3 research outputs found

    Conditions for wave trains in spiking neural networks

    Full text link
    Spatiotemporal patterns such as traveling waves are frequently observed in recordings of neural activity. The mechanisms underlying the generation of such patterns are largely unknown. Previous studies have investigated the existence and uniqueness of different types of waves or bumps of activity using neural-field models, phenomenological coarse-grained descriptions of neural-network dynamics. But it remains unclear how these insights can be transferred to more biologically realistic networks of spiking neurons, where individual neurons fire irregularly. Here, we employ mean-field theory to reduce a microscopic model of leaky integrate-and-fire (LIF) neurons with distance-dependent connectivity to an effective neural-field model. In contrast to existing phenomenological descriptions, the dynamics in this neural-field model depends on the mean and the variance in the synaptic input, both determining the amplitude and the temporal structure of the resulting effective coupling kernel. For the neural-field model we employ liner stability analysis to derive conditions for the existence of spatial and temporal oscillations and wave trains, that is, temporally and spatially periodic traveling waves. We first prove that wave trains cannot occur in a single homogeneous population of neurons, irrespective of the form of distance dependence of the connection probability. Compatible with the architecture of cortical neural networks, wave trains emerge in two-population networks of excitatory and inhibitory neurons as a combination of delay-induced temporal oscillations and spatial oscillations due to distance-dependent connectivity profiles. Finally, we demonstrate quantitative agreement between predictions of the analytically tractable neural-field model and numerical simulations of both networks of nonlinear rate-based units and networks of LIF neurons.Comment: 36 pages, 8 figures, 4 table

    Interplay Between Synaptic Delays and Propagation Delays in Neural Field Equations

    No full text
    International audienceNeural field equations describe the activity of neural populations at a mesoscopic level. Although the early derivation of these equations introduced space dependent delays coming from the finite speed of signal propagation along axons, there have been few studies concerning their role in shaping the (nonlinear) dynamics of neural activity. This is mainly due to the lack of analytical tractable models. On the other hand, constant delays have been introduced to model the synaptic transmission and the spike initiation dynamics. By incorporating the two kinds of delays into the neural field equations, we are able to find the Hopf bifurcation curves analytically, which produces many Hopf--Hopf interactions. We use normal theory to study two different types of connectivity that reveal a surprisingly rich dynamical portrait. In particular, the shape of the connectivity strongly influences the spatiotemporal dynamics
    corecore