find out whether they are good pipelines. To address this issue, we propose a novel method to evaluate the validity of ML pipelines using a surrogate model (AVATAR). The AVATAR enables to accelerate automatic ML pipeline composition and optimisation by quickly ignoring invalid pipelines. Our experiments show that the AVATAR is more efficient in evaluating complex pipelines in comparison with the traditional evaluation approaches requiring their execution

    Adaptive Streaming: From Bitrate Maximization to Rate-Distortion Optimization

    Get PDF
    The fundamental conflict between the increasing consumer demand for better Quality-of-Experience (QoE) and the limited supply of network resources has become significant challenges to modern video delivery systems. State-of-the-art adaptive bitrate (ABR) streaming algorithms are dedicated to drain available bandwidth in hope to improve viewers' QoE, resulting in inefficient use of network resources. In this thesis, we develop an alternative design paradigm, namely rate-distortion optimized streaming (RDOS), to balance the contrast demands from video consumers and service providers. Distinct from the traditional bitrate maximization paradigm, RDOS must operate at any given point along the rate-distortion curve, as specified by a trade-off parameter. The new paradigm has found plausible explanations in information theory, economics, and visual perception. To instantiate the new philosophy, we decompose adaptive streaming algorithms into three mutually independent components, including throughput predictor, reward function, and bitrate selector. We provide a unified framework to understand the connections among all existing ABR algorithms. The new perspective also illustrates the fundamental limitations of each algorithm by going behind its underlying assumptions. Based on the insights, we propose novel improvements to each of the three functional components. To alleviate a series of unrealistic assumptions behind bitrate-based QoE models, we develop a theoretically-grounded objective QoE model. The new objective QoE model combines the information from subject-rated streaming videos and the prior knowledge about human visual system (HVS) in a principled way. By analyzing a corpus of psychophysical experiments, we show the QoE function estimation can be formulated as a projection onto convex sets problem. The proposed model presents strong generalization capability over a broad range of source contents, video encoders, and viewing conditions. Most importantly, the QoE model disentangles bitrate with quality, making it an ideal component in the RDOS framework. In contrast to the existing throughput estimators that approximate the marginal probability distribution over all connections, we optimize the throughput predictor conditioned on each client. Although there are lack of training data for each Internet Protocol connection, we can leverage the latest advances in meta learning to incorporate the knowledge embedded in similar tasks. With a deliberately designed objective function, the algorithm learns to identify similar structures among different network characteristics from millions of realistic throughput traces. During the test phase, the model can quickly adapt to connection-level network characteristics with only a small amount of training data from novel streaming video clients with a small number of gradient steps. The enormous space of streaming videos, constantly progressing encoding schemes, and great diversity of throughput characteristics make it extremely challenging for modern data-driven bitrate selectors that are trained with limited samples to generalize well. To this end, we propose a Bayesian bitrate selection algorithm by adaptively fusing an online, robust, and short-term optimal controller with an offline, susceptible, and long-term optimal planner. Depending on the reliability of the two controllers in certain system states, the algorithm dynamically prioritizes the one of the two decision rules to obtain the optimal decision. To faithfully evaluate the performance of RDOS, we construct a large-scale streaming video dataset -- the Waterloo Streaming Video database. It contains a wide variety of high quality source contents, encoders, encoding profiles, realistic throughput traces, and viewing devices. Extensive objective evaluation demonstrates the proposed algorithm can deliver identical QoE to state-of-the-art ABR algorithms at a much lower cost. The improvement is also supported by so-far the largest subjective video quality assessment experiment

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI
    corecore