7 research outputs found

    Internet of Things Enhanced User Experience for Smart Water and Energy Management

    Get PDF
    Smart environments can engage a wide range of end users with different interests and priorities, from corporate managers looking to improve the performance of their business to school children who want to explore and learn more about the world around them. Creating an effective user experience within a smart environment (from smart buildings to smart cities) is an important factor to success. In this article, we reflect on our experience of developing Internet-of-Things-enabled applications within a smart home, school, office building, university, and airport, where the goal has been to engage a wide range of users (from building managers to business travelers) to increase water and energy awareness, management, and conservation

    Influencing Human Behaviour to Optimise Energy in Commercial Buildings

    Get PDF
    This paper discusses the impact of user energy choices on building energy demand, and how energy choices could be influenced to minimise building energy consumption using information systems. Accordingly, a socio-technical framework is designed and presented, which draws upon the use of energy interventions. A novel Social-Economic-Environmental (SEE) model is presented within the socio-technical framework which is aimed at nudging inhabitants enabling them to conserve energy in the university buildings, thereby making the world a sustainable place to live. The framework takes into account the Agent-based Modelling (ABM) approach to model user energy choices and their willingness to conserve energy in buildings. This research intends to test the socio-technical framework in the next stage of this study. Finally, this paper highlights gaps and the significance of understanding how user behaviour and their energy consumption can be influenced to optimise energy in university buildings, thereby reducing global greenhouse emission

    Design of Wireless Sensors for IoT with Energy Storage and Communication Channel Heterogeneity

    Get PDF
    Autonomous Wireless Sensors (AWSs) are at the core of every Wireless Sensor Network (WSN). Current AWS technology allows the development of many IoT-based applications, ranging from military to bioengineering and from industry to education. The energy optimization of AWSs depends mainly on: Structural, functional, and application specifications. The holistic design methodology addresses all the factors mentioned above. In this sense, we propose an original solution based on a novel architecture that duplicates the transceivers and also the power source using a hybrid storage system. By identifying the consumption needs of the transceivers, an appropriate methodology for sizing and controlling the power flow for the power source is proposed. The paper emphasizes the fusion between information, communication, and energy consumption of the AWS in terms of spectrum information through a set of transceiver testing scenarios, identifying the main factors that influence the sensor node design and their inter-dependencies. Optimization of the system considers all these factors obtaining an energy efficient AWS, paving the way towards autonomous sensors by adding an energy harvesting element to them

    A review on motivational nudges for enhancing building energy conservation behavior

    Full text link
    This paper explores energy use interventions and their influence on human behavior in commercial and institutional buildings. The main objectives of this paper are to identify the importance of nudges in reducing building energy usage and the implementation methods that can influence users to conserve energy in buildings through context specific interventions. A qualitative research method is used to elicit existing energy saving techniques, and a rigorous literature review is conducted to demonstrate the effectiveness of nudges. The investigation shows that combining multiple influencing options and interactive technological interventions can result in an effective nudging mechanism at a larger scale. Widely adopted technological tools identified in energy conservation in buildings included eco-feedback systems, IoT engagement systems, and recommendation systems that shared clear information to enable users to change their behavior. Besides, non-technological tools, such as posters and moral appeal by word of mouth, are highlighted as influencing user behavior to conserve energy in buildings. The use of nudges in commercial and institutional buildings has been studied in this review, and it has been demonstrated that the combination of influencing techniques is more effective than deploying a particular technique. It is concluded that energy conservation can be predicated in agent-based environments by modeling integrated nudges in future work

    Design of Wireless Sensors for IoT with Energy Storage and Communication Channel Heterogeneity

    Get PDF
    Autonomous Wireless Sensors (AWSs) are at the core of every Wireless Sensor Network (WSN). Current AWS technology allows the development of many IoT-based applications, ranging from military to bioengineering and from industry to education. The energy optimization of AWSs depends mainly on: Structural, functional, and application specifications. The holistic design methodology addresses all the factors mentioned above. In this sense, we propose an original solution based on a novel architecture that duplicates the transceivers and also the power source using a hybrid storage system. By identifying the consumption needs of the transceivers, an appropriate methodology for sizing and controlling the power flow for the power source is proposed. The paper emphasizes the fusion between information, communication, and energy consumption of the AWS in terms of spectrum information through a set of transceiver testing scenarios, identifying the main factors that influence the sensor node design and their inter-dependencies. Optimization of the system considers all these factors obtaining an energy efficient AWS, paving the way towards autonomous sensors by adding an energy harvesting element to them

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical

    Data Spaces

    Get PDF
    This open access book aims to educate data space designers to understand what is required to create a successful data space. It explores cutting-edge theory, technologies, methodologies, and best practices for data spaces for both industrial and personal data and provides the reader with a basis for understanding the design, deployment, and future directions of data spaces. The book captures the early lessons and experience in creating data spaces. It arranges these contributions into three parts covering design, deployment, and future directions respectively. The first part explores the design space of data spaces. The single chapters detail the organisational design for data spaces, data platforms, data governance federated learning, personal data sharing, data marketplaces, and hybrid artificial intelligence for data spaces. The second part describes the use of data spaces within real-world deployments. Its chapters are co-authored with industry experts and include case studies of data spaces in sectors including industry 4.0, food safety, FinTech, health care, and energy. The third and final part details future directions for data spaces, including challenges and opportunities for common European data spaces and privacy-preserving techniques for trustworthy data sharing. The book is of interest to two primary audiences: first, researchers interested in data management and data sharing, and second, practitioners and industry experts engaged in data-driven systems where the sharing and exchange of data within an ecosystem are critical
    corecore