5 research outputs found

    Establishing Self-Healing and Seamless Connectivity among IoT Networks Using Kalman Filter

    Get PDF
    The Internet of Things (IoT) is the extension of Internet connectivity into physical devices and to everyday objects. Efficient mobility support in IoT provides seamless connectivity to mobile nodes having restrained resources in terms of energy, memory and link capacity. Existing routing algorithms have less reactivity to mobility. So, in this work, a new proactive mobility support algorithm based on the Kalman Filter has been proposed. Mobile nodes are provided with a seamless connectivity by minimizing the switching numbers between point of attachment which helps in reducing signaling overhead and power consumption. The handoff trigger scheme which makes use of mobility information in order to predict handoff event occurrence is used.  Mobile nodes new attachment points and its trajectory is predicted using the Kalman-Filter. Kalman-Filter is a predictor-estimator method used for movement prediction is used in this approach. Kalman Filtering is carried out in two steps: i) Predicting and ii) Updating. Each step is investigated and coded as a function with matrix input and output. Self-healing characteristics is being considered in the proposed algorithm to prevent the network from failing and to help in efficient routing of data. Proposed approach achieves high efficiency in terms of movement prediction, energy efficiency, handoff delay and fault tolerance when compared to existing approach

    Consumer mobility awareness in named data networks

    Get PDF
    Mobile data traffic has increased significantly due to the evolution of wireless communication technologies. The Information Centric Network paradigm is considered as an alternative to bypass the restrictions imposed by the traditional IP networks, especially those related with the mobility of its users. Despite the potential advantages of this paradigm regarding mobile wireless environments, several research challenges remain unaddressed, more specifically the ones related with the communication damage caused by handovers. This work presents a Named Data Network (NDN) based solution that supports Consumer mobility. The proposed scheme addresses a mobility manager entity that monitors and anticipates trajectories, while compelling the infrastructure to adjust to the new paths. This process results in an efficient way to manage the Consumers' mobility, and therefore, in a better quality of service to its users. The implementation and evaluation of the proposed solution uses the ndnSIM, through functional and non-functional scenarios, and with real traces of urban vehicular mobility and connectivity. The results show that the proposed solution is superior to the native NDN workflow with respect to content delivery ratio and number of timeouts.info:eu-repo/semantics/publishedVersio

    Internet of things mobility over information-centric/named-data networking

    No full text
    International audienceInformation-Centric Networking (ICN) is a content-oriented network that uses content instead of traditional IP addresses, it facilitates the content retrieval and calculates downstream paths without the need of an optimal topology. ICN inherits mobility support features in its baseline design. Since the Internet of Things (IoT) faces major problems in supporting mobility management over IP, we believe that ICN would represent a major element in scalable IoT networks. This paper discusses the use of ICN as a communication model in IoT environments, focusing on solving the mobility issue. Thus, we survey the relevant work that studies the merger between ICN and IoT, and describe the emergence, evolution, and state-of-the-art mobility approach. This article also presents discussions on major scalability challenges when using ICN as a communication enabler for mobile IoT and highlights key designs and guidelines

    IoMT amid COVID-19 pandemic: Application, architecture, technology, and security

    Get PDF
    In many countries, the Internet of Medical Things (IoMT) has been deployed in tandem with other strategies to curb the spread of COVID-19, improve the safety of front-line personnel, increase efficacy by lessening the severity of the disease on human lives, and decrease mortality rates. Significant inroads have been achieved in terms of applications and technology, as well as security which have also been magnified through the rapid and widespread adoption of IoMT across the globe. A number of on-going researches show the adoption of secure IoMT applications is possible by incorporating security measures with the technology. Furthermore, the development of new IoMT technologies merge with Artificial Intelligence, Big Data and Blockchain offers more viable solutions. Hence, this paper highlights the IoMT architecture, applications, technologies, and security developments that have been made with respect to IoMT in combating COVID-19. Additionally, this paper provides useful insights into specific IoMT architecture models, emerging IoMT applications, IoMT security measurements, and technology direction that apply to many IoMT systems within the medical environment to combat COVID-19
    corecore