9,152 research outputs found

    Ambient networks: Bridging heterogeneous network domains

    Get PDF
    Providing end-to-end communication in heterogeneous internetworking environments is a challenge. Two fundamental problems are bridging between different internetworking technologies and hiding of network complexity and differences from both applications and application developers. This paper presents abstraction and naming mechanisms that address these challenges in the Ambient Networks project. Connectivity abstractions hide the differences of heterogeneous internetworking technologies and enable applications to operate across them. A common naming framework enables end-to-end communication across otherwise independent internetworks and supports advanced networking capabilities, such as indirection or delegation, through dynamic bindings between named entities

    Internetworking: an analysis and proposal

    Get PDF
    As the number of computer networks has grown, so has the desire for users on these networks to communicate with each other, thus the need for internetworking. Unfortunately, many of these networks were not designed with internetworking capabilities in mind. The internetworking facilities offered by a typical network range from non-existent to state of the art. Two major efforts towards internetworking are the DARPA Internet protocols and the OSI Internetworking protocols. The goals of this thesis are to acquaint the reader with the qualities which are desired in an internetworking scheme, to describe how internetworking is accomplished currently, and how these protocols might be modified to better suit the needs of the internetwork user. To this end, this thesis will develop the functional requirements for an ideal internetwork, describe two current methods for internetworking, and analyze these methods against the ideal internetwork. The advantages and disadvantages of each internetworking method will be discussed. After this analysis, suggestions will be made as to how these internetworking schemes could more closely resemble the ideal internetwork

    Design and implementation of the node identity internetworking architecture

    Get PDF
    The Internet Protocol (IP) has been proven very flexible, being able to accommodate all kinds of link technologies and supporting a broad range of applications. The basic principles of the original Internet architecture include end-to-end addressing, global routeability and a single namespace of IP addresses that unintentionally serves both as locators and host identifiers. The commercial success and widespread use of the Internet have lead to new requirements, which include internetworking over business boundaries, mobility and multi-homing in an untrusted environment. Our approach to satisfy these new requirements is to introduce a new internetworking layer, the node identity layer. Such a layer runs on top of the different versions of IP, but could also run directly on top of other kinds of network technologies, such as MPLS and 2G/3G PDP contexts. This approach enables connectivity across different communication technologies, supports mobility, multi-homing, and security from ground up. This paper describes the Node Identity Architecture in detail and discusses the experiences from implementing and running a prototype

    Names, addresses and identities in ambient networks

    Get PDF
    Ambient Networks interconnect independent realms that may use different local network technologies and may belong to different administrative or legal entities. At the core of these advanced internetworking concepts is a flexible naming architecture based on dynamic indirections between names, addresses and identities. This paper gives an overview of the connectivity abstractions of Ambient Networks and then describes its naming architecture in detail, comparing and contrasting them to other related next-generation network architectures

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    A pedagogical rich interactive on-line learning platform for Network Technology students in Thailand

    Get PDF
    Internetworking enables communication between networks and forms the foundation of the Internet. Internetworking teaching is typically conducted in a traditional face-to-face classroom, but nowadays it can be conducted online. Online learning environments have many advantages that include allowing remote students’ access to not only curriculum but also lecturers and other enrolled students. However, unlike some other disciplines, teaching internetworking courses online is problematic because students need to be given access to internetworking equipment. It is technically possible to provide remote access to online students in order to compensate for the lack of direct physical equipment access, which normally is offered to traditional students. However the standard method of remote access only provides students with a limited text based method of configuring internetworking devices. Internetwork simulators are of value but they cannot provide students experience working with real devices. A pedagogically rich, interactive on-line learning environment using low-cost, assistive multi-media based technologies was therefore developed. This paper presents details of the platform and results of its deployment from an Australian university to a small group of students in Thailand.

    On the Design of Ambient Intelligent Systems in the Context of Assistive Technologies

    Get PDF
    The design of Ambient Intelligent Systems (AISs) is discussed in the context of assistive technologies. The main issues include ubiquitous communications, context awareness, natural interactions and heterogeneity, which are analyzed using some examples. A layered architecture is proposed for heterogeneous sub-systems integration with three levels of interactions that may be used as a framework to design assistive AISs.Ministerio de Ciencia y TecnologĂ­a TIC2001-1868-C0

    A Case for Peering of Content Delivery Networks

    Full text link
    The proliferation of Content Delivery Networks (CDN) reveals that existing content networks are owned and operated by individual companies. As a consequence, closed delivery networks are evolved which do not cooperate with other CDNs and in practice, islands of CDNs are formed. Moreover, the logical separation between contents and services in this context results in two content networking domains. But present trends in content networks and content networking capabilities give rise to the interest in interconnecting content networks. Finding ways for distinct content networks to coordinate and cooperate with other content networks is necessary for better overall service. In addition to that, meeting the QoS requirements of users according to the negotiated Service Level Agreements between the user and the content network is a burning issue in this perspective. In this article, we present an open, scalable and Service-Oriented Architecture based system to assist the creation of open Content and Service Delivery Networks (CSDN) that scale and support sharing of resources with other CSDNs.Comment: Short Article (Submitted in DS Online as Work in Progress

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service
    • …
    corecore