6 research outputs found

    Gateway to Safety: The 32nd International System Safety Training Symposium

    Get PDF
    Highlights of the 2014 International System Safety Conferenc

    Safety Case Workshop

    Get PDF
    In January 2013, a two-day Safety Case Workshop was conducted in Huntsville, Alabama under the sponsorship of the SAE International G-48 System Safety Committee and A-P-T Research, Inc. (APT). Attendees from industry, government and academia participated, with several making formal presentations on various safety methods. Industry focus is turning to international pursuits, which involve a broader understanding of different approaches to ensuring safety. The United States has typically used a process-based approach in managing system safety programs, but there is a current movement to use the evidence-based Safety Case approach to validate the safety of systems. At the conclusion of the workshop, participants reached the consensus view that the Safety Case approach merits being accepted among the best world-wide system safety practices

    A Framework for Assessment of Aviation Safety Technology Portfolios

    Get PDF
    The programs within NASA's Aeronautics Research Mission Directorate (ARMD) conduct research and development to improve the national air transportation system so that Americans can travel as safely as possible. NASA aviation safety systems analysis personnel support various levels of ARMD management in their fulfillment of system analysis and technology prioritization as defined in the agency's program and project requirements. This paper provides a framework for the assessment of aviation safety research and technology portfolios that includes metrics such as projected impact on current and future safety, technical development risk and implementation risk. The paper also contains methods for presenting portfolio analysis and aviation safety Bayesian Belief Network (BBN) output results to management using bubble charts and quantitative decision analysis techniques

    Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    Get PDF
    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects

    Model Based Mission Assurance in a Model Based Systems Engineering (MBSE) Framework: State-of-the-Art Assessment

    Get PDF
    This report explores the current state of the art of Safety and Mission Assurance (S&MA) in projects that have shifted towards Model Based Systems Engineering (MBSE). Its goal is to provide insight into how NASA's Office of Safety and Mission Assurance (OSMA) should respond to this shift. In MBSE, systems engineering information is organized and represented in models: rigorous computer-based representations, which collectively make many activities easier to perform, less error prone, and scalable. S&MA practices must shift accordingly. The "Objective Structure Hierarchies" recently developed by OSMA provide the framework for understanding this shift. Although the objectives themselves will remain constant, S&MA practices (activities, processes, tools) to achieve them are subject to change. This report presents insights derived from literature studies and interviews. The literature studies gleaned assurance implications from reports of space-related applications of MBSE. The interviews with knowledgeable S&MA and MBSE personnel discovered concerns and ideas for how assurance may adapt. Preliminary findings and observations are presented on the state of practice of S&MA with respect to MBSE, how it is already changing, and how it is likely to change further. Finally, recommendations are provided on how to foster the evolution of S&MA to best fit with MBSE

    Safety assessment methods for avionics software system

    Get PDF
    Nowadays, the avionics software has been becoming more and more critical for both civil and military aircraft. However, the software may become crazy sometimes and may cause the catastrophic result if any failure in software. Therefore, the software safety assessment is not only crucial to the specific software, but also for the system and aircraft. Although there are some industry standards as guidelines for development of software system, applications of these standards to practical software systems are still challenged and hard to operate in practice. This thesis tries to solve this problem. After analyses and summaries of the system safety assessment process and existing software safety assessment process in different fields, research wants to propose the systematic and comprehensive software safety assessment process and method for avionics software. The thesis presents the research process, and proposes one suitable avionics software safety assessment process. Meanwhile, thesis uses a real functional block in flight management system as a case study, and then conducts the software safety requirement assessment based on the proposed software safety assessment method. After analysis the result of case study, this proposed software safety assessment process and methods can quickly and correctly identify the software design errors. So, this analysis can use to prove the feasibility and validity of this proposed software safety assessment process and methods, which will help engineers modify every software design errors at the early stage in order to guarantee the software safety
    corecore