234 research outputs found

    The development of distributed and peer-to-peer systems for future smart grids

    Full text link
    The widespread application of smart grid concept has promoted the development of modern power systems featured with smart facilities, distributed resources and advanced ICT, and shifted towards complex cyber-physical and internet-of-things (IoT) embedded system. The traditional centralized system structure or management mode is faced with the challenges of coping with the growing network traffic, computing burden, demand for flexible services, and risks from cyber-attacks. In this regard, the development of distributed systems, as a valuable research theme, has sparked attentions from researchers and practitioners, which involves several crucial concerns including data security, reliability, and privacy. As a potential solution, blockchain (BC) technology shows its proper applicability due to its characteristics, but it encounters some problems such as unsatisfied resource efficiency. Meanwhile, the increasing integration of distributed system and distributed renewable generation in power system has raised challenges in the system stability and efficient management. In above context, this research focuses on the development of distributed and peer-to-peer (P2P) systems for future smart grids. Firstly, the research comprehensively reviews the-state-of-art of BC and IoT in smart grids, then put forwards their potential application scenarios in future grids with discussing the related challenges. Afterwards, this research integrates homomorphic cryptography with the technical components of BC as a basic paradigm to propose a distributed, secure and privacy-preserving smart meter data aggregation framework, providing the utility with high robust data management services. In addition, an agent bidding based trading scheme is designed for users to purchase electricity from the small-scale renewable power plant under stand-alone system, making individual bidding data not exposed in the storage and entire trading process even if the distributed system nodes are eavesdropped. In order to cope with the negative influences from distributed generation, this research proposes a deviation penalty method to help narrow the gap between the real-time demand/output and pre-determined transaction outcomes in P2P trading under power distribution system. At the end of this thesis, the potential future research works are discussed

    Unveiling the core of IoT: comprehensive review on data security challenges and mitigation strategies

    Get PDF
    The Internet of Things (IoT) is a collection of devices such as sensors for collecting data, actuators that perform mechanical actions on the sensor's collected data, and gateways used as an interface for effective communication with the external world. The IoT has been successfully applied to various fields, from small households to large industries. The IoT environment consists of heterogeneous networks and billions of devices increasing daily, making the system more complex and this need for privacy and security of IoT devices become a major concern. The critical components of IoT are device identification, a large number of sensors, hardware operating systems, and IoT semantics and services. The layers of a core IoT application are presented in this paper with the protocols used in each layer. The security challenges at various IoT layers are unveiled in this review paper along with the existing mitigation strategies such as machine learning, deep learning, lightweight encryption techniques, and Intrusion Detection Systems (IDS) to overcome these security challenges and future scope. It has been concluded after doing an intensive review that Spoofing and Distributed Denial of Service (DDoS) attacks are two of the most common attacks in IoT applications. While spoofing tricks systems by impersonating devices, DDoS attacks flood IoT systems with traffic. IoT security is also compromised by other attacks, such as botnet attacks, man-in-middle attacks etc. which call for strong defenses including IDS framework, deep neural networks, and multifactor authentication system

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Blockchain-Based Digitalization of Logistics Processes—Innovation, Applications, Best Practices

    Get PDF
    Blockchain technology is becoming one of the most powerful future technologies in supporting logistics processes and applications. It has the potential to destroy and reorganize traditional logistics structures. Both researchers and practitioners all over the world continuously report on novel blockchain-based projects, possibilities, and innovative solutions with better logistic service levels and lower costs. The idea of this Special Issue is to provide an overview of the status quo in research and possibilities to effectively implement blockchain-based solutions in business practice. This Special Issue reprint contained well-prepared research reports regarding recent advances in blockchain technology around logistics processes to provide insights into realized maturity

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Next Generation Business Ecosystems: Engineering Decentralized Markets, Self-Sovereign Identities and Tokenization

    Get PDF
    Digital transformation research increasingly shifts from studying information systems within organizations towards adopting an ecosystem perspective, where multiple actors co-create value. While digital platforms have become a ubiquitous phenomenon in consumer-facing industries, organizations remain cautious about fully embracing the ecosystem concept and sharing data with external partners. Concerns about the market power of platform orchestrators and ongoing discussions on privacy, individual empowerment, and digital sovereignty further complicate the widespread adoption of business ecosystems, particularly in the European Union. In this context, technological innovations in Web3, including blockchain and other distributed ledger technologies, have emerged as potential catalysts for disrupting centralized gatekeepers and enabling a strategic shift towards user-centric, privacy-oriented next-generation business ecosystems. However, existing research efforts focus on decentralizing interactions through distributed network topologies and open protocols lack theoretical convergence, resulting in a fragmented and complex landscape that inadequately addresses the challenges organizations face when transitioning to an ecosystem strategy that harnesses the potential of disintermediation. To address these gaps and successfully engineer next-generation business ecosystems, a comprehensive approach is needed that encompasses the technical design, economic models, and socio-technical dynamics. This dissertation aims to contribute to this endeavor by exploring the implications of Web3 technologies on digital innovation and transformation paths. Drawing on a combination of qualitative and quantitative research, it makes three overarching contributions: First, a conceptual perspective on \u27tokenization\u27 in markets clarifies its ambiguity and provides a unified understanding of the role in ecosystems. This perspective includes frameworks on: (a) technological; (b) economic; and (c) governance aspects of tokenization. Second, a design perspective on \u27decentralized marketplaces\u27 highlights the need for an integrated understanding of micro-structures, business structures, and IT infrastructures in blockchain-enabled marketplaces. This perspective includes: (a) an explorative literature review on design factors; (b) case studies and insights from practitioners to develop requirements and design principles; and (c) a design science project with an interface design prototype of blockchain-enabled marketplaces. Third, an economic perspective on \u27self-sovereign identities\u27 (SSI) as micro-structural elements of decentralized markets. This perspective includes: (a) value creation mechanisms and business aspects of strategic alliances governing SSI ecosystems; (b) business model characteristics adopted by organizations leveraging SSI; and (c) business model archetypes and a framework for SSI ecosystem engineering efforts. The dissertation concludes by discussing limitations as well as outlining potential avenues for future research. These include, amongst others, exploring the challenges of ecosystem bootstrapping in the absence of intermediaries, examining the make-or-join decision in ecosystem emergence, addressing the multidimensional complexity of Web3-enabled ecosystems, investigating incentive mechanisms for inter-organizational collaboration, understanding the role of trust in decentralized environments, and exploring varying degrees of decentralization with potential transition pathways

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial
    • …
    corecore