

CRANFIELD UNIVERSITY

JIAWEN MAO

SAFETY ASSESSMENT METHODS FOR AVIONICS SOFTWARE

SYSTEM

SCHOOL OF AEROSPACE, TRANSPORT & MANUFACTURING

MSc by Research

Academic Year: 2016 - 2017

Supervisor: Dr Huamin Jia

Associate Supervisor: Dr Irfan Madani

November 2017

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT & MANUFACTURING

MSc by Research

Academic Year 2016 - 2017

JIAWEN MAO

SAFETY ASSESSMENT METHODS FOR AVIONICS SOFTWARE

SYSTEM

Supervisor: Dr Huamin Jia

Associate Supervisor: Dr Irfan Madani

November 2017

This thesis is submitted in partial fulfilment of the requirements for

the degree of MSc by Research

© Cranfield University 2017. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

Nowadays, the avionics software has been becoming more and more critical for

both civil and military aircraft. However, the software may become crazy

sometimes and may cause the catastrophic result if any failure in software.

Therefore, the software safety assessment is not only crucial to the specific

software, but also for the system and aircraft. Although there are some industry

standards as guidelines for development of software system, applications of

these standards to practical software systems are still challenged and hard to

operate in practice. This thesis tries to solve this problem.

After analyses and summaries of the system safety assessment process and

existing software safety assessment process in different fields, research wants to

propose the systematic and comprehensive software safety assessment process

and method for avionics software.

The thesis presents the research process, and proposes one suitable avionics

software safety assessment process. Meanwhile, thesis uses a real functional

block in flight management system as a case study, and then conducts the

software safety requirement assessment based on the proposed software safety

assessment method.

After analysis the result of case study, this proposed software safety assessment

process and methods can quickly and correctly identify the software design errors.

So, this analysis can use to prove the feasibility and validity of this proposed

software safety assessment process and methods, which will help engineers

modify every software design errors at the early stage in order to guarantee the

software safety.

Keywords:

Software Safety, Software Development Process, Software Safety Assessment

Process, DO-178C, ARP4754A, Functional Hazard Assessment, Fault Tree

Analysis, Failure Mode and Effects Analysis, Formal Method, NuSMV

iii

ACKNOWLEDGEMENTS

I would like to express my special thanks of gratitude to my supervisor Dr Huamin

Jia. His patient guidance and constant encouragement is so helpful and great

throughout the study.

I would like to thank all my friends for their care and encouragement through this

year.

Finally, I would like to express a deep sense of gratitude to my parents who try

their best to give their love, encouragement and supporting for the study in

Cranfield University.

v

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS... iii

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS .. x

LIST OF SYMBOLS ... xi

LIST OF DEFINATION .. xii

1 Introduction .. 1

1.1 Background ... 1

1.2 Research Objectives ... 2

1.3 Methodology ... 2

1.4 Thesis Structure .. 4

2 Literature Study ... 7

2.1 Introduction ... 7

2.2 The Importance of Software Safety... 7

2.3 System and Software Safety Assessment Process 12

2.3.1 System Safety Assessment Process .. 12

2.3.2 Software Safety Assessment Process.. 17

2.3.3 Relationship between System Safety Assessment and Software

Safety Assessment ... 23

2.4 Software Safety Assessment Techniques ... 24

2.4.1 Traditional Software Safety Assessment Methods 24

2.4.2 Emerging Software Safety Assessment Methods 31

2.5 Summary .. 41

3 Avionics Software Safety Assessment Process .. 43

3.1 Introduction ... 43

3.2 Software Development Process in DO-178C .. 43

3.3 Avionics Software Safety Assessment Process 44

3.3.1 The Objectives and Tasks of Each Steps ... 46

3.3.2 Transition Criteria of Proposed Avionics Software Safety

Assessment Process ... 48

3.4 Summary .. 49

4 Proposed Methods for Avionics Software Safety Assessment 51

4.1 Introduction ... 51

4.2 Methods for Software Safety Requirements Assessment Process 51

4.2.1 Identify hazard .. 53

4.2.2 Identify safety requirements ... 54

4.2.3 Formal Verifications.. 55

4.3 Methods for Software Architecture Safety Assessment Process 61

4.3.1 Software Development Assurance Level Assignment Process 62

vi

4.3.2 Comparison of Existing Software DAL Assignment Process 65

4.3.3 Software Development Assurance Level Assignment Process

Case Study .. 66

4.4 Consideration of Software Development Assurance Level Assignment

Process ... 71

4.5 Summary .. 73

5 Case Study .. 75

5.1 Introduction ... 75

5.2 Overview of Flight Management System .. 75

5.3 Overview of Position Calculation Function .. 79

5.4 Verification Tool NuSMV ... 81

5.4.1 NuSMV Installation ... 82

5.4.2 NuSMV Architecture ... 84

5.4.3 NuSMV Input Language ... 86

5.5 Position Calculation Safety Requirement Elicitation Process 87

5.5.1 Identify Hazards ... 88

5.5.2 Identify Safety Requirements ... 89

5.6 Formal Modelling .. 94

5.7 Result Analysis ... 96

5.8 Summary .. 99

6 Conclusion and Further Work .. 101

6.1 Conclusion .. 101

6.2 Further Work ... 102

REFERENCES ... 105

APPENDICES .. 111

vii

LIST OF FIGURES

Figure 1-1 Process of Research Methodology ... 3

Figure 2-1 Software in Military Aircraft [13] .. 8

Figure 2-2 Growth of Software Volume in Civil Aircraft [14] 9

Figure 2-3 Sequence of Software Error Lead to the Failure Condition [5] 9

Figure 2-4 Percentage of Hull Losses by Accident Category 1997-2016 [19] .. 11

Figure 2-5 Safety Assessment Process in ARP4754A [10] 13

Figure 2-6 System Safety Assessment Process in ARP4754A 14

Figure 2-7 System Safety Process in MIL-STD-882E [6] 16

Figure 2-8 Software Safety Assessment Process in Military [24] 18

Figure 2-9 Basic Idea of Software Criticality Index Assignment Process in
Software Safety Assessment Process ... 19

Figure 2-10 Relationship between System Safety Assessment Software Safety
Assessment ... 23

Figure 2-11 Functional Hazard Assessment Process [9] [10] 25

Figure 2-12 Construction step of Fault Tree Analysis [29] 28

Figure 2-13 Failure Mode and Effects Analysis Process [31] 30

Figure 2-14 Difference between FTA and FMEA [32] 31

Figure 2-15 Model Checking Formula [35] ... 33

Figure 2-16 State Transition Graph for Kripke Structure [38] 34

Figure 2-17 Linear Temporal logic [40] ... 35

Figure 2-18 Example of LTL Formula ... 36

Figure 2-19 Computation Tree Logic [40] ... 36

Figure 2-20 AG 𝒑 .. 37

Figure 2-21 AF 𝒑 .. 38

Figure 2-22 EG 𝒑 ... 38

Figure 2-23 E (𝒑 U 𝒒) ... 39

Figure 3-1 Software Development Process in DO-178C 43

Figure 3-2 Proposed Avionics Software Safety Assessment Process 45

Figure 3-3 Emphasis of Research .. 46

viii

Figure 4-1 Process of Software Safety Requirement Assessment 52

Figure 4-2 Process of Hazard Identification ... 53

Figure 4-3 Verification Process of Safety Requirement [16] 56

Figure 4-4 State Transition Graph .. 59

Figure 4-5 Verification Result 1 of Microwave Problem 60

Figure 4-6 Verification Result 2 of Microwave Problem 61

Figure 4-7 Process of Software Architecture Safety Assessment 62

Figure 4-8 Assign Development Assurance Level to Functional Failure Set
Members [10] ... 65

Figure 4-9 Cost of Different Development Assurance Level Software 66

Figure 4-10 Fault Tree Example-1 [10] ... 68

Figure 4-11 Fault Tree Example 2 [10] ... 70

Figure 4-12 FDAL/IDAL Assignment Process .. 72

Figure 5-1 Overview of FMS Components [50] .. 76

Figure 5-2 Overview of FMS Function .. 77

Figure 5-3 FMS Block Diagram [51] ... 79

Figure 5-4 Position Calculation Logical [51] ... 80

Figure 5-5 NuSMV Installation Result .. 84

Figure 5-6 Architecture of NUSMV [53] .. 85

Figure 5-7 Kripke Structure in NuSMV [55] .. 87

Figure 5-8 Fault Tree of “The both sides of PFD indicate the wrong navigation
and position information” ... 90

Figure 5-9 Subtree of “The both sides of PFD indicate the wrong navigation and
position information” .. 91

Figure 5-10 Sensor State Transition Graph .. 95

Figure 5-11 Monitor Function State Transition Graph 96

Figure 5-12 NuSMV Result of Specification 1 .. 97

Figure 5-13 NuSMV Result of Specification 2 .. 97

Figure 5-14 NuSMV Counterexample Result ... 98

Figure 6-1 The Relationship between Objectives and Achievement 101

ix

LIST OF TABLES

Table 2-1 Activities of Each Step in Software Safety Assessment Process-1 [23]
[24] .. 20

Table 2-2 Activities of Each Step in Software Safety Assessment Process-2 [23]
[24] .. 21

Table 2-3 Objective and Proposed Methods in Software Safety Assessment
Process [25] ... 22

Table 2-4 Symbol of Fault Tree Analysis [28] ... 27

Table 2-5 Step of Software Fault Tree ... 28

Table 2-6 Comparison of Model Checkers ... 41

Table 4-1 Software FHA [8] [10] ... 54

Table 4-2 Output of Software Failure Mode and Effects Analysis 55

Table 4-3 General Principle for DAL Assignment [5] .. 64

Table 4-4 Accepted Assignment of FDAL and IDAL of Example 1 67

Table 4-5 Unaccepted Assignment of FDAL and IDAL of Example 1 68

Table 4-6 Accepted Assignment of FDAL and IDAL of Example 2 70

Table 4-7 Unaccepted Assignment of FDAL and IDAL of Example 2 71

Table 5-1 Installation Steps of NuSMV Source Code [43] 83

Table 5-2 Installation Step of NuSMV Binary Code .. 84

Table 5-3 SMV Language Example .. 86

Table 5-4 Failure Condition for Position Calculation ... 88

Table 5-5 Basic Event list of Fault Tree .. 93

Table 5-6 FMEA for Navigation Source Selection Logical Failure 94

Table 5-7 FMEA for Navigation Source Monitor function failure 94

x

LIST OF ABBREVIATIONS

CCA

CTL

DAL

DME

FDAL

FFS

FHA

FTA

FMC

FMEA

FMS

FMSA

GPS

IDAL

IRS

LTL

LOR

MIL-STD

PSSA

RNAV

RNP

RPN

SwCI

SSA

TNAV

VOR

Common Cause Analysis

Computation Tree Logic

Development Assurance Level

Distance Measuring Equipment

Functional Development Assurance Level

Functional Failure Set

Functional Hazard Assessment

Fault Tree Analysis

Flight Management Computer

Failure Mode and Effects Analysis

Flight Management System

Flight Management System Application

Global Positioning System

Item Development Assurance Level

Inertial Reference System

Linear Temporal Logic

Level of Rigor

Military Standard

Preliminary System Safety Assessment

Area Navigation

Required Navigation Performance

Risk Priority Number

Software Criticality Index

System Safety Assessment

Time Navigation

VHF Omni directional radio range

xi

LIST OF SYMBOLS

𝑆 Finite Set of State

𝑆0 Initial State of Kripke Structure

𝛿 Transition Relation

𝐴𝑃 Set of Atomic Propositions

𝐿 Labelling Function

¬ Negation

∧ Conjunction

∨ Disjunction

→ Implication

↔ Equivalence

& Logical And

! Logical Not

│ Logical Or

𝜋 Path

A Path Quantifier

E Path Quantifier

X Temporal Operator, means next time

F Temporal Operator, means eventually

G Temporal Operator, means always

U Temporal Operator, means until

xii

LIST OF DEFINATION

Software Failure: Before the software delivery, any error or fault found in
software requirement, design, code, and integration
process may cause software partial function and/or entire
software cannot perform as its expected.

1

1 Introduction

1.1 Background

With rapid development of computer, software already has been applied in

different fields. Compared with human, software has the incomparable capability,

and it can make decisions unemotionally and more accurately. Due to this reason,

the scale and complexity of software have increased tremendously, which make

its proportion of the critical function in the complicated modern systems also has

risen sharply. Nowadays, software is playing a vital role in hazard control and

operation of safety-critical function or system [1]. For example, the development

cost of software in Fly-by-wire system can occupy about 60-70% of the total cost

of the entire Fly-by-wire systems [2]. In the integrated avionics system of F-22

Raptor, the implementation of avionics function and system is up to 80% by using

software [3].

Software can bring lots of benefits. In the meanwhile, it can cause some serious

problems. Comparing with hardware, the safety and quality of airborne software

are lower due to the software characteristics. In some circumstances, software

may not be performed according to its design, which can have adverse effects on

the airborne system, and even lead to mishaps. In recent years, the number of

accidents caused by software failure are increasing. Software failures may cause

severe damage to aircraft, which may threaten and harm life [1]. For example,

Turkish Airlines Flight 1951 crashed during the approach on 25 February 2009,

and six passengers and three pilots died in this accident. The final accident

investigation report shows that the radio altimeter system failure is the major

factor, which made aircraft stall. However, the report also points out the airborne

software on Flight 1951 lacked the programme which could deal with the stall

situation, and this reason also contributes to the accident [4]. So that, software

has critical influence on the airborne system safety, especially the airborne

software system.

The software safety assessment process aims to solve software unsafe problem,

and software safety assessment methods focus on identifying the software failure

2

which could lead to the system or aircraft level hazard. Meanwhile, the software

safety assessment process and method can reduce the development cost of

software.

1.2 Research Objectives

This MSc-by-Research project is designed to study and develop technical

methods and processes for safety-critical avionics software safety assessment.

 On the basis of the airborne software lifecycle introduced in Software

Considerations in Airborne Systems and Equipment Certification

(DO-178C) [5], work out the systemic software safety assessment process

for avionics software.

 According to objectives of each process in software development, briefly

introduce various safety assessment methods in accordance with each

process.

 Focus on objectives of requirement safety assessment, proposes the proper

safety assessment methods.

 Based on the existing standard and requirement safety assessment result,

applies the Development Assurance Level assignment process to software

level.

Through the proposed software safety assessment process and suitable methods,

software error and fault can be identified and modified, which it can ensure

software safety can be guaranteed during each stage of software lifecycle.

Thereby, the proposed safety assessment process and method can be used to

prove software safety in different phase of software lifecycle and improve

reliability of software, and even entire system.

1.3 Methodology

Before work on the software safety assessment process, the research starts with

getting familiar with the software lifecycle. Currently, lots of standards and

guidelines are accepted by the authority and manufacturer, such as DO-178C [5],

Standard Practice for System Safety (MIL-STD-882E) [6] and so on. Among

these standards and guidelines, Software life cycle processes (ISO/IEC

3

12207) [7], NASA Software Safety Guidebook (NASA-GB-8719.13) [8] and

DO-178C [5] gives detailed description of the software life cycle which includes

the software development process. Furthermore, Guidelines and Methods for

Conducting the Safety Assessment Process on Civil Airborne Systems

and Equipment (SAE ARP 4761) [9] and Guidelines for Development of

Civil Aircraft and Systems (SAE ARP 4754A) [10] provide detailed safety

assessment process for aircraft and system level, and suggest several safety

assessment methods, such as Functional Hazard Assessment, Fault Tree

Analysis and Failure Mode and Effects Analysis. Meanwhile, the standards such

as DO-178C provide the objectives and activities of software lifecycle. Based on

the standards, guidelines and the summaries of the software safety assessment

process from other aspects, works out the comprehensive and practicable

avionics software safety assessment process, and determines the objectives and

activities of the proposed avionics software safety assessment process. The

Figure 1-1 shows the flowchart of research methodology.

Figure 1-1 Process of Research Methodology

After determination of the proposed software safety assessment process,

consider the proper software safety assessment methods for each step according

4

to objectives and tasks found in the previous study. Safety assessment methods

not only use at aircraft and system level, but also use on software, such as Fault

Tree Analysis and Failure Mode and Effects Analysis. Meanwhile, some of the

emerging methods can be used in the proposed software safety assessment

process. At the end, the research uses case study to prove the rationality and

feasibility of new avionics software safety assessment process and methods.

1.4 Thesis Structure

The thesis includes 6 chapters.

Chapter 1: Introduction. Briefly describes the background and existing problem

of avionics software safety. Lists all the objectives of this research, and gives the

precise description of the research methodology.

Chapter 2: Literature Study. Briefly introduces the literature study on the software

safety assessment process in different aspects, and the software lifecycle

described in DO-178C. And then, detailed introduces the traditional and emerging

software safety assessment methods. The literature study is the fundamental of

the proposed software safety assessment process and methods.

Chapter 3: Avionics Software Safety Assessment Process. Detailed discusses

the content of proposed avionics software safety assessment process, and lists

objectives and activities of each sub-process. The Chapter also recommends

suitable software safety assessment methods for each sub-process. At last, this

Chapter gives the general transition criteria, which makes the proposed software

safety assessment more comprehensive.

Chapter 4: Proposed Methods for Avionics Software Safety Assessment Process.

Detailed describes the content and proposed methods for software safety

requirement assessment and software architecture safety assessment process.

This Chapter gives the several examples for presenting the feasibility of the

proposed method.

Chapter 5: Case Study. Detailed describes how to apply the avionics software

safety assessment process and methods to the practical software function in civil

5

aircraft. The result of case study proves the feasibility of proposed avionics

software safety assessment process and methods.

Chapter 6: Conclusion and Further Work. This Chapter summarizes all the

achievements in the research, and points out the relevant work which has not

been fully solved in this research.

7

2 Literature Study

2.1 Introduction

In the literature study, the author has researched on several parts. Firstly, the

Chapter shows the investigation of usage of software in military and civil aircraft,

and several air accidents caused by software failure, which presents the

importance of software safety. Second, research of both system safety

assessment process and kinds of software safety assessment process gives

ideas of developing the proposed avionics software safety assessment process.

Last, the Chapter discusses the traditional and emerging safety assessment

methods, such as Fault Tree Analysis, Formal Methods.

2.2 The Importance of Software Safety

Safety is defined as the state that the risk is acceptable [10]. Safety in software

can be understood as the capability of maintaining in the state which the risk has

been reduced at an accredited level. Software safety can make sure that the

related software hazards are under control and will not propagate to a system.

Therefore, software safety is the critical property for the system safety. The

importance of software safety can be experienced from all aspects, and this

section gives the introduction from two points, one is the proportion of function or

system implemented by software in the aircraft system, and the other is to

demonstrate several catastrophic air accidents which were caused by software

failure.

In modern avionics, the system functions are usually implemented by some

complicated computer software [11]. The progress of computer and software has

changed the aviation industry [12]. Nowadays, many safety-critical systems and

functions are implemented and controlled by computer and software in modern

aircraft.

According to the NASA study of flight software complexity, the percent of function

which provided by software in military aircraft has risen from 8% in 1960 to 80%

in 2000, as shows in Figure 2-1. The software size has grown rapidly, and the

8

software size has increased from 1000 lines of code to 1.7M lines of code. For

example, the F-22 has 2.5M lines of code [13].

Figure 2-1 Software in Military Aircraft [13]

Same as the military, many airborne systems and functions, especially the safety-

critical systems and functions, have been implemented by software in civil aircraft.

According to the journal from Aerospace Lab [14], the airborne system has been

changed a lot because of the development of computer and software technology

over the last 30 years, and software volume has grown rapidly in these years. For

example, avionics system in Airbus A380 has more than 100 million lines of code.

The Figure 2-2 shows the growth of software volume in different types of Airbus

aircraft.

The reason of software volume growth is easy to understand, because faster

computer and software can achieve more flexibility of the aviation system. Since

the widespread use of software, the engineer has been concerned with the

software failure and its implication for related safety-critical functions. If one

software is unsafe and people trust a lot, the destruction of software failure can

be erroneous [15]. Even the smallest error can cause the most severe

consequence, which might lead to significant damage or loss of life.

9

Figure 2-2 Growth of Software Volume in Civil Aircraft [14]

As the Figure 2-3 shows, any error found in the entire software life cycle, such as

the error found in the requirement, design, code, and integration process, can

contribute to the most severity result like loss of human life. These errors may

arise at anytime and anywhere in the software life cycle [16]. Software safety is

to identify the hazard which can lead to the system failure. Furthermore, software

safety could decrease the error rate during the software lifecycle, and reduce the

probability of hazard occurrence and the risk level.

Figure 2-3 Sequence of Software Error Lead to the Failure Condition [5]

The failure of safety-critical software could cause the severe harm and damage

to the system and aircraft, and potentially, lost the human life. Some software-

related air accidents are described below.

10

 Korean Air Flight 801 [15]

The Korean Air Flight 801, crashed in Guam on August 1997, and it killed 225 of

254 persons on board. National Transportation Safety Board considered that

there were two identified software errors in Minimum Safe Altitude Warning,

which might be the contributing factors in this crash.

 American Airlines Flight 965 [15]

The American Airlines Flight 965 crashed into the west slope of the mountain on

December 20, 1995. This accident caused 159 deaths, and the aircraft was totally

destroyed. The reason of this accident was that the flight management system

incorrectly understands the waypoint identifier when pilot type the similar

identifier. Although the final report pointed that the major factor of this accident

was the pilot error, the poor design of flight management system also contributed

to this crash.

 British Airway Flight 027 [17]

The British Airways Flight 027 nearly collided with an aircraft from Korean Air

Cargo during the flight at the Chinese airspace region. The altitude between two

aircraft was only 600 feet. Fortunately, the pilot found this problem immediately

and took the corresponding actions which prevented this catastrophe. After the

investigation, the reason of this accident was due to the failure of the collision

avoidance system installed of the Korean Air Cargo aircraft. The failed collision

avoidance system determined wrong altitude of cargo aircraft and provided the

wrong command, and this collision avoidance system was damaged during the

maintenance.

 Qantas Flight 72

On October 20, 2008, the Qantas Flight 72 departed from Singapore to Australia

with 303 passengers. During the cursing at 37,000ft, the autopilot was

disconnected automatically. When the pilot has evaluated the situation, the

aircraft began to pitch down, and then descended 650ft. After 15 Seconds when

the pilots controlled aircraft, aircraft pitched down again and descended 400ft at

this time. About 1 hour later, the aircraft landed at Learmonth. Fortunately, no

11

one died in this accident. According to the Australian transportation safety report,

the failure of air data inertial reference units installed in the aircraft was one major

factor of this accident. The aircraft installed three sets of air data inertial reference

units, and one of the three had sent the incorrect data to aircraft system before

the autopilot disconnected [18].

According to the Airbus statistical analysis of commercial aviation accidents

happened during 1958-2016, accident caused by System, Component Failure or

Malfunction included the failure of power plant, software and database systems

approximately occupy 12% of the total number of hull losses accidents since 1997

[19].

Figure 2-4 Percentage of Hull Losses by Accident Category 1997-2016 [19]

Any failure of software can lead to a potential risk situation which could lead to

the loss of property and lives. Therefore, software failure has emerged as one of

the new sources of hazard [20]. Over-trusting or underestimating the complexity

of software could lead the occurrence and propagation of hazard, which may

contribute to the system, even aircraft failure.

Therefore, people want the correct and safe software. Unfortunately, it is difficult

to correctly produce the software, even harder to ensure the software safety,

because safety is an incredibly complex issue that depends on many factors. For

example, safety engineers hope to detect and correct all the errors before

implemented. In fact, some errors can be identified and some cannot be found.

12

Meanwhile, new errors might be introduced. So that, this is one reason that some

software may have the defects after implemented, and some software was

deemed as safe, but it still can cause the hazard.

Software safety is not a software-specific issue, and is a systems issue [21]. If all

the errors or failure can be found and corrected at the early time, or can be

detected during the whole software life cycle, the software will reduce the

probability of hazard occurrence. Therefore, software safety should be integrated

into software lifecycle and system development process. Through the

assessment of safety-critical software during the software lifecycle, it will help to

guarantee the correctness of software requirements, code and implementation.

Thereby, the software safety can be guaranteed, and the confidence level of

software can be kept at a higher level. For system safety, the software safety

assessment can be used as evidence to prove the system hazard has been

controlled and eliminated. The next section will discuss two system safety

assessment processes which are introduced in APR4754A and military standard.

2.3 System and Software Safety Assessment Process

For the safety-critical system, it is essential to perform the safety assessment,

which can identify, control and reduce all of the safety risks at the acceptable risk

level. This safety assessment not only conducts at system-level, but also involve

with software-level [22].

This section mainly discusses the system safety assessment process, software

safety assessment process, and the relationship between these two processes.

The section lists several system safety assessment processes and software

safety assessment processes which are acceptable to the aviation and military.

And then, the section analyses the relationship between system safety

assessment and software safety assessment.

2.3.1 System Safety Assessment Process

 System Safety Assessment Process in Civil Aircraft

13

In civil aircraft, ARP 4754A and ARP4761 are two wide acceptance guidelines

related to aircraft and system safety assessment. These two guidelines provide

the detailed safety assessment process and various safety assessment methods.

ARP4754A provides the detailed system safety assessment process which is to

establish the safety objectives and to demonstrate compliance with other related

safety requirements during the period of system design [10]. ARP4761 provides

the guidelines and methods for conducting the safety assessment on system

level or at aircraft level of civil aircraft for certification [9].

Figure 2-5 Safety Assessment Process in ARP4754A [10]

14

In APR4754A, the system safety process uses various assessment processes

and methods to evaluate system design and functions, which ensure all the

hazards have been found and controlled. Figure 2-5 shows the system safety

process.

The system safety assessment process in ARP4754A includes four parts, which

are functional hazard assessment (FHA), preliminary system safety assessment

(PSSA), system safety assessment (SSA), and Common Cause Analysis (CCA)

respectively. Before conducting the system safety assessment process, the

outputs of aircraft PSSA and FHA are used for the input file of system safety

assessment, such as the list of aircraft level failure conditions, and high-level

safety requirements. After the aircraft functions are allocated to system-level, it

can start to conduct system safety assessment. The system assessment process

can be summarized as shows in Figure 2-6.

Figure 2-6 System Safety Assessment Process in ARP4754A

The first step is to conduct system-level functional hazard assessment. This

process is to identify the system-level failure condition according to the list of the

aircraft-level failure conditions, safety objectives and system functions, and to

determine the severity of each failure condition according to its effect. After

finished the system-level FHA, preliminary system safety assessment and

common cause analysis can be started. PSSA is to complete the failure

15

conditions list, to generate lower-level safety requirements, and to verify the

proposed system architecture by reviewing related safety requirements. PSSA is

the iterative process, and it can be conducted during the entire software lifecycle.

At the lowest level, PSSA can be used for identifying the software or hardware

safety requirements. Common cause analysis is to verify and determine

independence of the system, function or item. During the CCA, it generates the

system safety requirements for PSSA to validate the proposed architecture. The

last step is system safety assessment. SSA evaluates the implemented system-

level function to prove whether the relevant safety requirements are satisfied or

not. In SSA, the common safety assessment methods are fault tree analysis and

failure mode and effects analysis. Those two methods help to determine the

causes of the related failure conditions. After the SSA, it can start the software

and hardware level safety assessment process. Figure 2-6 shows the primary

relationships in the system safety assessment process. In fact, each process can

be entered or re-entered depending to the requirement. Meanwhile, there are

many feedback loops between each process.

The second part is the introduction of system safety assessment process in

military standards, MILT-STD-882E [6]. The basic idea of the military system

safety assessment process is similar with the ARP4754A, which is to identify and

assess the hazard.

 System Safety Assessment Process in MILT-STD-882E

The system safety assessment process has eight components. Figure 2-7 gives

the flowchart of system safety assessment process in MILT-STD-882E [6]. Here

gives the brief introduction of each element.

‒ Element 1 is Document the System Safety Approach. The document

should include the result of risk management, specified and derived

system requirements, and the description of the acceptable process of

hazard and risk by authority, and the Hazard Tracking System report.

16

Figure 2-7 System Safety Process in MIL-STD-882E [6]

‒ Element 2 is Identify and Document Hazards. Documented all the

hazard identified in this safety assessment process, and the hazard

should include software and hardware, interfaces, operational

environment.

‒ Element 3 is Assess and Document Risk. By using the table of severity

category and probability level, assessed all the hazards. The severity

category table is to identify the potentially harmful, such as death or

injury, the effect on the environment, and the monetary loss. The

17

probability level table is for assessing the likelihood of each hazard

occurrence. After assigning the severity and probability, it used the Risk

Assessment Code to evaluate each risk. Last, document all the hazard

in Hazard Tracking System report.

‒ Element 4 is Identify and Document Risk Mitigation measures. Identified

methods of the risk mitigation and reduction, such as using design

alternative to eliminate or reduce the hazards. All the alternatives should

be documented in Hazard Tracking System report.

‒ Element 5 is Reduce Risk. Selected the applicable mitigation methods,

and controlled the hazard to stay at a reasonable and receivable risk

level. This should consider the cost, effectiveness and feasibility of the

selected method.

‒ Element 6 is Verify, Validate, and Document Risk Reduction. Through

the verification and validation of implementation, proved the

effectiveness of the selected mitigation methods. Documented all the

verification and validation result in Hazard Tracking System report.

‒ Element 7 is Accept Risk and Document. The appropriate authority

should accept all the risk before the hazard happened.

‒ Element 8 is Manage Lifecycle Risk. Through the entire system lifecycle,

the system safety process should be used for identifying and

maintaining the Hazard Tracking System.

The system safety process aims to identify, control, reduce and document all the

system-level hazards during the system lifecycle. The process can also focus on

selecting the proper method of control, reduce and eliminate the hazards.

2.3.2 Software Safety Assessment Process

In this section, the author summarizes software safety assessment process from

different aspects. The software safety assessment process focuses on the

content and selected safety assessment methods.

18

 Software Safety Assessment in Military

Military standards such as MIL-STD 882E, consider that the software safety

assessment process conducts various safety assessment activities and tasks on

safety-critical software and functions according to the level of rigor [23] [24].

The process has nine sub-processes and involves software development process.

This software safety assessment process aims to reduce the risk during the

software lifecycle, which can add robustness for software. Figure 2-8 shows the

software safety assessment process in Naval Surface Warfare Centre.

Figure 2-8 Software Safety Assessment Process in Military [24]

The first step is to determine the safety scope of program and tasks, and the

second step is to determine Software Criticality Index (SwCI) for each software

safety-significant function. The rest of steps in this safety assessment process

have a closed relationship with the software development process, which focus

on software safety requirement, architecture, code and testing verification.

The basic idea of the military software safety assessment process is to conduct

various verification and validation actions on different software functions

according to its Software Criticality Index. Figure 2-9 shows the basic idea of the

Software Criticality Index assignment process in the military software safety

assessment process.

19

Figure 2-9 Basic Idea of Software Criticality Index Assignment Process in

Software Safety Assessment Process

The assignment process can be summarized as the following steps [6]:

 Step 1: After the system safety assessment, starts to identify the software

safety-significant functions and hazards related to these functions.

 Step 2: Starts to determine the software control category of the identified

hazard by using the software control category table.

 Step 3: Through a combination of software control category and the severity

category table, determines the software safety criticality index for each

safety-significant function.

 Step 4: Determines the level of rigor (LOR) tasks by using software Safety

Criticality Index.

 Step 5: Reviews the result and execution of level of rigor tasks:

‒ Step 5a: If LOR tasks are fully completed, uses results to assign the

software hazards to the system.

‒ Step 5b: If LOR tasks are not performed or not completed, assigns risk

level to software based on MIL-STD-882E;

This process uses Software Criticality Index to determine the level of each

software safety-significant function, and perform the various assessment

activities for the different Software Criticality Index. Assessment activity includes

software safety assessment sub-process and proper safety assessment methods.

Table 2-1 and Table 2-2 show the activities of each step in this process, and give

the recommended safety assessment methods for each step.

20

Table 2-1 Activities of Each Step in Software Safety Assessment Process-1 [23]

[24]

Steps Activities (includes method)

System Definition and
Software Safety
Planning

a) Define program safety scope.

b) Conduct Functional Hazard Assessment and
identify the software Safety-Significant Functions
for each subsystem.

Determine Software
Criticality Index

a) Assign Software Criticality Index to each
software Safety-Significant Functions according
to Figure 2-9.

Software
Requirements Hazard
Analysis

If Software Criticality Index is 1-3, it need to conduct
assessment tasks:

a) Conduct Software Requirements Hazard
Analysis for each software Safety-Significant
Functions.

Software Architectural
Hazard Analysis

If Software Criticality Index is 1-3, it need to conduct
assessment tasks:

a) Review all architectural related documents to
assess current hazards and review functional
hazard analysis.

Software Design
Hazard Analysis

If Software Criticality Index is 1-2, it need to conduct
assessment tasks:

a) Collect design explanation documents, such as
the explanation of how the proposed architectural
is implemented within the design.

b) Conduct Software Causal Factor Analysis.

c) Review all design documents and previous
architectural analysis by using Conceptualized
Control Flows.

Code Level Hazard
Analysis

If Software Criticality Index is 1, it need to conduct
assessment tasks:

a) Conduct Data Structure Analysis.

b) Conduct Data Flow Analysis.

c) Conduct Compliance Checklist.

Operator
Documentation Safety
Review

a) Review operation documents such as the user
manual, to identify new hazards and ensure
adequacy of procedural controls.

21

Table 2-2 Activities of Each Step in Software Safety Assessment Process-2 [23]

[24]

Steps Activities (includes method)

Software Safety
Testing and
Verification

If Software Criticality Index is 1-4, it need to conduct
assessment tasks:

a) Determine the safety testing requirements, such
as the safety-specific or the in-depth safety
testing in accordance with the Software Criticality
Index by using AOP-52 and the JSSSEH.

b) Analyze test results.

Formal Review

a) Provides enough evidence that the software
failure related to the system risk has been
identified and defined, and that risk level keeps at
the accepted level by the appropriate authorities.

 Software Safety Assessment in Computer Science

IEEE Standard for Software Safety Plans [25] is used for the safety-critical

software lifecycle, such as software development, maintenance. In this standard,

it describes that the detailed steps in software safety analysis, and it includes the

following steps [25]:

 Software safety analyses preparation

 Software requirements safety analysis

 Software design safety analysis

 Software code safety analysis

 Software test safety analysis

 Software change safety analysis

IEEE Standard for Software Safety Plans introduces the detailed objectives and

activities of each sub-process of software safety assessment process. It also

suggests the proper safety assessment methods according to objectives. Table

2-3 shows the objectives and proposed methods in each step of software safety

assessment process.

22

Table 2-3 Objective and Proposed Methods in Software Safety

Assessment Process [25]

Steps Objectives Method

Software
safety
analyses
preparation

Allocates documents to support
the software safety analysis
process, such as system FHA
result, software requirements
and the interface between
hardware and software.

a) Review

Software
requirements
safety analysis

Evaluates the software
requirements such as functional,
interface and safety. Identifies
errors and failure that could lead
to the hazard.

a) Criticality
analysis

b) Specification
verification

c) Software system
and function
assessment

Software
design safety
analysis

According to the safety
requirements, verifies the design
of safety-critical function, and
proves that it doesn’t introduce
any new hazard during the
design.

a) Functional
assessment

Software
element analysis

Software code
safety analysis

Verifies the design of safety-
critical functions is entirely
implemented in the code
correctly.

a) Code Logic
analysis

b) Code Data
analysis

Code Data Flow
Analysis

Software test
safety analysis

Proves that the safety
requirements have been
correctly implemented by
software design. All the software
functions have been tested, and
the result is acceptable.

a) Software Unit
Test

b) Interface testing

c) Integration
testing

Software
change safety
analysis

Proves that the change doesn’t
introduce the new hazard;
doesn’t effect on the previously
solved hazard, and doesn’t
cause the more severe effect on
existing hazards.

a) Review

23

2.3.3 Relationship between System Safety Assessment and Software

Safety Assessment

System safety assessment starts with identifying the related hazards and

generates the safety requirements for system design which achieve to control,

reduce and mitigate the hazard. The software safety assessment has the same

purpose, and it applies the assessment process at the software level. As

mentioned above, software safety is the system issue. Any failure of software

may cause the system failure. So that, the software safety assessment process

should contribute to the assurance of system safety by assuring the software

safety.

Software safety assessment should be involved in the system safety assessment,

and becomes the part of the system safety assessment. The output of system

safety assessment is used as the input of software safety assessment, and the

output of software safety assessment will be the feedback for system assessment.

The relationship between software safety assessment and system safety

assessment shows in Figure 2-10. For example, the system safety assessment

determines the development assurance level of system-level functions or items.

After this, the software assurance level assignment is based on the output of

system safety assessment and proposed software architecture. Meanwhile, the

software development assurance level will be returned to the system for

verification and validation.

Figure 2-10 Relationship between System Safety Assessment Software Safety

Assessment

24

Therefore, software safety assessment is not only important to the specific

software, but also for the related system and whole aircraft. Software safety

assessment aims to increase the confidence level that the software will perform

as expected by identifying and controlling all the related hazards.

The next section will discuss the traditional and emerging software safety

assessment methods, and these methods focus on identifying the failure or error

that could lead to a hazard, and mitigate the software contributors to hazards.

2.4 Software Safety Assessment Techniques

Safety assessment includes kinds of safety assessment techniques to satisfy

different objectives. The common safety assessment techniques, such as Fault

Tree Analysis, Failure Modes and Effects Analysis, start to be used for safety-

critical software. Meanwhile, some new methods such as formal method apply

mathematics and logic to assess the software. This section will mainly discuss

the working principle and working steps of both the traditional and emerging

software safety assessment techniques.

2.4.1 Traditional Software Safety Assessment Methods

This section mainly discusses three safety assessment methods which are

functional hazard assessment, fault tree analysis, and failure mode and effects

analysis respectively.

 Functional Hazard Assessment

Functional Hazard Assessment (FHA) is the comprehensive functional

assessment process to identify the failure condition and to classify the failure

condition according to its severity [9]. FHA can conduct in both aircraft and

system level, and it usually begins in the early stage of aircraft or system

development process. The aircraft level FHA is a high-level assessment, and it

mainly assesses functions at the beginning of an aircraft development. The

identified hazards from the aircraft level FHA are related to the aircraft function.

The system level FHA is to assess the system function, thereby identifies and

classifies the single or combination hazards which influence on aircraft. The FHA

25

aims to identify all associated failure conditions and classify the severity level

according to its effects. The classification of failure conditions establishes the

safety requirements of aircraft, system or software.

Generally, FHA conducts at the higher level, such as aircraft and system level.

But it can also identify hazards at software level. The principle and process of

software FHA and aircraft/system FHA are same. The general process is shown

in Figure 2-11:

Figure 2-11 Functional Hazard Assessment Process [9] [10]

The basic idea of conducting FHA is to identify the scope of assessment firstly,

and to determine all the possible failure conditions by the assumption of the

function failure, such as “loss control” and “loss warning”. Last, to define the

classification and effect by the related supporting materials.

26

The input of FHA is the system functions and functional architecture. The output

of FHA should include several information associated with aircraft, system or

software:

‒ The related failure conditions.

‒ The effects of failure condition, which include the effect on aircraft, crew

and passenger.

‒ Classification of each failure condition according to its effect. The

Classification is divided into five categories, Catastrophic, Hazardous,

Major, Minor, and No Effect.

‒ Assumed environment is considered during the FHA.

The output of FHA is the list of failure conditions and its classification, which is

the fundamental of the fault tree analysis. The fault tree analysis can use to

identify failure conditions as its top event. The next section will introduce how to

decompose the failure condition and how to find the basic cause of the related

failure condition.

 Failure Fault Tree Analysis

Fault Tree Analysis (FTA) is a top-down analysis approach that was developed

in 1962 under U.S. Air Force Ballistics Systems Division at Bell Laboratories [26].

FTA can be applied to almost every phase of software lifecycle. For example, it

can be used in software requirement assessment for eliciting safety-related

requirement, and can also be used in software design.

FTA is to identify the software errors or mistakes which caused the failure

condition or hazard. By using the graphical presents the combination of

component failures or errors that leads to the high-level failure [27]. The typical

fault tree is constructed by symbols, and each symbol expresses the different

meanings or attributes. Table 2-4 shows some frequently used fault tree

construction symbols [28].

27

Table 2-4 Symbol of Fault Tree Analysis [28]

Symbol Name Description

Intermedia Event

The event can be analysed
and decomposed further.

Basic Event

It presents the event is the
basic reason of the hazard,
and cannot decomposed any
more.

Undeveloped Event

This is used for some event
cannot developed further due
to the lack of information or
out of scope.

AND gate

If all of the input faults occur,
the out fault happen.

OR gate

If at least one of the input
faults occurs, the output fault
happens.

Transfer In

The tree will be developed
further as the occurrence of
the symbol of Transfer out.

Transfer Out
The fault tree must be
attached at the symbol of
Transfer in.

The FTA starts with the list of failure conditions that have been found in system-

level FHA. Each failure condition should have one individual tree, and the primary

procedure of FTA is to assume the failure condition has happened, and to go

28

backward to identify all the possible causes. The general process of fault tree

construction shows in Figure 2-12:

Figure 2-12 Construction step of Fault Tree Analysis [29]

Software Fault Tree Analysis is the approach that applies normal FTA to software

level, which helps to identify the software errors or failure. The construction steps

are same with the normal FTA. However, it needs to take account of software

function and software architecture [8]. Before construction, software FTA needs

to specify the purpose and scope of this fault tree. Then, uses the list of failure

conditions found in the system functional hazard assessment as the top events

of software FTA. After defining top event of the fault tree, it can start to

decompose until found the basic events of this fault tree. The general procedure

of SFTA shows in Table 2-5:

Table 2-5 Step of Software Fault Tree

Step 1 Define the purpose and scope of the software fault tree
analysis.

Step 2 Define all the undesired event (failure conditions).

Step 3 Identify causes for top-level fault (upper tier).

Step 4 Identify next level of events (intermediate tier).

Step 5 Identify root causes.

Step 6 Analysis the result.

29

Cut set analysis can be performed to determine the minimal cut sets of the

corresponding fault tree after the construction. This analysis gives the several

sets of the basic events that can cause the top event individually.

Fault tree analysis can identify all the possible causes of the related failure

condition, which can help engineer to recognize the weakness of the system or

software. The other advantage of FTA is that can help engineer identify the

human error. However, FTA has some disadvantages, such as FTA only focuses

on the cause of the failure, but it cannot provide any suggestion or information if

the failure occurs. FTA doesn’t care about the effects and solution of each failure

condition.

 Failure Mode and Effects Analysis

Due to the working principle of FTA, FTA cannot consider the common mode

failure, which means one error or mistake may cause more than one hazard. So,

many standards and researches recommend the bi-direction approach which can

work backwards and forwards [16]. Failure Mode and Effects Analysis (FMEA) is

one of the bottoms-up analysis methods, and it was developed by the military for

studying the possible failure of the military system in 1950s [30]. This method

cares about how each component failed, and how the component failure

propagated to the system. FMEA is one of the fault analysis methods to identify,

control and eliminate the possible failure mode during each phase of the

development, and it focuses on failure prevented.

The Risk Priority Number (RPN) is the important part of FMEA analysis, and it is

used to rank each identified failure mode. The RPN is using the values of Severity

(S), Occurrence (O), and Detection (D). The severity means the consequences

of the failure. The occurrence means the frequency of the failure occurred, and

the detection means the probability of the failure detection. These three factors

can be ranked from 1 to the 10, and 10 is the most serious [31]. RPN value is to

multiply the ranking of three factors and the formula shows as below:

RNP=Severity × Occurrence ×Detection.

30

The RPN should be used for each possible failure modes for determining the

effects. However, this RNP may lead to the reversible ranking. One failure has a

less severity value, but receives a higher RNP than one more severe failure mode.

For example, the RNP of a failure mode which the severity ranking is “2”, may be

lower than a failure mode which the severity ranking is “1”, because of the higher

occurrence or detection ranking.

Figure 2-13 Failure Mode and Effects Analysis Process [31]

The output of FMEA typically includes the list of identified components or

functions, the failure modes related to identified function, and the effect of this

failure [9]. The process of FMEA shows in Figure 2-13.

Software Failure Mode and Effects Analysis is to apply FMEA to software. The

procedure of Software Failure Mode and Effects Analysis is similar with FMEA,

and it starts to identify all possible failure modes related software. And then, it

works forward to find the effects on the system or aircraft.

31

FTA and FMEA are both analytical methods for fault analysis, but they focus on

different purposes.

Figure 2-14 Difference between FTA and FMEA [32]

The working principle of FTA and FMEA shows in Figure 2-14. FTA focuses on

the consequences of the failure condition. Therefore, this method is to identify all

the possible basic causes related to the hazard by checking all the available

components. The cause of a hazard can be the single failure or the combination.

However, FMEA focuses on the individual failure modes, and it exams all the

possible failure modes for determining effects on the higher-level component or

system. [33].

2.4.2 Emerging Software Safety Assessment Methods

Besides traditional safety assessment methods introduced in the previous section,

there are many new methods for software safety assessment, and some of them

have been already used in the practical software safety assessment project. This

section briefly introduces the formal methods, and gives the detailed explanation

of model checking.

 Formal Method

Formal Method is not a single method, and it is the set of techniques and tools.

Formal method is to describe and verify the safety problem by using mathematics

and logic. This method aims to guarantee the safety of system and software.

32

Formal method includes three parts of activities, and they are respectively formal

specification, program refinement and formal verification [34].

Formal specification refers to a collection of methodologies for system objects,

and its operations. Formal specification also can be the description of the

behaviour of each object in the development process. Formal verification is the

next step after the formal specification, and it usually uses two techniques, which

are theorem proving and model checking. Program refinement is the new

technology which combines the formal method and automated reasoning.

Theorem proving uses the logical formula to regulate the system and its

properties. A formal system will provide axioms or regulations, and theorem

proving applies these axioms or rules to prove whether the system has specific

properties or not. Model checking is a technique to check the desired properties

of one finite state model. This technique can examine each possible state of the

system to check whether the desired properties hold for a model or not.

Properties can be related to system or software safety, liveness and functional

[16]. Compared with theorem proving, model checking can be fully automated

and conducts the verification task without human intervention. However, model

checking has a disadvantage which is the state explosion. The different states

rise exponentially in the concurrent system due to the increasing scale of the

system. However, the development of Binary Decision Diagrams and Symbolic

Model Checking has solved this problem. In the next section, the author will

mainly discuss the related knowledge and the working principle of model

checking.

 Model Checking

As mentioned above, the working principle of model checking is to exhaustively

and automatically search the given model and to verify whether the desired

properties are held in this model or not. If the answer is yes, it proves the model

and specification is consistent. Otherwise, it gives the encounter example which

points out the error. The working principle can be described as Figure 2-15.

33

Figure 2-15 Model Checking Formula [35]

In the formal modelling techniques, a model is a formal description of the object,

such as a function, a system, and a piece of equipment [34]. Kripke structure is

one of the modelling languages.

 Formal Modelling Language - Kripke structure

A Kripke structure is used to express the model in the model checking. The Kripke

structure was proposed by Saul Kripke in 1963, and used to present the

behaviour and transition relationship of the system [36]. The Kripke structure can

describe all the internal relationships of a state transition system.

A Kripke structure consists of five tuples, and it presents as 𝐾 = (𝑆, 𝑆0, 𝛿, 𝐴𝑃, 𝐿).

𝑆 is a finite set of states. 𝑆0 is the initial state or the set of initial state, and

𝑆0 belongs to 𝑆. 𝛿 is the transition relation between each state. 𝐴𝑃 presents the

set of atomic propositions, and atomic propositions are the propositions cannot

be further divided, such as the state is true. 𝐿 means the labelling function, and it

presents as 𝐿: 𝑆 → 2𝐴𝑃. 𝐿(𝑎) is the set of atomic propositions, and it expresses

as the value of L is true when under the state a [37]. The Kripke structure can be

express as the graph which has the label, root and direction. The set of the node

equals to the set of finite states 𝑆; the set of the edge equals to the set of transition

relation 𝛿; the label of the node equals to 𝐿, and the root of the graph equals to

the 𝑆0.

34

So, a Kripke structure can be translated into one state transition graph. However,

the state transition graph is not the formal model, and is the way in helping to get

the better understating of the software behaviour. Figure 2-16 shows example of

a state transition graph, and this graph can be expressed in a Kripke structure.

Figure 2-16 State Transition Graph for Kripke Structure [38]

The Kripke structure of Figure 2-16 can be expressed as:

‒ 𝑆 = {𝑆0, 𝑆1, 𝑆2}

‒ Initial state is 𝑆0

‒ Transition relation 𝛿 = {(𝑆0, 𝑆1), (𝑆1, 𝑆0), (𝑆0, 𝑆2), (𝑆2, 𝑆1)}

‒ 𝐿(𝑆0) = {𝑎, 𝑏}, 𝐿(𝑆1) = {𝑏, ¬𝑐}, 𝐿(𝑆2) = {𝑎, 𝑐}

The informal model can be formally modelled by the Kripke structure, and the

properties should be also translated into the formal specification. In model

checking, it usually uses temporal logic to express the property.

 Temporal Logic

Temporal logic is to specify the property over time, but it doesn’t really care about

the time. It cares about the states and their relative position in the model.

Temporal Logic can also express the dynamic state of the system. Generally,

temporal logic mainly is divided into two categories. One is Linear Temporal

Logics, and the other is Computation Tree Logic.

35

‒ Linear Temporal Logic

Linear Temporal Logic (LTL) was introduced by Pnueli in the 1970s [39]. It

is widely used to express the behaviour of events on a calculation path. LTL

formula consists of a formula 𝑝 and a temporal logic operators “A”, such as

A 𝑝. Figure 2-17 is the graphic representation of Linear Temporal Logic, and

shows that every node has a unique successor. Each path can use to

describe one LTL formula.

Figure 2-17 Linear Temporal logic [40]

The LTL formula consists of the following components [38] [37]:

- Given the atomic proposition set 𝐴𝑃. (State label 𝑝 ∈ 𝐴𝑃).

- Basic Boolean Operators. ¬(Negation), ∧(Conjunction).

- Basic Temporal Operators. X (next time), F (eventually), G (always),

U (until).

The syntax of LTL formula is defined as following [38] [37]:

- If all the atomic proposition 𝑝 ∈ 𝐴𝑃, then 𝑝 is the valid LTL formula.

- If 𝑝 and 𝑞 are two valid LTL formulas, then ¬𝑝, 𝑝 ∨ 𝑞, 𝑝 ∧ 𝑞, 𝑝 →

𝑞, 𝑝 ↔ 𝑞, X𝑝, F𝑝, G𝑝, (𝑝 U 𝑞) are also valid LTL formulas.

Use the syntax can describe the state transition in one model, such as

“Always after p eventually q ”. It can be formalized as AG (p → AFq). Figure

2-18 is shown the typical LTL formulas.

36

Figure 2-18 Example of LTL Formula

If there is a given Kripke structure K = (S, S0, δ, AP, L), and LTL formula 𝑝. In

LTL model checking algorithm, the model checker will exam whether the path

π satisfy 𝑝 or not.

‒ Computation Tree Logic

Computation Tree Logic (CTL) was created by E. Emerson and E. Clarke in

1979. It is used for presenting the property of Branching Time Temporal in

the program at the initial stage of development [41]. Figure 2-19 shows

graphic representation of Computation Tree Logic and shows every node

has several successors. Compared with LTL, CTL uses the computation tree

instead of a linear path, and introduces the path quantifiers to present that

the properties must be held in all states or some states starting from the initial

state.

Figure 2-19 Computation Tree Logic [40]

37

In CTL, there are two path quantifiers. One is “A” which means all executions

or paths, and the other is “E” which means for some execution. CTL syntax

requires that one of path quantifiers and one of temporal operators should

be used in a pair, and path quantifier should be written before the temporal

operator, such as AG and EX. So, XA and XF are not allowed in CTL syntax.

The syntax of CTL formula, it combines with the basic temporal operators X

(next time), F (eventually), G (always), U (until), and the path quantifiers (A,

E) to describe state transition:

[
𝐴
𝐸

] [

𝑋
𝐹
𝐺
𝑈

] 𝑝

In CTL formula, EX, EG and EU are the basic combination operators, and

rest of combination operators can be transformed, such as ¬EX 𝑝 = AX¬𝑝.

This section gives several CTL formula examples and its descriptions. Thesis

uses one computation tree as a running example, and this computation tree

is with varying distribution of the red and black states. The given formula

𝑝 and 𝑞 are true if the black states satisfy p and red states q [37].

AG 𝑝 is true when 𝑝 satisfies all the states on all paths which starts from the

initial state in a computation tree. Figure 2-20 shows the AG 𝑝 in a

computation tree.

Figure 2-20 AG 𝒑

38

AF 𝑝 is true when there is one state which satisfies 𝑝 on all paths starting

from the initial state in a computation tree. Figure 2-21 shows the AF 𝑝 in

a computation tree.

Figure 2-21 AF 𝒑

EG 𝑝 is true when every state satisfies 𝑝 on a path which starts from the

initial state in a computation tree. Figure 2-22 shows the EG 𝑝 in a

computation tree.

Figure 2-22 EG 𝒑

E (𝑝 U 𝑞) is true if there is a path starting from the initial state satisfies 𝑝

until reaches one state which satisfy 𝑞. Figure 2-23 shows the E (𝑝 U 𝑞) in

a computation tree.

39

Figure 2-23 E (𝒑 U 𝒒)

The syntax of CTL formulas need to follow the several rules, and shows

as below [37]:

- If all the atomic propositions 𝑝 𝜖 𝐴𝑃, then 𝑝 is the valid CTL formula.

- If 𝑝 and 𝑞 are two valid CTL formulas, then ¬𝑝, 𝑝 ∨ 𝑞, 𝑝 ∧ 𝑞, 𝑝 →

𝑞, 𝑝 ↔ 𝑞, AX𝑝, EX𝑝, AF𝑝, EF𝑝, A (𝑝 U 𝑞), E(𝑝 U 𝑞) are also valid

CTL formulas.

- The valid CTL formula 𝑝 can only be created by applying the first

two steps within a limitation times. Otherwise, the formula 𝑝 is not

a valid CTL formula.

CTL model checking is to verify whether all the states or some states in

the path 𝜋 of a Kripke structure K satisfy the CTL formula 𝑝 or not. The

syntax of CTL model checking can be described as below:

K, S| = p expresses that one formula p is true when at state S in Kripke

structure K. π = {S0, S1, S2, … } means the path in Kripke Structure, and S0

is the current state which is also the initial state. Si+1 is the successor state

of S0. So, the semantics of CTL can be defined as [37] [38]:

- 𝐾, 𝑆| = 𝑝 if 𝑝 ∈ 𝐿(𝑆)

- 𝐾, 𝑆| = ¬𝑝 (𝑝 is false at state 𝑆).

- 𝐾, 𝑆| = 𝑝1 ∧ 𝑝2, if 𝑝1 ∈ 𝐿(𝑆) and 𝑝2 ∈ 𝐿(𝑆).

40

- 𝐾, 𝑆| =AX 𝑝, if for all paths 𝜋 = { 𝑆0, 𝑆1, 𝑆2, 𝑆3, … }, starting in 𝑆0, p is

true when at state s1.

- 𝐾, 𝑆| = EX 𝑝 , if there exists a path 𝜋 = { 𝑆0, 𝑆1, 𝑆2, 𝑆3, … }, starting

in 𝑆0, 𝑝 is true when at state 𝑆1.

- 𝐾, 𝑆| =E (𝑝1 U 𝑝2), if there exists a path 𝜋 =

{ 𝑆0, 𝑆1, 𝑆2, 𝑆3, … }, starting in 𝑆0, 𝑝1 is true until 𝑝2 is true.

There is some CTL formula used to describe safety features:

- AG 𝑝 means invariant. In requirement specification, it will use for

describing the status of system or software function cannot be

changed at any time, if AG 𝑝 is true.

- EF 𝑝 means potential. In requirement specification, it will use for

describing the status of system or software function might be

changed at a particular time, if EF 𝑝 is true.

- AF 𝑝 means Inevitable. In requirement specification, it can describe

the hazard.

Compared with CTL, LTL focuses on the individual path, buy CTL focuses

on the multiple paths. The syntax of LTL is simpler than CTL, because CTL

has two path quantifiers. For semantically, two logical are Incomparable.

So, depending on the target problem and its requirements to choose the

proper temporal logic.

 Model Checker

Based on the different platforms and purposes, lots of research institutions and

labs developed various types of model checkers, such as SPIN developed by Bell

Labs and NuSMV developed by Carnegie Mellon University.

SPIN is one of the typical Explicit-State Model Checkers, and it can verify the

multi-threaded software efficiently. So, this model checker is suitable for verifying

the concurrent software design [42].

NuSMV is one of the symbolic model checkers which re-implemented the SMV

model checker by Carnegie Mellon University, and this checker supports the

41

verification of properties expressed in both CTL and LTL formula [43]. Table 2-6

briefly shows the comparison between two model checkers.

Table 2-6 Comparison of Model Checkers

Name Input Language
Properties description
language

Platform

SPIN Promela LTL Windows, Linux

NuSMV SMV CTL, LTL
Windows, Linux,
MacOS

2.5 Summary

After the literature review, there are several findings in software safety

assessment process and methods.

First, the software safety assessment process is essential for software, system,

even the aircraft. This process helps engineer to identify the software hazards

which contributes to the high-level failure. This process can control, reduce and

eliminate the hazard at the initial stage of development. The software safety

assessment process guarantees correctness of software and adds rigor and

robustness to safety significant software.

Software safety assessment is not a simple and independent process, and it has

a closed relationship with other processes, especially the software development

process. The software safety assessment process should be integrated into the

entire software lifecycle, and there is a one-to-one correspondence relationship

between software safety assessment process and software development process.

For example, the development process includes the requirement process, and

the proposed software safety assessment process should have one sub-process

which focuses on requirement assessment and verification.

Last, software FTA and software FMEA are two recommended approaches for

identifying the software failure which contributes to system hazards. However,

these two fault analysis approaches don’t have the capability of assuring the

42

correctness and consistency. Model checking is one of the emerging approaches

in software assessment method, and it checks whether a desired property to be

held in a target model or not. If the answer is yes, it can confirm the correctness

and consistency of the model and properties. So, combined FTA, FMEA and

model checking not only can elicit the software safety requirements, but also can

prove the correctness and consistency.

43

3 Avionics Software Safety Assessment Process

3.1 Introduction

This Chapter discusses the proposed software safety assessment process for

avionics software. As mentioned in pervious, the software safety assessment

should have the one-to-one corresponding relationship with software lifecycle,

especially the software development process. Several guidelines or standards

discuss software development process model for different purposes, such as DO-

178C [5].

3.2 Software Development Process in DO-178C

DO-178C is one of the widely accepted standards to assure safety of airborne

software, and this document provides the guidelines for development and safety

assurance of airborne software based on software lifecycle [5].

Software lifecycle is divided into five parts, and software development process is

the secondary part of the DO-178C. And the software development process

includes four sub-processes, and they are respectively software requirement

process, software design process, software coding process and integration

process. Figure 3-1 shows content and objectives of the software development

process.

Figure 3-1 Software Development Process in DO-178C

44

The software requirement process is to develop the high-level software

requirements which include functional, safety and performance requirements.

The software architecture process is to develop software architecture and lower-

level requirements that can be used for the software coding process. The coding

process is to implement software design included software architecture and

lower-level requirements. The last is the integration process, and this process is

to produce and load the executable object code and related files.

Through the objectives of each sub-process in software development process,

three objectives are necessary for considering during software safety

assessment, which are software requirement, software architecture and code.

Therefore, the software safety assessment process should focus on these

components, and assess each individually. However, requirements are divided

into different categories, such as the functional, safety, interface and so on. In

this research, the author focuses on the safety-related requirements, which may

involve software function or interface.

Besides software development process, the safety assessment process should

also include the software testing. Software testing provides evidence to prove the

confidence level of the software development process by demonstrating whether

the software satisfied its requirements or not [5]. As mentioned in Chapter two,

different kinds of software safety assessment process include that all the sub-

processes which is from the beginning of software development to the end of

software testing.

So, the completely proposed avionics software safety assessment process

should consist of four parts, and they are requirement assessment, architecture

assessment, software code assessment and software test assessment. The next

section discusses the detailed objectives and tasks of each sub-process.

3.3 Avionics Software Safety Assessment Process

Based on the avionics software development process and existing software

safety assessment process, the proposed avionics software safety assessment

process should include software safety requirement assessment, software

45

architecture safety assessment, software code safety assessment and software

test safety assessment. Figure 3-2 shows the interactive relationship between the

development process and proposed software safety assessment process.

Figure 3-2 Proposed Avionics Software Safety Assessment Process

The software safety requirement assessment is the first step of the entire

software safety assessment, and it mainly verifies correctness of software safety

requirements and consistency between the safety requirements and software

functions. The software architecture safety assessment is to assign and re-assign

the Development Assurance level of software, which ensures the software

architecture conforms to the assigned Development Assurance level. The

software code safety assessment is to verify whether the code implements all the

requirements as intended or not. The final sub-process is the software test safety

assessment, which is to check all the software testing document and test cases

are correct, and all the found hazards are controlled or eliminated.

However, software safety assessment process contains many contents, which

are hard to focus on all sub-processes of the proposed software safety

assessment process. So, this research places emphasis on the previous two sub-

46

processes which show in Figure 3-3. One is software safety requirement

assessment, and the other is software architecture safety assessment.

Chapter four will discuss these two sub-processes, and Chapter five will use the

practical case study to prove feasibility of safety requirement assessment process.

Figure 3-3 Emphasis of Research

The next section gives the brief introduction of the entire proposed software

safety assessment process, and proposed the proper methods for each sub-

process according to its objectives.

3.3.1 The Objectives and Tasks of Each Steps

This section gives the description of each sub-process, and points out the

objectives and available safety assessment methods according to its objectives.

 Software Safety Requirement Assessment

The objective of Software Safety Requirement Assessment is to identify and elicit

software safety requirements, and then to verify the correctness and consistency

of safety requirements. In this process, it has two tasks. One is the safety

requirements elicitation and the other is requirements verification. The first task

needs to identify the associated hazards by examining the consequences of the

whole software failed, or some software components failed. Then, it to find the

47

basic causes related to this hazard. For this task, some traditional safety

assessment methods can help to identify the hazards and basic events, such as

FHA and FTA. The second task is to verify the safety requirements which elicited

from the previous task, and some emerging methods such as formal method can

be used.

 Software Architecture Safety Assessment

The objective of Software Architecture Safety Assessment is to verify whether the

proposed software architecture satisfies the assigned development assurance

level of software or not. In this process, it provides two kinds of software

Development Assurance Level assignment process. The activity of this process

is to assign and re-assign the software development assurance level. Through

comparing the results, the engineer can check the software architecture.

 Software Code Safety Assessment

The objective of is Software Code Safety Assessment is to ensure software code

which is consistent with the relevant requirements. According to different

analytical purpose, code analysis has the various tasks. For example, code logic

analysis is to find and correct logic errors. There are lots of analytical tools based

on the type of programming language, such as SPARK Toolset for Ada, and

Eclipse for language C. Code data analysis focuses on the data structure. Data-

flow analysis can help the compiler to optimise the program, and formal

inspection of source code is to assess the quality of code.

 Software Test Safety Assessment

The objective of Software Test Safety Assessment is to prove all the hazards

which found in the entire safety assessment process have been controlled or

reduced, and all the hazards has been maintained at an acceptable level. This

process mainly conducts review or checking to perform the analysis. For example,

it will check and review the safety-related testing documents, test cases and other

testing material related to safety and quality of software.

48

3.3.2 Transition Criteria of Proposed Avionics Software Safety

Assessment Process

Transition criteria are the entrance and exit requirements for each process, and

determine whether one process can be entered or exited. The general transition

criteria are shown as below, and might need to be more specific when apply to

the practice.

 Software Safety Requirement Assessment

‒ The entry criteria for the Software Safety Requirement Assessment are:

Preliminary system safety analysis has been finished, and system

architecture has been established and formally released. All system

level requirements have been allocated to the software level.

‒ The exit criteria for the Software Safety Requirement Assessment are:

Software safety-related requirements have been elicited and verified.

The verification results and specifications of software safety-related

requirement have been documented and formal released. All the

hazards found in this process have been documented.

 Software Architecture Safety Assessment

‒ The entry criteria for the Software Architecture Safety Assessment are:

Initial software architecture has been established. System function has

been allocated to software level, and the development assurance level

of the related system has been assigned and verified.

‒ The exit criteria for the Software Architecture Safety Assessment are:

Enough evidence generated to prove the final software architecture

satisfies the software development assurance level, and software

architecture has been documented and formally released. All the

hazards found in this process have been documented.

 Software Code Safety Assessment

‒ The entry criteria for the Software Code Safety Assessment are: Review

of software architecture has been finished and all source code has been

generated.

‒ The exit criteria for the Software Code Safety Assessment are: All the

source code could be traced to the corresponding safety requirements,

49

and source code could be proved the consistent with the related safety

requirements. All the hazards found in this process have been

documented.

 Software Test Safety Assessment

‒ The entry criteria for the Software Test Safety Assessment are: the

corresponding verification activity has been performed.

‒ The exit criteria for the Software Test Safety Assessment are: enough

evidence generated to prove all of the hazards have been eliminated or

controlled at an acceptable level, and all identified error or deviation is

documented and feedback as a Problem Report.

3.4 Summary

The Chapter firstly introduces the software development process in DO-178C,

and produces the proposed avionics software safety assessment process

according to the software development process and literature study. The Chapter

also lists the objectives of each sub-process, and recommends the software

safety assessment methods for each sub-process. The Chapter also discusses

the general transition criteria between each sub-process.

51

4 Proposed Methods for Avionics Software Safety

Assessment

4.1 Introduction

As mentioned in Chapter 3, this research focuses on the first two sub-processes

of the avionics software safety assessment process proposed in Chapter 3. This

Chapter will discuss in detail the assessment process for software safety

requirement and architecture, and proposes the proper software safety

assessment methods for each sub-process.

This Chapter is divided into two parts. The first part is to discuss the software

safety requirement assessment process and the proposed safety assessment

method. The second part is to introduce the assignment process of software

development assurance level and to use for verification.

4.2 Methods for Software Safety Requirements Assessment

Process

In the IEEE Recommended Practice for Software Requirements

Specifications (IEEE Std 830-1998) [44] gives the 13 categories of software

requirements and includes function, interface, and safety requirement. Safety

requirement is the requirement that indicates the “shall” and “shall not”

behaviour of software, system and aircraft, such as the light shall not be

turned on until the button is pressed.

The scope of the safety requirement is widely. Sometime, the safety requirement

will involve with all the requirements which include functions for safety-critical

system and software. Sometimes, the safety requirements will consist of those

requirements which protection operations, fail-safe design or other design related

to safety.

Safety requirement is the set of safety objectives obtained from aircraft-level,

system-level, and software-level safety assessment process. Usually, it is

decomposed the higher-level requirements from the top-level to the lower-level.

At aircraft level, the safety requirements are those requirements generated from

52

the aircraft FHA based on aircraft functions. At the system level, the safety

requirements are all those system-level requirements generated from the system

FHA. So, the elicitation of software safety requirement is the same process with

the aircraft level and system level.

Through the literature study, the author found FTA and FMEA are two useful

approaches for eliciting safety requirements, and the model checking is the

proper method for verification. So, the proposed method for safety requirement

elicitation and verification is to combine fault analysis approaches and model

checking together.

The software safety requirement assessment process includes four steps. The

first one is to identify associated hazards, and then to determine software errors

or fault which caused the hazard. Third is to create safety requirements formal

specification by using temporal logic, and last is to conduct the formal verification

by using model checker tools. The next section will discuss each step in detail.

Figure 4-1 shows the general software safety requirement assessment process.

Figure 4-1 Process of Software Safety Requirement Assessment

The previous two steps aim to obtain the safety requirements by using process

the traditional safety assessment methods. The entire safety assessment

process begins with the identification of the hazards associated with software,

and identifies all the possible causes that can contribute to the failure conditions.

53

4.2.1 Identify hazard

The first step of the software safety requirement assessment process is to identify

all the hazards related to the target software. In this step, it will use software

functional hazard assessment, but it doesn’t need to perform all the actions of

normal FHA procedure. Software functional hazard assessment only focuses on

identifying and classifying the failure conditions. And then, it determines the

effects of each failure condition. Figure 4-2 shows the process of software FHA

for identification.

Figure 4-2 Process of Hazard Identification

First, software FHA is to determine all the functions associated with target

software. After preliminary system safety analysis, it can get the software function

list and software initial architecture. This function list is the important input of

software FHA, and is utilized to identify the failure condition. However, the hazard

is very general, such as loss of control. If loss of control hazard needs to be

examined, it might identify several failures related to many systems. So, it is

necessary to define the scope of the safety assessment process, and specify the

system function.

Second, software FHA is to identify the related failure conditions according to its

function. It should consider the consequences when software function failed, and

then identify the hazards associated with this function. Environmental and

emergency configuration list needs to be created.

Third, software FHA is to determine the effects of each failure condition should

be considered from three aspects, and respectively are effect on passenger,

aircraft and crew. Last, it is to determine the classification of the failure condition

according to its effect. The classification criterion should be accorded to the

classification of software level in DO-178C. In DO-178C, it gives five levels to a

54

failure condition which ranges from level A to level D, and level A is the most

serious. The output should be documented in the Table 4-1 .

Table 4-1 Software FHA [8] [10]

Functional
Failure
Condition

Flight
Phase

Effect of Failure
Condition to
Aircraft/Crew/Passenger

Classification

The output of software FHA is the list of hazards and its classification. This list is

the input of the next step, and also is crucial supporting materials for software

development assurance level assignment process.

4.2.2 Identify safety requirements

After software FHA, it can start to identify all the possible causes related to the

hazard by using the traditional fault analysis methods. In this step, it uses the bi-

directions approaches, software fault tree analysis and software failure mode and

effects analysis to go backward and forward for eliciting the safety requirement.

 Software Fault Tree Analysis

Software Fault Tree Analysis is to find the software error and failure which lead

to the occurrence of the failure condition. The process of software fault tree

analysis has been shown in Chapter two. Software fault tree analysis will be

finished until the event cannot be developed anymore or the event doesn’t belong

to the scope of software, such as the damage of electronic components.

After construction, each software fault tree needs to conduct the minimum cut set

analysis, and the minimum cut sets are used as the input of software

development assurance level assignment process.

 Software Failure Mode and Effects Analysis

The critical step of Software Failure Mode and Effects Analysis is to list all the

possible failure modes of software functions or components. In this research, the

potential failure modes of software FMEA are the list of errors derived in the

55

software FTA and several possible software failure modes recommended in

NASA software safety guidebook, such as incorrect logic, incorrect input and

output [8].

The output of software failure mode and effects analysis should be documented

in the table, and should list the following information: 1) function or component;

2) function description; 3) failure mode; 4) effects; and 5) comment. The software

FMEA format is shown in Table 4-2.

Table 4-2 Output of Software Failure Mode and Effects Analysis

Component/Function:

Failure Mode Effect on Software Effect on System Comment

 Safety Property

After finished the previous steps of software safety requirement assessment

process, it can get several basic events which compose a list of software errors

or mistakes contribute to the hazard. This list can be regarded as the software

safety requirements. However, some safety requirements may be generally. So,

it is necessary to specify the safety requirement according to its function

description and architecture.

The last step is to verify the specified safety requirement elicited from the

previous steps, and the proposed safety requirement verification method is model

checking.

4.2.3 Formal Verifications

In order to conduct formal verification on software requirement, it must be

translated into a verifiable form firstly. So, it needs to establish the formal model

for software requirement at the beginning. And then, the safety requirements

need to be translated into the formal description by using the temporal logic. After

created a formal model and a formal requirement specification, it can apply both

model and specification into the model checker. Finally, verification tool conducts

56

the assessment automatically. Figure 4-3 shows the verification process of

software safety requirements.

Figure 4-3 Verification Process of Safety Requirement [16]

The first step of verification process is to establish the formal model of the

software, and it uses the Kripke structure.

 Modelling the software

Before using formal modelling techniques, it needs to finish preparatory work. To

get the related software information is necessary for establishing the model.

Preparatory work includes gathering related documents and information such as

the system architecture, system function description, system requirement, target

software function description, and software architecture and requirements. By

using these documents and information, understand the relationship between the

system and software, and this relationship includes the functional allocation

relationship, logic mode, and so on. Software modelling is the process to

transform the relationship in the abstract.

At the beginning of modelling, it needs to divide software into several functions.

The entire formal model is made up of the several sub-models. Then, analyzes

software function and its architecture to determine how many states do this

function have, what kind of transition relationship between each state, and to

identify the propositions of each state. The state transition diagram can help to

establish.

57

In practice, formal modelling is the hardest part of the entire project due to the

complexity of software. So, the simplest way of modelling is to separate the

software according to its architecture and functions.

 Defining the Safety Properties

As mentioned in Chapter two, model checking uses temporal logic to represent

the property. No matter what kind of temporal logic, the translation is

straightforward.

Firstly, all the safety requirement needs to be checked whether the definition is

clear and unambiguous or not. Then, uses temporal logic to substitute the

informal specification, and it is attention that the time sequence and logical

relationship of the informal specification are two critical factors of formalisation.

Here shows one example from a NASA project.

“HDG switch lamps shall be lit when HDG mode is active” [16] [45] is one of safety

requirements for Lateral Modes function in Flight Guidance system. This

requirement has two variables, lamp and mode. Lamp has two states, on or off.

So, does mode. This requirement requires when the mode is active, the lamp

must turn on. So, this property will be translated as:

AG (HDG_Lamp=true ↔ HDG_Mode_active)

HDG_Lamp is the variable to determine the state of HDG Lamp, and

HDG_Mode_active is to determine the state of HDG mode. Both types of

variables are Boolean, true or false. AG means verify this property for all the state

in all the path.

The next section is to verify the safety requirement by using a model checker.

The type of model check has been discussed in the previous Chapter, and the

working principle of model checker will be introduced in the case study.

 Microwave Oven Problem

To make this process more concrete, this section presents one small examples.

Microwave Oven is the most representative example in model checking. The

58

microwave functions are easy to understand, so this is a best example to present

the entire model checking process [46].

‒ System Modelling

First, it needs to understand and define the system function and system

architecture. The microwave oven has following functions:

- Microwave oven can cook the food;

- Microwave oven can open or close the door.

- Microwave oven can be reset if there is a wrong input (door open).

Microwave oven also has several safety requirements:

- If the microwave oven is cooking, the door shall not open.

- If the Start button was pressed when the door was opened, the

microwave enters the error mode.

- If the Reset button was pressed, the error mode shall not be active.

According to related information, it can start to create the model of the

microwave oven. There are five variables in this model, and they are “start”,

“reset”, “closed”, “error”, and “cook”. Figure 4-4 is the state transition graph

for a microwave system. The Kripke structure of microwave system can be

described as:

The state set S is 𝑆 = (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5).

𝑆1 is the initial state. The transition relation is

R = {(S1, S2), (S1, S3), (S3, S1), (S4, S1), (S2, S5), (S3, S4)

, (S4, S3), (S5, S3), (S5, S2), (S4, S4)}

The labels of each state are:

 𝐿 (𝑆1) = {¬close, ¬start, ¬cook, ¬error, ¬reset}

 𝐿 (𝑆2) = {¬close, start, ¬ cook, error, ¬reset}

 𝐿 (𝑆3) = {close, ¬start, ¬ cook, ¬error, reset}

59

 𝐿 (𝑆4) = {close, start, cook, ¬error, ¬reset}

 𝐿 (𝑆5) = {close, start, ¬cook, error, reset}

Figure 4-4 State Transition Graph

‒ Properties Specification

The second step is to translate the requirement into temporal logic. Here

choose two properties. One is “No Cook while door is open”. This

requirement means the close state should be ALWAYS happen before the

cook state at any time. This property can be formalized as SPEC

AG((!closed) → AX (!cook)). The second one is “The state of cook will be

eventually happened at some time” and this can be translated as SPEC

EF(cook). The temporal operator EF can be explained as there exists one

state which can satisfy this specification in this model.

‒ Translate model and specification into NuSMV

Last, translates both Kripke model and CTL specification into NuSMV by

using SMV input language. The NuSMV code shows as below:

60

MODULE main

VAR

start:boolean;

reset: boolean;

closed : boolean;

error: boolean;

cook : boolean;

ASSIGN

init(error):= FALSE;

init(cook):= FALSE;

next(error):=

case

(start & !closed): TRUE;

(closed & reset): FALSE;

TRUE : error;

esac;

next(cook):=

case

(start & closed) : TRUE;

(!closed) : FALSE;

TRUE: cook;

esac;

SPEC AG((!closed)-> AX(!cook))

SPEC EF (cook)

The verification result generated by NuSMV shows in Figure 4-5 and Figure

4-6:

Figure 4-5 Verification Result 1 of Microwave Problem

61

Figure 4-6 Verification Result 2 of Microwave Problem

‒ Result Analysis

In this microwave example, the author chose two safety requirements for

comprehensively presenting the software requirement formal verification

process. The verification result proves the consistency between the formal

model and formal specification, and also proves the correctness of safety

requirements.

Through this example, NuSMV can be proved as a convenient and easy-

understanding verification tool, because the transition between an informal

model and SMV language is straightforward. In a word, NuSMV is an

effective method for safety requirement verification, and can be applied to

the practical case.

4.3 Methods for Software Architecture Safety Assessment

Process

The purpose of architecture safety assessment is to determine whether software

architecture satisfies safety requirement or not, especially the Development

Assurance Level (DAL). Architecture safety assessment can give an early

assessment of the credibility of a proposed software architecture, which can help

62

to reduce the risk that safety problems are uncovered in the later stage of

software lifecycle where they are expensive to correct or modify.

The software architecture safety assessment process is the iterative process. It

should begin at the initial stage of software development, and repeat during the

entire software lifecycle. Figure 4-7 shows the process of software architecture

safety assessment.

Figure 4-7 Process of Software Architecture Safety Assessment

If there are any changes or new hazards introduced in the software architecture,

it needs to review the initial DAL of software, and to check the new software

architecture whether satisfies the software DAL or not. If the architecture requires

the higher level of safety, it needs to re-assign the DAL of software until the

current design and architecture can satisfy the software DAL. The next section

will discuss and compare two different kinds of software DAL assignment process.

4.3.1 Software Development Assurance Level Assignment Process

In ARP4754A [10], it has already explained the detailed DAL assignment process.

The research will apply this DAL assignment process to the software architecture

safety assessment process as one of the assessment methods for software

architecture. Before explaining the software DAL assignment process, the

Chapter will introduce the Development Assurance Level firstly.

 Introduction of Development Assurance Level

63

Modern aircraft have integrated a lot of complex systems and functions, and the

safety margin may be reduced by the unsafe system, software or item. The

authority concerns on the error introduced during the development process that

will cause the severe failure condition. So, the authority wants to use the series

of activities to identify and control all the hazard during the product lifecycle [10].

Development Assurance Level (DAL) is the process used to identify the error

through a series of planned and systematic actions during the system or software

lifecycle. DAL not only means the software level, but also includes the set of

guidelines and activities to guarantee the safety during each stage of the lifecycle.

The objectives of assurance activities are to identify, control and eliminate the

errors, such as requirement, design and code error.

In ARP4754A [10], it divides DAL into two categories, the functional development

assurance level (FDAL), and item development assurance level (IDAL). FDAL is

to perform the assurance activities on functions which guarantee the safety of

functional development, and the FDAL is usually used for aircraft-level and

system level. However, the IDAL is to perform the assurance activities on item

level, such as software. In software standard, such as DO-178C, item

development assurance level is a software level.

When assigned the FDAL or IDAL, it needs to consider two kinds of

independence attributes, which are functional independence and item

development independence. Functional Independence is to ensure that the

likelihood of common mode error has been minimized by implementing and

performing the different functions. Item Development Independence is to ensure

that the likelihood of common mode error between two items has been minimized

by several actions, such as using different operating systems. So that, the

independence attributes can eliminate the common mode error, and establish the

acceptable confidence level of function or item.

The next section will discuss the software DAL assignment process. One is

assignment without the software architecture consideration, and the other is

assignment with the software architecture consideration.

 Software DAL Assignment without Software Architecture Consideration

64

In general, the FDAL and IDAL assignment process are a top-down decomposed

process, and it starts with the list of the failure conditions and fault trees

constructed in fault tree analysis.

When assigned software DAL without consideration of software architecture, the

software DAL assignment process is to assign all the software FDAL and IDAL

by using Table 4-3.

Table 4-3 General Principle for DAL Assignment [5]

Firstly, it assigns the top level FDAL of software according to the classification of

related failure condition which identified in high level FHA. And then, IDAL for all

items in this function should be designated as the same level of the top-level

function FDAL. The above table shows the corresponding relationship between

the severity classification of failure conditions and DAL.

 Software DAL Assignment with Software Architecture Consideration

The assignment process with software architecture consideration requires the

enough evidence to prove that the functional independence and item

development independence of Functional Failure Sets (FFS) member has been

satisfied. FFS is uses to express the combination of errors or faults which can

lead to the hazards. Conceptually, FFS is equivalent to the result of the minimal

cut set analysis in FTA.

Basically, if members within a given FFS can be proved that its functional

independence to be satisfied, their FDAL can be assigned a lower level than the

classification of related top-level failure condition according to Figure 4-8. In IDAL

assignment, if the members of FFS has item development independence, IDAL

65

can use the same row which is used for FDAL assignment. The IDAL also can be

gracefully degraded.

Figure 4-8 Assign Development Assurance Level to Functional Failure Set

Members [10]

4.3.2 Comparison of Existing Software DAL Assignment Process

The purpose of DAL is to reduce the probability occurrence of failure during the

entire software lifecycle. The difference between two kinds of software DAL

assignment process is that if both functional independence and item development

independence can be satisfied, the DAL of some FFS members would be

degraded.

The assignment process without software consideration is more conservative.

According to Table 4-3, all the software IDAL should be assigned to the same

level as the classification of its related top-level failure condition. For example, if

a failure condition is catastrophic, and the corresponding software IDAL should

66

be assigned as A level. Although this process can guarantee the safety, the

higher development assurance level implies a higher level of rigour and more

costly development and assurance activities. Figure 4-9 shows that the cost of

development, especially in the verification tasks, will be the significantly

increased when the critical level is higher [47].

Figure 4-9 Cost of Different Development Assurance Level Software

In order to guarantee safety and reduce the cost, ARP 4754A provides a way for

software DAL assignment process, which can help to degrade some IDAL in

some circumstance.

4.3.3 Software Development Assurance Level Assignment Process

Case Study

This section gives four cases of FDAL and IDAL assignment process. The

division of cases is related to independence of function and item development.

 No evidence to prove both the Independence Functional and Item

Development can be satisfied

If there is no evidence to prove both the functional and item development

independence have been satisfied, assessment process of all FDAL and IDAL

will use Table 4-3. The FDAL and IDAL are assigned to the same level as the

67

top-level FDAL. For example, if top-level FDAL is level B, the rest of all FDAL and

IDAL will be assigned to level B.

 Both Functional Independence and Item Development Independence can be

proved

If both functional independence and item development independence are

presented, it can allow both FDAL and IDAL to use option 1 or option 2 in Figure

4-8. Figure 4-10 shows one example of this situation. First, it needs to calculate

the FFS of this fault tree. In FFS calculation, " ∗ " expresses the AND gate and

" + " expresses the OR gate. So, calculation is shown as below:

FC = F1 ∗ F2 (1)

F1 = F1 + I1 (2)

F2 = F2 + I3 (3)

Put (3) and (2) into (1),

FC = (F1 + I1) ∗ (F2 + I3) = F1 ∗ F2 + F2 ∗ I1 + F1 ∗ I3 + I1 ∗ I3

So, the FFSs for the failure condition are {F1, F2},{F1,I3},{I1,F2},{I1,I3}. First,

assign FDAL to F1 and F2. If this failure condition is a catastrophic failure

condition and both F1 and F2 satisfy the functional independence, the

assignment of F1 and F2 can use option1 or option2 in Figure 4-8. The IDAL can

also use the option1 or option2 in Figure 4-8. So, the correct assignment result

of FDAL and IDAL shows in Table 4-4:

Table 4-4 Accepted Assignment of FDAL and IDAL of Example 1

FDAL Assignment IDAL Assignment

F1 F2 I1 I3

A C A C

C A C A

B B B B

A B A B

B A B A

68

Figure 4-10 Fault Tree Example-1 [10]

In fact, if the F1 is A level and F2 is level C can be accepted, the F1 is level A

and F2 is level B won’t be considered anymore. Because the development cost

of level B is higher than level C.

Here give several unaccepted results of assignment process in Table 4-5.

Table 4-5 Unaccepted Assignment of FDAL and IDAL of Example 1

FDAL Assignment IDAL Assignment

F1 F2 I1 I3

A C C A

C A A C

F1 and I3, or I1 and F2 are two members of FFS in this fault tree. This means

that if both F1 and I3 happen, it will lead to the top-level hazards. The assignment

69

of FFS members must be followed with the general principle. For example, the

top-level failure condition is catastrophic, and more than one failure could lead to

this failure. So, one failure can be assigned level A, and the rest failures can be

assigned at least C level. Or, all the failures can be assigned at the level B. So,

both the DAL of F2 and I2 assigned at level C cannot be accepted.

 Functional Independence is proved but Item Development Independence is

not satisfied

If independent Functions can be proved, but Items doesn’t satisfy the

independence, and one of the item error can lead to a common mode error. The

IDAL of the non-independent items should be assigned to the same level of the

related failure condition. Figure 4-11shows one example under this situation.

First, it needs to calculate FFS of this fault tree.

FC = (F1 + I1 + I2) ∗ (F2 + I3 + I2)

FC = F1 ∗ F2 + F1 ∗ I3 + F1 ∗ I2 + I1 ∗ F2 + I1 ∗ I3 + I1 ∗ I2 + I2 ∗ F2 + I2 ∗ I3
+ I2 ∗ I2

Because I2 ∗ I2 = I2, so it equals to:

FC = F1 ∗ F2 + F1 ∗ I3 + F1 ∗ I2 + I1 ∗ F2 + I1 ∗ I3 + I1 ∗ I2 + I2 ∗ F2 + I2 ∗ I3

+ I2

In this fault tree, Item I2 will cause both F1 and F2 failure, so I2 can individually

lead to the catastrophic top-level failure condition. So, Item I2 is a single member

of FFS. So, the formula can be simplified as:

FC = F1 ∗ F2 + F1 ∗ I3 + I1 ∗ F2 + I1 ∗ I3 + I2

The FFSs for the failure condition is: {F1,F2},{F1,I3},{F2,I1},{I3,I1},{I2}.

The I2 is a common mode error of this fault tree, so the IDAL of I2 should be

assigned same as the related top-level failure condition classification.

70

Figure 4-11 Fault Tree Example 2 [10]

So, IDAL of I2 should be assigned as level A. The correct result of assignment

result of FDAL and IDAL shows in Table 4-6：

Table 4-6 Accepted Assignment of FDAL and IDAL of Example 2

FDAL Assignment IDAL Assignment

F1 F2 I1 I2 I3

A C A A C

C A C A A

B B B A B

The assignment of rest FDAL and IDAL are same with Table 4-5. So, the

explanation of Table 4-6 will not show anymore.

71

Here shows some unaccepted assignment cases and explanation.

Table 4-7 Unaccepted Assignment of FDAL and IDAL of Example 2

FDAL
Assignment

IDAL Assignment
Comment

F1 F2 I1 I2 I3

B B B B B The I2 cannot be level B due to
it is the common mode error.

A C C A A Same reason with line2 in
Table 4-5.

C A A A C Same reason with line2 in
Table 4-5.

 Only Item development independence can be proved

The FDAL is assigned to the same level as the top-failure condition by using

Table 4-3. All the IDAL can be degraded by using the option 1 or option 2 in

Figure 4-7. However, the failure of each independent item won’t lead to the top-

level failure condition. Otherwise, it should be assigned at the same level of top-

level failure condition.

4.4 Consideration of Software Development Assurance Level

Assignment Process

The DAL assignment process and architecture assessment is the complex and

time-consuming process, and this process need lots of supporting material to

support the assignment process and the verification process. Here discusses the

preparation work before the assignment process and the questions need to be

cared during the assignment process.

 Preparation Work

The goal of software development assurance level assignment is that assign the

correct and proper software DAL to each software components according to

software architecture and requirements. Before the assignment, the research

needs to obtain some supporting information for software DAL assignment

72

process. Figure 4-12 shows the input and output of FDAL and IDAL assignment

processes.

Figure 4-12 FDAL/IDAL Assignment Process

Firstly, it conducts FHA to identify the all failure condition related to software, and

the identified failure conditions and its severity classification are a precondition

for the entire DAL assignment. Second, it needs to conduct SFTA. SFTA need to

undertake two kinds of tasks. One is assignment DAL by using the fault tree

structure, and the other is to determine the FFS of each failure condition. Third,

proposed system and software architecture are the important supported

documents for FDL and IDAL assignment process. Last, the assignment process

may require the additional documents, such as initial software function list,

system and software function requirements, safety requirements and operational

requirements. These materials are the fundamental of software architecture

safety assessment.

 Independence of Function and Item development

As mentioned, independence attribute is one of the most important prat of

architecture safety assessment process. If software function and items can be

claimed independence, the software DAL can be degraded.

The item development independence can be achieved as designed and

implemented by different teams and different processes, and may install in a

73

different operating system. If there is no evidence to show any common errors in

components, item development independence could be substantiated.

The functional independence can be achieved as by using different requirement

to implement one function and partition. By using different requirement to

implement one function, such as the aircraft navigation function can be

implemented by GPS navigation system or IRS navigation system.

Partition is for functional independence that avoids the occurrence of common

mode error during the development process. If there is the partition for each

function which implemented in the common design, the DAL of the partitioning

function would be assigned at the same level of classification of the top-level

hazard during its development. If the partition not be used or if its independence

cannot be proved, the FDAL of function should be re-assigned the same level of

the IDAL of common design, or the function should be re-allocated to the lower

level in order to spate the common design and independent part.

4.5 Summary

This Chapter discusses the content and proposed methods of software safety

requirement assessment process and software architecture safety assessment

process. By using several examples, the Chapter detailed describes each step of

the software safety requirement assessment process, and different software DAL

assignment situations in the software architecture safety assessment process.

75

5 Case Study

5.1 Introduction

The research uses the practical case study to exam the proposed software safety

requirement assessment process and software architecture safety assessment

process. The case study chooses the flight management system which is one of

the highly software intensive system in avionics system. Due to the complex and

complicated of the flight management system, it is hard to analyse all the system

functions at once. So, the author chose one typical function in FMS which is the

position calculation function for this case study.

The Chapter illustrates the procedure of applying the safety requirements

assessment process to the position calculation function in flight management

system, and it is organized as follows. Section 5.1 provides an overview of the

flight management system. Section 5.2 presents the logic of position calculation

function in FMS. Section 5.3 describes formal verification tool, NuSMV. Section

5.4 presents the safety requirement elicitation process by using traditional safety

assessment methods. Section 5.5 provides the formal modelling of position

calculation function. Section 5.6 shows the analysis of safety requirements

assessment result.

5.2 Overview of Flight Management System

The initial requirement of Flight Management System is for navigation which can

help the pilot to arrive the desired destination. At 1970s, an area navigation

(RNAV) computer began to be installed on the aircraft. At the same time, the fuel

crisis drove the development of aircraft performance management, which helped

to optimize the commercial aircraft navigation and to improve the efficiency of

aircraft operation. In late 1970s, Boeing Company organized a flight desk

technology group for the development of initial FMS, and wanted to combine flight

management computer and control display units together. This system has

become as the core part of aircraft flight planning and navigation function [48].

76

The development of FMS starts with the Flight Management Computer (FMC)

which is the key component. Besides FMC, the current FMS has three main

components [49]

 The Automatic Flight Control or Automatic Flight Guidance System

 The Aircraft Navigation System

 An Electronic Flight Instrument System

Figure 5-1 Overview of FMS Components [50]

Flight Management Computer is the computer system that uses database to

proceed with various tasks, such as pre-schedule and modify the flight path. One

of main tasks of FMC is to continuously update with the aircraft current position

by using multiple and available navigation sensor information.

The Automatic Flight Control System receives various sensor information from

different systems. The Automatic Flight Control System can allow pilots to choose

different operation modes, such as Autopilot and manual control. Depending on

operation mode, Automatic Flight Control System will automatically control the

flight control surface or display the control command on PDFs for the pilot to

follow it.

77

The task of Navigation System is to calculate the aircraft position continuously. It

uses multiple navigation sensor information, such as Global Positioning System,

Radio navigation system, Inertial Reference System and other information.

FMS can help the pilot to carry out various tasks, which lead FMS to become one

of the important avionics systems in modern aircraft. The current FMS has been

developed into an integrated system, which combined multiple functions such as

trajectory prediction, navigation, guidance and performance optimization.

Typically, FMS provides several functions, flight planning, flight trajectory

management, flight guidance management, navigation management, and

preformation management optimisation. Figure 5-2 shows the organization of

main FMS functions and briefly introduces each function.

Figure 5-2 Overview of FMS Function

Flight Planning extracts the navigation data from navigation database and

establishes the complete flight path by using navigation information, which

includes airport information, waypoint, route, approach procedure and departure

procedure. Flight Planning function allow pilot to select the current or alternative

78

flight plan, to create the new or user-defined route, and to edit the existing route

information and restriction, such as altitude, speed, and the time of arrival.

Flight Trajectory Management predicts and establishes the lateral and vertical

flight profile data in each waypoint for the current, alternative or temporary flight

plan according to aircraft performance information.

Flight Guidance Management is to calculate the vertical and lateral steering

commands according to pre-scheduled flight path and current aircraft status

information. The Flight Guidance Management aims to lead the aircraft to fly in

accordance with the desired path. Flight Guidance Management also provides

required navigation performance (RNP), area navigation (RNAV) and time

navigation (TNAV).

Navigation Management combines various navigation information which come

from each navigation sensor, and calculates the aircraft position, speed and

attitude information. Aircraft position calculation is one of the ways to determine

aircraft position during the flight. It will use the sensor data provided by navigation

sensor, and the ground-based Navaid position information extracted from the

navigation database. After getting the estimated position, the position data and

the selected sensor data will be displayed on PFDs for the pilots. Meanwhile,

position data will also be used for generating path steering which used for aircraft

Flight Control system. Navigation system also has navigation radio tuning, which

manages and tunes all the navigation radio equipment. This function provides

automatic navigation tuning equipment which can be used for aircraft position

calculation, and automatic ILS approach. Meanwhile, navigation system also

provides the navigation radio tuning interface for manual.

Performance Management Optimise is to calculate the optimal height, speed or

other performance data of the flight path. It can calculate the other information,

such as time of arrival, distance or other data during the flying.

There are lots of interactive relationships between each function in FMS. For

example, the navigation database provides navigation sensor and navaid position

79

data for position calculation function, and provides stored flight plan data for path

definition function. Figure 5-3 shows the FMS block diagram.

Figure 5-3 FMS Block Diagram [51]

For this case study, the author chose the position calculate function in navigation

management, and assumed that the aircraft is only installed the single FMS,

which means it only has one set of FMSA. The next section gives the detailed

description of position calculation function logic.

5.3 Overview of Position Calculation Function

To satisfy the navigation requirements, FMS uses various sensor data from GPS,

Radio Navigation AIDs, Inertial Reference System (IRS), Air Data Computer, and

Attitude/Heading Reference. These sensor data are used to determine the

aircraft position, direction, and speed information.

80

Position calculation function is one of the primary functions in FMS navigation

system. There are several navigation sensor receivers installed in aircraft, such

as the GPS receiver, the Radio Navigation Source Receiver, which includes VOR

receiver and DME receiver. The position calculation selects the proper and

available sensor that provides the best navigation plan for calculating and

estimating the aircraft position.

The working principle of position calculation function is to choose the available

navigation sensor and to calculate the aircraft position and other data. Position

calculation function has three parts, which are navigation source selection logic,

calculation algorithm and monitor function respectively. In this case study, the

author focuses on navigation source selection logic and monitor function. The

navigation source selection logic is to choose the proper and available navigation

sensors. In this case study, the author assumed there are three navigation

sensors installed on FMS, which are GPS, Radio Navigation sensor, and IRS.

The basic logic of position calculation shows in Figure 5-4.

Figure 5-4 Position Calculation Logical [51]

In FMS position calculation function, the basic selection sequence is:

1. GPS.

81

2. Radio Navigation Source.

3. IRS.

The selection logic is that FMS will use GPS data firstly. However, if the GPS

sensor is detected any failure or loses of GPS signal, which means GPS is not

available anymore. FMS will select the secondary navigation source of selection

sequence, and set the failed GPS sensor into rest mode automatically. This

means when GPS sensor is not available, the FMS will choose Radio Navigation

sensor automatically. However, if the radio navigation sensor is detected any

failure or loses signal, FMS will select the third order of selection sequence for

navigation and set failed radio navigation sensor into rest mode automatically.

When both GPS and radio navigation sensor are not available, the FMS will use

IRS for navigation. However, if all of navigation sensor failed, the FMS position

calculation will be turned off automatically.

FMS position calculation also has the monitor function. It continuously monitors

all the navigation sensors to make sure that each sensor provides the valid and

correct information to the FMS. If it finds any failure of navigation sensor or other

navigation equipment, it will set the failed sensor into rest mode. The monitor

function mainly monitors two aspects. One is navigation sensor status, and other

is the data that the sensor sent to FMS. If sensor status is abnormal or sensor

data is incorrect, the monitor will take action to this sensor.

This case study will focus on conducting software safety assessment on position

calculation function. The next section will briefly introduce the verification tool,

NuSMV.

5.4 Verification Tool NuSMV

There are lots of formal verification tools, and some are already discussed in the

previous Chapter. In this case study, the author chose to use NuSMV. NuSMV is

a symbolic model checker, which is re-engineered and re-implemented of SMV

by Carnegie Mellon University. NuSMV is an open source and flexible methods

for model checking. This section introduces the installation of NuSMV, the

software architecture of NuSMV, and the input language of NuSMV.

82

5.4.1 NuSMV Installation

NuSMV is the open source software and operates under Linux system. Other

operating system such as windows or Macos needs to simulate the Linux system

firstly before install NuSMV. There are two ways to install NuSMV, and here gives

the briefly description.

 First Step: The Preparation

As Chapter mentioned before, the precondition of NuSMV installation is to install

the Linux operating system. Nowadays, it has various brands of the Linux system,

such as Ubuntu or Red Hat. NuSMV can be used in almost Linux operating

system, so there is no requirement for operating system choosing. However, it

needs to make sure that all the following aid software already installed before

NuSMV installation.

‒ ANSI C compiler;

‒ GNU tat and gzip tool;

‒ GNU Bison v.1.25 or latest version;

‒ GNU Flex v.2.6.0 or latest version;

‒ GNU make.

This case study chose Ubuntu Linux system. Ubuntu is one of the most famous

open source operating system, and it is the Linux distribution which based on the

Debian architecture [52]. The installation of Ubuntu won’t discuss in thesis.

 Second Step: The Installation

After finished all the preparation work, it can download the latest version of

NuSMV from the official website. It can start to install the NuSMV, and here gives

two ways of installation. The results of two kinds of installation are totally same.

The first installation way is to use NuSMV source code.

‒ The NuSMV Source Code Installation

Source Code NuSMV is already compiled for most common operating

system and architecture. However, for some unfamiliar operating systems

and some people who want to re-engineer, NuSMV provides the source code

83

version to install. The NuSMV user manual [43] provides the detailed

installation steps, and this section only gives the briefly introduction of source

code installation. Table 5-1 shows the installation steps [43].

Table 5-1 Installation Steps of NuSMV Source Code [43]

Step Function Command

1 Move to the directory where
build NuSMV.

cd /home/nusmv

2 Unpack the distributions. # gzip –dc /tmp/NuSMV-
2.6.0.tar.gz | tar xf -

3 Create a directory for
building.

mkdir build

4 Enter this new built
directory.

cd build

5 Configure by invoking
cmake.

cmake

6 Enter the directory before
compile NuSMV.

pwd

<TOPDIR>/NuSMV/build

7 Compile NuSMV. #make

8 Set the path of master.
nusmvrc into environment
variable.

export NUSMV_LIBRARY_PATH

=<TOPDIR>/NuSMV/share/nusmv

‒ The NuSMV Binary Code Installation

NuSMV website provides the Binary Code, which is the pre-compiled version,

and this version can be used for most operating systems and architecture.

This Version doesn’t need to conduct the above steps, and the installation

steps of pre-compiled version are quite simple. The author recommends this

installation way, which is more easy and convenient. Table 5-2 shows the

installation step of pre-compiled version.

84

Table 5-2 Installation Step of NuSMV Binary Code

Step Function Command

1 Unpack the zip-
file

gzip –dc /tmp/NuSMV-2.6.0.tar.gz | tar xf -

2 Run NuSMV bin/NuSMV(Tab) /<file path >/xxx.smv

If it shows the result is same with Figure 5-5 the after installation and run

command in terminal, it means NuSMV installation successful.

Figure 5-5 NuSMV Installation Result

After installation of the NuSMV, it can start to model the position calculation

function. NuSMV cannot use model directly, so it need to translate model into the

language which NuSMV can recognize and understand. The next part will briefly

discuss the input language, SMV language.

5.4.2 NuSMV Architecture

NuSMV is completely written in ANSI C and is designed as one open source

system. The NuSMV architecture consists of several modules. Different modules

implement different functions, and communicates with others by defined

interfaces. The architecture of NUSMV shows in Figure 5-6.

85

Figure 5-6 Architecture of NUSMV [53]

 Kernel Module is to provide the lower level function such as dynamic memory

allocation, and also provides all the basic Binary Decision Diagram primitives

[53].

 Parser Module processes the input file to check the correctness of statement

syntactic, and builds the parse tree for representing the internal format of this

input file [53].

 Compiler compiles the parsed model into Binary Decision Diagram.

Instantiation sub-module is to process the parse tree, and to build a

description of the finite state machine to represent the input model. Finite

State Machine Compiler sub-module constructs and manipulates the Finite

State Machine at the Binary Decision Diagram level, and then conducts all

the semantic checks on the input model [53].

 Model Checking module provides several functions, such as CTL model

checking, counterexample generation and inspection, invariant checking,

and so on [53].

86

 Interactive shell. By using the interaction shell, the user can access to all of

NuSMV functions [53].

5.4.3 NuSMV Input Language

NuSMV uses SMV language to describe the Kripke structure and specification.

The previous Chapter already presents one NuSMV code example. NuSMV is

made up of modules, and each module consist of variables. The common input

language shows in Table 5-3 [54].

Table 5-3 SMV Language Example

Name Code Example

Module define
statement

MODULE –Name

VAR --Define variable name
and type

ASSIGN – The relationship
between states

MODULE main

VAR

a: boolean;

b: boolean;

c:{on, off};

ASSIGN

Variable assignment
statement

ASSIGN

init(xx) – Initialize the
variable

ASSIGN

init(d):=off

Transition Constraint
statement

TRANS xxxx TRANS (a & !b) ->
next(!(a & !b))

Specification
statement

SPEC xxxxx SPEC AG (a −> !b)

The Kripke structure is used in model checking to represent the behaviour of a

finite state system. In NuSMV, it can use SMV language to describe the Kripke

structure by create one module or several modules.

Figure 5-7 show Kripke structure in NuSMV.

87

Figure 5-7 Kripke Structure in NuSMV [55]

In NuSMV, module consists of three parts, and they are variable, constraint, and

CTL or LTL specification. Variables are used to describe each state of the Kripke

structure. Constraint are used to describe the transition relationship between

each state. Specification is described by CTL or LTL temporal logical and used

to describe the requirement.

After all the preparation works finished, it can start to conduct software safety

assessment methods and process for position calculation function.

5.5 Position Calculation Safety Requirement Elicitation Process

As mentioned in the previous Chapter, the software safety assessment process

has four steps. Due to the larger content of software safety assessment, this

research mainly focuses on safety requirement assessment and architecture

safety assessment process. So, this case study presents how to apply the safety

requirement assessment process and initial DAL allocation process to a practical

case.

In safety requirement assessment process, it has four sub-processes. First is to

identify the associated hazards. Second, it identifies the software errors or faults

caused the hazards. These two steps are to elicit safety requirements. Third, it

creates safety requirements specification. Last step is to use NuSMV to verify the

safety requirements. The next section discusses the safety requirements

elicitation process of FMS position calculation function. It mainly has two tasks,

which are to identify hazards and identify causes related to hazards.

88

5.5.1 Identify Hazards

The first step is to identify which hazard related to target software. In this step, it

uses the Functional Hazard Assessment.

The case study is about the position calculation function. First, it needs to identify

the functional requirement of FMS position calculation, which is the fundament of

FHA. The Chapter already discussed the logic of FMS position calculation. In a

word, the position calculation is to choose the available and proper navigation

source, which can let FMSA to calculation the aircraft position information, and

thus indicates the information in PFDs.

Through analysis of the functional requirement, the author found one failure

condition related position calculation and shows in Table 5-4 .

Table 5-4 Failure Condition for Position Calculation

Failure
Condition

Phase Effects
Classificatio
n

The both sides
of PFD indicate
the wrong
navigation and
position
information

Climb;
Curies;
Descent;
Approach;
Landing

1. For aircraft: It significantly
reduces the safety margin.

2. For Crew: It will significantly
increase in workload to crew.

3. For passenger: No effect.

Hazardous

Due to the calculation failure or other reasons, PDFs will show the wrong position

and navigation information to the pilot. This failure condition is applicable during

the climb, curies, descent, approach and loading phase. The effects of failure

include three parts, which are effect on aircraft, on crew, and on the passengers.

For aircraft, it will significantly reduce the safety margin and may lead the aircraft

deviate the pre-scheduled route. For crew, crew needs to deselect the FMS as

the navigation source and need to use other ways to calculate the position. This

will add work to crew. However, there is no effect on the passenger.

The classification of this failure condition is assigned as hazardous. Because of

lack of the system architecture, it only can use the conservative DAL assignment

process, which means the DAL of this failure condition is same as the DAL of

89

entire FMS. According to standard [56], the DAL of FMS usually is assigned as

the B level. So, the classification is assigned as hazardous.

Appendix A.1 shows some failure conditions related to FMS navigation functions.

However, the FMS navigation system has lots of sub-system or sub-functions,

which means it is difficult to list all of hazard related to the navigation system. So,

case study only focuses on failure condition related the position calculation

function. The next section will determine the basic events contribute to this failure

condition. This step will use fault tree analysis and failure mode and effects

analysis.

5.5.2 Identify Safety Requirements

Once the failure condition has been identified, it can start to trace backward to

find software faults or error. This step will use fault tree analysis and failure mode

and effects analysis. The result of FTA and FMEA will be considered as the safety

requirements of the case study.

 Fault Tree Analysis

The first step is to use the failure condition “The both sides of PFD indicate the

wrong navigation and position information” as the top event of fault tree, and then

list all the possible causes according to its functional analysis. The completely

decomposing process will present in appendix A.2, and here only discusses the

sub-tree which directly related to position calculation function.

The top event of the subtree is “The incorrect of output of FMSA position

calculation” and shows in Figure 5-8. The fault tree first splits into “FMSA position

calculation failure” and “Failure of Database”, because the incorrect output is

caused by position function failed or used the incorrect navigation information to

calculate the position. The “failure of database” is out of scope of the case study,

and will not be decomposed anymore. So, it is an undeveloped event. In the next

level, the “FMSA position calculation failure” can be divided into two events. One

is “The selected Navigation Source incorrect” or “The Calculation algorithm

functional failure”. However, “The Calculation algorithm functional failure” is not

included in this case study, so it is the undeveloped event. The event of “The

90

selected Navigation Source incorrect” is caused by selection algorithm error, or it

cannot detect the abnormal sensor and still use the abnormal sensor for

navigation. “Navigation source selection logical failure” means when GPS is

available, but system chooses the Radio Navigation sensor. The “Undetected

sensor failure” is related to the failure of monitoring function. It will discuss in the

next fault tree.

Figure 5-8 Fault Tree of “The both sides of PFD indicate the wrong navigation

and position information”

The lower levels of the FTA are shown in Figure 5-9. The position calculation

function has three types of navigation sensor, GPS, Radio Navigation, and IRS.

If one of navigation sensors failed and undetected, but the system also selects

this failed sensor as navigation source, it will cause the “undetected navigation

source failure”. At the next level, the “GPS failure undetected” caused by both

91

GPS failure and monitor function failure happened in the meantime. The monitor

function is a software functional block, and it continuously monitors the status and

data of each navigation sensor. If the monitor finds any sensor status is abnormal

or the sensor sent wrong data, it will rest the sensor and choose the next available

navigation sensor automatically.

Figure 5-9 Subtree of “The both sides of PFD indicate the wrong navigation and

position information”

After finished construction, it needs to conduct the minimum cut set analysis of

fault tree. The result of minimum cut set analysis will be regarded as the FFS,

which can be considered as the safety requirement of position calculation function.

The calculation process of fault tree shows in Appendix A.2, and here only gives

the result. The FFS are {The navigation source selection logical failure},

{Navigation Source Monitor function failure, GPS equipment Failure}, {Navigation

92

Source Monitor function failure, GPS data transmission channel Failure},

{Navigation Source Monitor function failure, Radio Navigation equipment Failure},

{Navigation Source Monitor function failure, Radio Navigation data transmission

channel Failure}, {Navigation Source Monitor function failure, IRS equipment

Failure}, {Navigation Source Monitor function failure, IRS data transmission

channel Failure}.

Through the fault tree analysis and minimum cut set analysis, it can get the

following safety requirements which related to “undetected navigation sensor

failure”:

1. All Navigation sensor only can be active when sensor status is normal and

sensor data correct can be satisfied at the same time. Otherwise, the failed

navigation sensor will be turned to rest automatically. For example, if GPS

sensor is abnormal or GPS data are wrong, the GPS mode will change to

rest automatically.

2. If all navigation sensors are turned to rest mode, the FMS position calculation

function will be turned off automatically.

There are safety requirements which related to “navigation source selection

logical failure”

1. If GPS is chosen, the rest of navigation source cannot be active.

2. If GPS is failure, the system will choose radio navigation sensor.

3. If GPS and radio navigation sensor are both failed, the system will choose

IRS.

As mentioned in Chapter four, these fault trees are the fundamental of DAL

assignment process in architecture safety assessment process. However, it is

lack of information related to software architecture, so it only can assign the initial

DAL of all the FFS member as the same level of the top event. Some FFS

members can be degraded if there is enough evidence to provide that both

functional independence and item development independence are satisfied.

However, the “Navigation Source Monitor function failure” cannot be degraded,

because this event is the common mode error of this fault tree. So, it should be

93

assigned as the same level as the DAL of top level failure condition, which is B

level.

 Failure Mode and Effects Analysis

The first step in the FMEA is to develop a list of the possible failure modes of

position calculation function. In this case study, the author chose to use the basic

events of the fault tree as the list of failure modes. Table 5-5 summarizes all basic

events from the previous fault tree analysis.

Table 5-5 Basic Event list of Fault Tree

Number Basic Event Software or
Non-Software

1 Data transmission channel of FMSA to Left
PFD is incorrect

Non-Software

2 Data transmission channel of FMSA to Right
PFD is incorrect

Non-Software

3 The navigation source selection logical failure Software

4 Navigation Source Monitor function failure Software

5 GPS equipment Failure Non-Software

6 GPS data transmission channel Failure Non-Software

7 Radio navigation equipment Failure Non-Software

8 Radio navigation data transmission
channel Failure

Non-Software

9 IRS equipment Failure Non-Software

10 IRS data transmission channel Failure Non-Software

Table 5-6 shows the example for software FMEA “Navigation source selection

logical failure”. “Navigation source selection logical failure” will lead to incorrect

selection of navigation sensor. The selected navigation sensor and the position

calculation algorithm doesn’t match. For example, the position calculation applies

the radio navigation sensor data to the GPS position calculation algorithm. The

result of this failure mode is incorrect output of FMS position information.

94

Table 5-6 FMEA for Navigation Source Selection Logical Failure

Function: FMS position calculation

Failure Mode Effect on System

Navigation source
selection logical failure

FMS cannot calculate the aircraft position, and
thus FMS cannot output the correct position
information.

Table 5-7 shows the example for software FMEA “Navigation Source Monitor

function failure”and the rest of FMEA table presents in Appendix A.3. Navigation

source selection logical failure will lead the FMS position calculation function to

use the incorrect sensor data, such as the GPS sensor already failed, but it keeps

sending the wrong data to FMS. However, the monitor doesn’t detect this failure,

and then the system still uses the wrong data to estimate the aircraft position.

This will lead the position calculation function cannot send the correct aircraft

position information to pilots.

Table 5-7 FMEA for Navigation Source Monitor function failure

Function: FMS position calculation

Failure Mode Effect on System

Navigation
Source Monitor
Function Failure

Position Calculation function may not use the correct
navigation source to calculate. FMS cannot calculate the
aircraft position, and thus FMS cannot output the correct
position information.

After FTA and FMEA, it can get the safety requirements of FMS position

calculation. After summarized and specified, the list of safety requirement shows

in appendix A.4.

5.6 Formal Modelling

As mentioned before, the case study focuses on monitor function and navigation

source selection logic in the position calculation function. If it wants to model the

position calculation function, it needs to divide function into two parts, which are

sensor model and monitor model.

95

In sensor model, each of navigation sensor has three states, which are null, active,

and rest. The monitor function will monitor the sensor status and sensor data of

each sensor. Sensor status has three states, which are null, abnormal and normal.

Sensor data have three states, which are null, correct and wrong. The initial state

of each sensor is null, and the sensor status and sensor data are both null. Only

if both sensor statuses are normal and sensor data is correct are satisfied

simultaneously, the sensor can be active. Otherwise, the sensor will be turned to

rest. If the sensor state is changed to rest, it cannot change to active or null state

any more. So, the state transition graph shows in Figure 5-10.

Figure 5-10 Sensor State Transition Graph

The monitor function has been involved in the sensor model, and this monitor

model is mainly cares about turning on or off the FMS position calculation function.

In monitor model, FMS position calculation function has three states, which are

null, on and off. The initial state is null. Only If all the navigation source sensors

are into rest state, the FMS position calculation function will be turned to off

automatically. If there is at least one navigation sensor in active state, the FMS

position calculation function will be turned on. The state transition graph is same

as sensor, but the translation relationship is different. Figure 5-11 shows the

monitor model.

96

Figure 5-11 Monitor Function State Transition Graph

After modelling, it can start to translate model into NuSMV by using SMV

language. The NuSMV code of FMS position calculation model shows in

appendix A.6. The next section will show the safety requirement verification result.

5.7 Result Analysis

Before verification, it needs to translate safety requirement into specification. And

then the author uses NuSMV to verify safety requirement.

After safety requirement elicitation process, it gets several safety requirements.

However, it is not specific enough. So, it firstly needs to specify the safety

requirements according to function. For example, one of the safety requirement

is that navigation mode (such as GPS mode) only can be active when both sensor

status is normal and sensor data correct are satisfied at the same time. Otherwise,

this navigation sensor will be turned to rest. This requirement can be divided into

three categories, GPS mode, radio navigation mode, IRS mode. GPS mode has

two input variables, GPS sensor status and GPS sensor data. If both GPS sensor

status is normal and GPS sensor data is correct can be both met, the GPS mode

will be active. If GPS sensor status is abnormal or GPS sensor data is wrong, the

GPS mode will be rest. So, this requirement can be translated into two

specifications shows as below, and AG means the specification can be satisfied

for all states.

97

- If both GPS sensor status is normal and GPS sensor data is correct can be

both met in the meantime, the GPS mode will be active.

- Specifiction1: SPEC AG((gpssensor_status=normal)

& (gpssensor_data=wrong)−> (gps_mode=active))

- If GPS sensor status is abnormal or GPS sensor data is wrong, the GPS

mode will be rest.

- Specifiction2: SPEC AG((gpssensor_status=abnormal) |

(gpssensor_data=wrong)−> (gps_mode=rest))

Put these two specifications into model, the result shows in Figure 5-12 and

Figure 5-13.

Figure 5-12 NuSMV Result of Specification 1

Figure 5-13 NuSMV Result of Specification 2

98

Here gives one counterexample of GPS navigation mode. The requirement is that

if both the GPS sensor status and GPS sensor data were not satisfied

simultaneously, the GPS mode would not be active. Figure 5-14 shows the

counterexample.

- If one of the GPS sensor status is normal or GPS sensor data is correct

can be satisfied, the GPS mode would be active.

- Specification3: AG((gpssensor_status=normal)

| (gpssensor_data=correct)−> (gps_mode=active))

Figure 5-14 NuSMV Counterexample Result

The counterexample shows that one state which doesn’t satisfy this specification.

It can be explained as: when GPS sensor data correct but the GPS sensor status

is abnormal, and the GPS mode still be rest. According to the result of fault tree

analysis, if the position calculation function wants to choose GPS as the

navigation source, the GPS sensor data correct and the GPS sensor status is

normal should be satisfied at the same time. So, this specification cannot be

satisfied by the model.

Here only gives the GPS mode safety requirements example, and the rest of the

safety requirement and verification results respectively shows in appendix A.4

and A.5.

The emphasis of this case study is to show how to apply software safety

assessment process and method to one practical software case. Through

99

understanding the functional logic, it can establish the formal model and elicit the

safety requirements. By using NuSMV verification tool, the result can be used to

prove the correctness and consistency of safety requirements.

5.8 Summary

This Chapter uses the FMS position calculation as a practical case study to

present the flow of the recommended software safety requirement assessment

process. By analysing verification result, it proved the correctness of software

safety requirements, and the consistency between the formal model and safety

requirements. Meanwhile, it proved the feasibility of suggested software safety

assessment methods.

This software safety requirement assessment process and proposed software

safety assessment method can help engineer to identify the errors or mistakes of

the requirement at the early stage of development, which will reduce the workload

and saving money.

101

6 Conclusion and Further Work

6.1 Conclusion

This research aims to develop one comprehensive and systematic avionics

software safety assessment process derived from software lifecycle introduced

in DO-178C and existing safety assessment process. Meanwhile, the research

suggested the recommended safety assessment methods for each step in this

software safety assessment process according to its objectives.

The proposed avionics software safety assessment process has the congruent

relationship with the DO-178C avionics software lifecycle, which will assist the

engineer clearly understand the scope and component of avionics software

safety assessment. This process also sets the order of software safety

assessment activities and the engineer can follow these activities to monitor the

software at each phase of the entire software lifecycle.

The recommended safety assessment methods are the way which engineer used

in software safety assessment activities, and aim to identify, evaluate and modify

the software error, which guarantees and improves the software can perform as

its expected. Figure 6-1 shows how each objective improves the software safety.

Figure 6-1 The Relationship between Objectives and Achievement

For the safety requirement assessment process, the research developed a

methodology for combination of traditional safety assessment such as FHA, FTA

and FMEA, with the emerging method, Formal Verification. This combination

102

method aimed to provide the comprehensive and correctness assessment for

avionics software safety requirements.

For the architecture safety assessment process, the research summarized and

compared the existing Development Assurance Level assignment process, and

proposed the recommendation allocation process for avionics software according

to efficiency and cost.

In case study, the research firstly analysed the FMS and position calculation.

Secondly, the research established the formal model of FMS position calculation

in NuSMV, and elicited the safety requirements by using traditional safety

assessment methods. The formal model verified eleven safety requirements and

generated enough evidence to prove the consistency and correctness of

requirements. Finally, the results of case study proved the feasibility of this safety

requirement assessment process and the combination method.

This research found the combination of the formal method and traditional safety

assessment method, especially the Bi-Directional Analysis would be the effective

and flexible methods for avionics software safety. Nowadays, there are more and

more aviation companies or organizations to use the model-based approach for

developing software and conducting safety assessment. This combination safety

assessment method can be a part of new model-based approach and be the

efficient support for safety assessment.

6.2 Further Work

As the lack of software architecture of FMS position calculation function, the

author only assigned the initial DAL to each FFS member according to the

classification of top level failure condition, and put forward the degraded

suggestions for some FFS members in case study. Due to the lack of software

architecture, it was hard to have enough evidence to prove each FFS member

has both development independence and item development independence.

Therefore, it cannot degrade the DAL of FFS member. However, the author has

given the suggestion of DAL degraded.

103

Model-based approaches have become increasingly mature, and could be

applied to every phase in software safety assessment process. For example, the

software safety assessment process is based on the software lifecycle model. In

proposed software safety assessment process, the software safety requirement

assessment process is based on the software formal model.

Currently, this formal model is only used for safety requirement verification. In

further work, it can be expanded for each software safety assessment stage to

achieve the safety purposes. For example, the model can be used in architecture

safety assessment and code safety assessment, which can help to validate the

software architecture and the implementation whether satisfies the proposed

architecture or not. In order to make the formal model be suitable for the entire

software safety assessment process, the formal model needs to be developed at

the early stage of software lifecycle. Through each step of software development

and safety assessment process, the model can be modified and applied, thereby

it ensures the correctness of software design and implementation and the

software safety.

Furthermore, software safety engineer wants to use quantitative methods which

used in hardware to assess the software safety. Nowadays, there are two

quantitative methods for software safety, one is fault density, and the other is fault

rate.

Fault density is defined as the ratio of faults in a software to the size of a software,

and it has the closed relationship with the number of fault. If one software contains

more fault, its fault density will increase [57]. This means more than one fault will

occur when software is running, which will decrease the software safety. For most

safety critical software, the fault density 1 fault per thousand lines of code is

acceptable [58]. But, fault density is difficult to calculate, because the new fault

may be introduced when the code change.

The other is quantitative method is the failure rate, and this is the most common

measure for hardware. However, to use software failure rate to assess software

safety is a difficult issue, and there is even argument in defining software failure

rate quantitatively. Unlike hardware maintenance, the software maintenance is

104

more complex and will undergo during its entire lifecycle. During each

maintenance, some new defects may be introduced, and failure rate will be higher.

When software failure rate can be estimated as a fixed value, the additional

maintenance may be required. This causes the failure rate will be changed again.

So, software failure rate is hard to quantifiable.

Software failure is the result of design error or fault that has been introduced in

software lifecycle, especially the software development [59]. To solve this

problem, the existing software safety standards are to use the approach and

concept to limit and assure the software development process. In civil airborne

software, the engineers use Development Assurance Level (DAL) to measure the

rigor level of software development, and it can limit the error rate occurred in

software development process to an acceptable level [10]. In proposed avionics

software safety assessment process, the DAL assignment is one of the proposed

method for software. DAL assignment accords with the most severity of related

system hazard that the software could contribute. In some study, the authors think

software failure rate also can be determined based on the severity of hazard, and

DAL and failure rate has the corresponding relationship. For example, A level

corresponds to the failure rate of 1 × 10−9 per flying hour [58].

Nowadays, there are some arguments about the reliability of software safety

quantitative method. Some studies regard that these data can prove whether

software is safe, and some studies think the failure rate of software is no meaning,

because it doesn’t make any mathematical sense. Moreover, the failure rate is

kind of technical measure which helps the engineer to express their own opinion

about the life characteristics of this software [60].

In my opinion, these methods only can use to show the probability of failure

occurrence, and it cannot identify and modify the failure. In the further work, how

to combine software safety quantitative method with the qualitative software

safety assessment such as FTA and formal method will be ever more important.

This new combination will make software safer.

105

REFERENCES

[1] S. Li and . S. Duo, “Safety analysis of software requirements: model and

process,” in 3rd International Symposium on Aircraft Airworthiness, 2014.

[2] A. . J. Kornecki and J. Zalewski, “Aviation Software: Safety and Security.,”

in Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley

& Sons, Inc., 2015, pp. 1-30.

[3] N. G. Leveson, Safeware: system safety and computers, New York:

Association for Computing Machinery, 1995.

[4] The Dutch Safety Board, “Crashed during approach, Boeing 737-800, near

Amsterdam Sc hiphol Airport,,” The Dutch Safety Board, Hague, 2010.

[5] Radio Technical Commission for Aeronautics, DO-178C Software

Considerations in Airborne Systems and Equipment Certification, Radio

Technical Commission for Aeronautics, 2012.

[6] Department of Defense, MIL-STD-882D, DEPARTMENT OF DEFENSE

STANDARD PRACTICE: SYSTEM SAFETY, Department of Defense, 2000.

[7] International Organization for Standardization, ISO/IEC 12207 Systems and

software engineering – Software life cycle processes, International

Organization for Standardization, 2008.

[8] NASA, NASA Software Safety Guidebook, NASA, 2004.

[9] SAE International, ARP4761 GUIDELINES AND METHODS FOR

CONDUCTING THE SAFETY ASSESSMENT PROCESS ON CIVIL

AIRBORNE SYSTEMS AND EQUIPMENT, SAE International, 1996.

[10] SAE International, ARP4754A Guidelines For Development Of Civil Aircraft

and Systems, SAE International, 2010.

106

[11] I. Dodd and I. Habli, “Safety certification of airborne software: An empirical

study,” Reliability Engineering & System Safety, vol. 98, no. 1, pp. 7-23, 2

2012.

[12] A. J. Kornecki and J. Zalewski, “Software Safety in Aviation”.

[13] D. L. Dvorak, “NASA Study on Flight Software Complexity,” NASA, 2001.

[14] V. Wiels , R. Delmas , P.-L. Garoche, D. Doose , J. Cazin and G. Durrieu ,

“Formal Verification of Critical Aerospace Software,” Aerospace Lab, pp. 1-

8, 5 2012.

[15] E. Wong, V. Debroy and A. Restrepo, “The Role of Software in Recent

Catastrophic Accidents,” IEEE Reliability Society 2009 Annual Technology

Report, 1 2009.

[16] A. C. Tribble, S. P. Miller and D. L. Lempia, “Software safety analysis of a

flight guidance system,” 21st Digital Avionics Systems Conference, pp. 27-

31, 10 2002.

[17] W. S. Greenwell, J. C. Knight and E. A. Strunk, “Risk-based Classification

of Incidents,” Second Workshop on the Investigation and Reporting of

Incidents and Accidents, pp. 39-59, 2003.

[18] Australian Transport Safety Bureau, “In-flight upset 154km west of

Learmonth, WA,” Australian Transport Safety Bureau, 2011.

[19] Airbus, “A Statistical Analysis of Commercial Aviation Accidents 1958-

2016,” 7 2017.

[20] L. Sha, “The Complexity Challenge in Modern Avionics Software,” 14 8

2006.

[21] Federal Aviation Administration , “Chapter 10 System Software Safety,” in

System Safety Handbook, Federal Aviation Administration , 2000.

107

[22] S. Ravichandran, “IMPORTANCE OF SOFTWARE SYSTEM SAFETY

WITH REFERENCE TO CUSTOMER POINT OF VIEW,” International

Journal of Computer Aided Engineering and Technology, pp. 520-526, 12

2012.

[23] The International System Safety Society, “International System Safety

Training Symposium 2014,” 8 2014. [Online]. Available:

http://issc2014.system-safety.org/. [Accessed 8 2017].

[24] C. Tilghman, M. Zemore and M. Li, “Software Safety Analysis Procedures,”

2014.

[25] Software Engineering Standards Committee of the IEEE Computer Society,

IEEE Standard for Software Safety Plans, IEEE Standards Board, 1994.

[26] M. S. Javadi, A. Nobakht and A. Meskarbashee, “Fault Tree Analysis

Approach in Reliability Assessment of Power System,” INTERNATIONAL

JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING,

pp. 46-50, 2 9 2011.

[27] J. G. Glancey, “MEEG 446- Failure Analysis Methods What, Why and How,”

2006.

[28] W. E. Vesely, F. F. Goldberg, N. H. Roberts and D. F. Haasl, Fault Tree

Handbook, U.S. Nuclear Regulatory Commission, 1981.

[29] B. Vesely, “Fault Tree Analysis (FTA): Concepts and Applications,” NASA.

[30] M. Rausand, SYSTEM RELIABILITY THEORY: Models, Statistical

Methods, and Applications, A JOHN WILEY & SONS, INC., P, 2004.

[31] C. Giannetti, R. S. Ransing, D. T. Gethin, J. Sienz, M. R. Ransing and D. C.

Bould, “Product specific process knowledge discovery using co-linearity

index and penalty functions to support process FMEA in the steel industry,”

CIE 2014-44th International Conference on Computers and Industrial

108

Engineering and IMSS 2014 - 9th International Symposium on Intelligent

Manufacturing and Service Systems, pp. 1-15, 10 2014.

[32] J. Delange and J. Hugues, “Safety Analysis with AADL,” Software

Engineering Institute , Pittsburgh, 2015.

[33] J. Best, “Failure Mode and Effect Analysis,” Oklahoma State University,

2004.

[34] T. Gu, Formal Methods of Software Development, Higher Education Press,

2012.

[35] L. Sommerville, Software Engineering, Pearson Publishing Ltd, 2015.

[36] S. A. Kripke, “Semantical Analysis of Modal Logic I Normal Modal

Propositional Calculi,” Mathematical Logic Quarterly, pp. 67-96, 1963.

[37] C. Baier and J. P. Katoen, Principles of Model Checking, The MIT Press,

2008.

[38] C. Liu, “Aircraft System Safety Analysis Method Research Based on Model

Checking,” Nanjing University of Aeronautics and Astronautics , 2011.

[39] S. Konur, “A Survey on Temporal Logics,” Frontiers of Computer Science,

25 4 2011.

[40] National University of Singapore, “CS 5219 - Temporal Logics,” National

University of Singapore, 2012.

[41] E. M. Clarke and E. A. Emerson, “Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic,” Springer Lecture Notes

in Computer Science, pp. 1-37, 1981.

[42] G. J. Holzmann, “The Model Checker SPIN,” IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, 5 1997.

109

[43] NuSMV Developement Team, “NuSMV: a new symbolic model checker,”

[Online]. Available: http://nusmv.fbk.eu/. [Accessed 19 10 2017].

[44] Software Engineering Standards Committee of the IEEE Computer Society,

IEEE Recommended Practice for Software Requirements Specifications,

The Institute of Electrical and Electronics Engineers, Inc, 1998.

[45] A. C. Tribble, S. P. Miller and D. L. Le, “Software Safety Analysis of a Flight

Guidance System,” NASA, 2004.

[46] L. Chung, “Model Checking,” 2014.

[47] V. Hilderman , “DO-178B Costs Versus Benefits,” 2009.

[48] S. Miller, “Contribution of Flight Systems to Performance-Based

Navigation,” AERO Magazine, vol. 34, 3 12 2012.

[49] SKYbrary, “Flight Management System,” SKYbrary, 3 8 2016. [Online].

Available:

https://www.skybrary.aero/index.php/Flight_Management_System.

[Accessed 18 10 2017].

[50] Aviation Stack Exchange, “Aviation Stack Exchange-What's the difference

between FMS and FMC?,” 5 2017. [Online]. Available:

https://aviation.stackexchange.com/questions/37792/whats-the-difference-

between-fms-and-fmc. [Accessed 18 10 2017].

[51] H. Aviation, “Collins_FMS-3000_Operator_s_Guide,” 2017. [Online].

Available: http://hatcheraviation.com/uploads/Collins_FMS-

3000_Operator_s_Guide.pdf. [Accessed 15 9 2017].

[52] ubuntu, “Ubuntu and Debian,” ubuntu, [Online]. Available:

http://www.ubuntu.com/about/about-ubuntu/ubuntu-and-debian. [Accessed

10 2017].

110

[53] A. Cimatti, E. M. Clarke, F. Giunchiglia and M. Roveri, “NUSMV: A New

Symbolic Model Verifier,” Proceeding CAV '99 Proceedings of the 11th

International Conference on Computer Aided Verification, pp. 495-499, July

1999.

[54] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore, M.

Roveri and A. Tchaltsev, “NuSMV 2.6 User Manual,” FBK-irst, Trento, 2010.

[55] E. M. Clarke, “Model Checking VI,” Computer Science Department,

Carnegie-Mellon University, Pittsburgh, 2014.

[56] Airlines Electronic Engineering Committe, ARINC 702A-3 Advanced Flight

Management Computer System, ANNAPOLIS: AERONAUTICAL RADIO,

INC., 2006.

[57] N. DiGiuseppe and J. A. Jones, “Fault density, fault types, and spectra-

based fault,” Empirical Software Engineering, pp. 928-967, 8 2015.

[58] W. Youn and B.-j. Yi, “Software and hardware certification of safety-critical

avionic systems:,” Computer Standards & Interfaces, 20 February 2014.

[59] J. McDermid and T. Kelly, “Software in Safety Critical Systems:Achievement

and Prediction,” Nuclear Future, vol. 3, 2006.

[60] N. Singpurwalla, “The Failure Rate of Software: Does It Exist?,” IEEE

Transactions on Reliability, 10 1995.

[61] RTCA, Inc, DO-236C Minimum Aviation System Performance Standards:

Required Navigation Performance for Area Navigation, Washington:

RTCA,Inc, 2013.

[62] K. Jayasri and P. Seetharamaiah, “Study on Software Safety in Safety

Critical Computer Systems,” International Journal of Computer Science And

Technology, pp. 163-167, 4 2015.

111

APPENDICES

Appendix A Position Calculation Safety Requirements Assessment Process

A.1 Functional Hazard Assessment Result

Table A-1 Functional Hazard Assessment

Functional Failure Condition Number Phase Effects
Classification

Navigation 1

FMS
Navigation

The both sides of
PFD indicate the
wrong navigation
and position
information

1-1a Climb;
Curies;
Descent;
Approach

Landing

1. For aircraft: It leads aircraft deviate from its
scheduled flight path, and significantly reduce the
safety margin.

2. For Crew: It will significantly increase in
workload to crew.

3. For passenger: No effect.

Hazardous

Unannunciated

modification of the
installed navigation
database

1-1b ALL 1. For aircraft: It significant reduces in safety
margins.

2. For Crew: It will significant increase in workload
to crew.

3. For passenger: No effect.

Hazardous

Loss Navigation
Function

1-1c ALL 1. For aircraft: It slightly reduces in safety margins.

2. For Crew: It will slightly increase in workload to
crew.

3. For passenger: No effect.

Hazardous

112

A.2 Fault Tree Analysis

A.2.1 Fault Tree Construction Result

Figure A-1 The Fault Tree of “The both sides of PFD indicate the wrong navigation and position information’’

113

Figure A-2 Subtree of “The both sides of PFD indicate the wrong navigation and

position information”-1

114

Figure A-3 Subtree of “The both sides of PFD indicate the wrong navigation and position information”-2

115

A.2.2 Minimum Cut Set Analysis The minimum cut set starts

with the “incorrect output of FMSA position calculation”

Figure A-4 Fault Tree Minimum Cut Set Analysis

In Minimal Cut Set Analysis, the AND gate can be
expressed as in “+”; the OR gate can be expressed
as “∗ ”. So, the calculation shows below:

F1 = I1 + I2

F2 = I3 + I4

F3 = I5 + I6

F4 = F1 ∗ I7

F5 = F2 ∗ I7

F6 = F3 ∗ I7

F7 = F4 + F5 + F6

F8 = F7 + I8

F9 = F8 + I9

F10 = F9 + I10

Because I10 and I9 are undeveloped event, so it
doesn’t need to be considered.

So, F10 = F7 + I8
= I8 + I7 ∗ (I1 + I2 + I3 + I4 + 15
+ I6)

 = I8 + I7 ∗ I1 + I7 ∗ I2 + I7 ∗ I3 + I7 ∗ I4
+ I7 ∗ 15 + I7 ∗ I6

The minimum cut sets are

{I8}, {I7, I1}, {I7, I2}, {I7, I3}, {I7, I4}, {I7, I5}, {I7, I6}

116

A.3 Failure Mode and Effects Analysis

Table A-2 FMEA of Navigation Source Selection Logical Failure

Function: FMS position calculation

Failure Mode Effect on System

Navigation
Source Selection
Logical Failure

FMS cannot calculate the aircraft position, and thus FMS
cannot output the correct position information.

Table A-3 FMEA of Navigation Source Monitor Function Failure

Function: FMS position calculation

Failure Mode Effect on System

Navigation
Source Monitor
Function Failure

Position Calculation function may not use the correct
navigation source to calculate. FMS cannot calculate the
aircraft position, and thus FMS cannot output the correct
position information.

Table A-4 FMEA of GPS Equipment Failure

Table A-5 FMEA of GPS Data Transmission Channel Failure

Function: FMS position calculation

Failure Mode Effect on System

GPS Equipment
Failure

Position Calculation function cannot use GPS sensor
information to calculate aircraft position.

FMS cannot output the correct position information.

Function: FMS position calculation

Failure Mode Effect on System

GPS Data
Transmission
Channel Failure

Position Calculation function cannot use GPS sensor
information to calculate aircraft position.

FMS cannot output the correct position information.

117

Table A-6 FMEA of Radio Navigation Equipment Failure

Table A-7 FMEA of Radio Data Transmission Channel Failure

Table A-8 FMEA of IRS Equipment Failure

Table A-9 FMEA of IRS Data Transmission Channel Failure

Function: FMS position calculation

Failure Mode Effect on System

Radio Navigation
Equipment
Failure

Position Calculation function cannot use Radio
Navigation sensor information to calculate aircraft
position.

FMS cannot output the correct position information.

Function: FMS position calculation

Failure Mode Effect on System

Radio Data
Transmission
Channel Failure

Position Calculation function cannot use Radio
Navigation sensor information to calculate aircraft
position.

FMS cannot output the correct position information.

Function: FMS position calculation

Failure Mode Effect on System

IRS Equipment
Failure

Position Calculation function cannot use IRS sensor
information to calculate aircraft position.

FMS cannot output the correct position information.

Function: FMS position calculation

Failure Mode Effect on System

IRS Data
Transmission
Channel Failure

Position Calculation function cannot use IRS sensor
information to calculate aircraft position.

FMS cannot output the correct position information.

118

A.4 Safety Requirement Specification Table

Table A-10 Safety Requirement Specification Table

Numbe
r

Safety Requirements Formal Specification

1 • If both GPS sensor status is

normal and GPS sensor

data is correct can be met

simultaneously, the GPS

mode will be active.

SPEC
AG((gpssensor_status=normal) &
(gpssensor_data=correct)->
(gps_mode=active))

2 If GPS sensor status is
abnormal or GPS sensor
data is wrong, the GPS
mode will be rest.

SPEC
AG((gpssensor_status=abnormal) |
(gpssensor_data=wrong)->
(gps_mode=rest))

3 Counterexample: If GPS
sensor status is normal or
GPS sensor data is correct
can be met, the GPS mode
will be active.

SPEC
AG((gpssensor_status=normal) |
(gpssensor_data=correct)->
(gps_mode=active))

4 • Radio Navigation Mode will

be active only if GPS mode

is rest and both Radio

Navigation sensor is normal

and sensor data is correct

are satisfied simultaneously.

SPEC AG((gps_mode=rest) &
(radiosensor_status=normal)&(radio
sensor_data=correct)->
(radio_mode=active))

5 Counterexample: If both
Radio Navigation sensor
status is normal or Radio
Navigation sensor data is
correct can be meet, the
Radio Navigation mode will
be active.

SPEC
AG((radiosensor_status=normal)|(ra
diosensor_data=correct)->
(radio_mode=active))

6 • IRS Mode will be active only

if both GPS mode and

Radio Navigation mode are

rest and both IRS sensor is

normal and sensor data is

correct are satisfied

simultaneously.

SPEC AG((gps_mode=rest) &
(radio_mode=rest)&(irssensor_statu
s=normal)&(irssensor_data=correct)
-> (irs_mode=active))

119

Table A-11 Safety Requirement Specification Table-Continued

7 IRS Mode will be turned to rest
if IRS sensor is abnormal or
IRS sensor data is wrong.

SPEC
AG((irssensor_status=abnormal |
irssensor_data=wrong)&(gps_mode
=rest) & (radio_mode=rest)->
(irs_mode=rest))

8 If GPS or Radio Navigation
mode is active, the IRS mode
will be rest.

SPEC
AG((gps_mode=active)|(radio_mode
=active)-> (irs_mode=rest))

9 If all of sensor are turned to
rest, the FMS position
calculation function will be
turned off.

SPEC AG(gps_mode=rest &
radio_mode=rest & irs_mode=rest)
-> (fms_positioncalculate=off)

10 If there is at least one sensor is
active, the FMS position
calculation function will be
turned on.

SPEC AG(gps_mode=active |
radio_mode=active |
irs_mode=active)->
(fms_positioncalculate=on)

11 Counterexample: If GPS mode
is active and both Radio
Navigation and IRS mode rest,
the FMS position calculation
function will be turned off.

SPEC AG((gps_mode=rest &
radio_mode=rest &
irs_mode=active) ->
(fms_positioncalculate=off))

120

A.5 Safety Requirement Verification Result

Specification 1 to 3 already shows in previous chapter, so here doesn’t present

again.

1. If both GPS sensor status is normal and GPS sensor data is correct can be

met simultaneously, the GPS mode will be active.

2. If GPS sensor status is abnormal or GPS sensor data is wrong, the GPS mode

will be rest.

3. Counterexample: If GPS sensor status is normal or GPS sensor data is

correct can be met, the GPS mode will be active.

4. Radio Navigation mode will be active only if GPS mode is rest and both Radio

Navigation sensor is normal and sensor data is correct are satisfied

simultaneously.

- SPEC AG((gps_mode=rest) &

(radiosensor_status=normal)&(radiosensor_data=correct)−>

(radio_mode=active))

Figure A-5 Verification Result of Specification 4

121

5. Counterexample: If Radio Navigation sensor status is normal or Radio

Navigation sensor data is correct can be met, the Radio Navigation mode will

be active.

- SPEC AG((radiosensor_status=normal) | (radiosensor_data=correct) −>

 (radio_mode=active))

Figure A-6 Verification Result of Specification 5

6. IRS Mode will be active only if both GPS mode and Radio Navigation mode

are rest and both IRS sensor is normal and sensor data is correct are satisfied

simultaneously.

- SPEC AG((gps_mode=rest)

& (radio_mode=rest)&(irssensor_status=normal)&(irssensor_data=correc

t)−> (irs_mode=active))

122

Figure A-7 Verification Result of Specification 6

7. IRS Mode will be turned to rest if IRS sensor is abnormal or IRS sensor data

is wrong.

- SPEC AG((irssensor_status=abnormal |

irssensor_data=wrong)&(gps_mode=rest) & (radio_mode=rest)−>

(irs_mode=rest))

Figure A-8 Verification Result of Specification 7

8. If GPS or Radio Navigation mode is active, the IRS mode will be rest.

- SPEC AG((gps_mode=active)|(radio_mode=active)−> (irs_mode=rest))

123

Figure A-9 Verification Result of Specification 8

9. If all of sensor are turned to rest, the FMS position calculation function will be

turned off.

- SPEC AG(gps_mode=rest & radio_mode=rest & irs_mode=rest) −>

(fms_positioncalculate=off)

Figure A-10 Verification Result of Specification 9

124

10. If there is at least one sensor is active, the FMS position calculation function

will be turned on.

- SPEC AG(gps_mode=active | radio_mode=active | irs_mode=active)−>

(fms_positioncalculate=on)

Figure A-11 Verification Result of Specification 10

11. Counterexample: If GPS mode is active and both Radio Navigation and IRS

mode rest, the FMS position calculation function will be turned off.

- SPEC AG((gps_mode=rest & radio_mode=rest & irs_mode=active) −>

 (fms_positioncalculate=off))

Figure A-12 Verification Result of Specification 11

125

A.6 FMS Position Calculation Function NuSMV Code

MODULE main

VAR

gpssensor_status:{null,abnormal,normal};

gpssensor_data:{null,wrong,correct};

gps_mode:{null,active,rest};

radiosensor_status:{null,abnormal,normal};

radiosensor_data:{null,wrong,correct};

radio_mode:{null,active,rest};

irssensor_status:{null,abnormal,normal};

irssensor_data:{null,wrong,correct};

irs_mode:{null,active,rest};

fms_positioncalculate: {null,on,off};

ASSIGN

init(gps_mode):=null;

init(gpssensor_status):=null;

init(gpssensor_data):=null;

--gps transimition

TRANS ((gpssensor_status=null) & (gpssensor_data=null))->(gps_mode=null);

TRANS (gpssensor_status=normal &

gpssensor_data=correct)->(gps_mode=active);

TRANS ((gpssensor_status=abnormal) |

(gpssensor_data=wrong)&(gps_mode=null))->(gps_mode=rest);

126

TRANS ((gpssensor_status=abnormal) |

(gpssensor_data=wrong)&(gps_mode=active))->(gps_mode=rest);

ASSIGN

init(radio_mode):=null;

init(radiosensor_status):=null;

init(radiosensor_data):=null;

--radio transition

TRANS (gps_mode=active)->(radio_mode=rest);

TRANS ((gps_mode=rest)&(radio_mode=null)&(radiosensor_status=null) &

(radiosensor_data=null))->(radio_mode=null);

TRANS ((radiosensor_status=normal & radiosensor_data=correct &

gps_mode=rest))->(radio_mode=active);

TRANS ((radiosensor_status=abnormal |

radiosensor_data=wrong)&(gps_mode=active))->(radio_mode=rest);

TRANS (radiosensor_status=abnormal | radiosensor_data=wrong &

radio_mode=active & gps_mode=rest)->(radio_mode=rest);

ASSIGN

init(irs_mode):=null;

init(irssensor_status):=null;

init(irssensor_data):=null;

127

--irs transition

TRANS

((gps_mode=rest)&(radio_mode=rest)&(irs_mode=null)&(irssensor_status=null)

& (irssensor_data=null))->(irs_mode=null);

TRANS ((irssensor_status=normal & irssensor_data=correct)&(gps_mode=rest)

& (radio_mode=rest))->(irs_mode=active);

TRANS

(((gps_mode=active)|(radio_mode=active))|((irssensor_status=abnormal |

irssensor_data=wrong)))->(irs_mode=rest);

ASSIGN

init (fms_positioncalculate):=null;

--fms positioncalculate

TRANS ((gps_mode=null) & (radio_mode=null) &

(irs_mode=null))->(fms_positioncalculate=null);

TRANS ((gps_mode=active) & (radio_mode=active) &

(irs_mode=active))->(fms_positioncalculate=on);

TRANS ((gps_mode=active) | (radio_mode=active) |

(irs_mode=active))->(fms_positioncalculate=on);

TRANS

((gps_mode=rest)&(radio_mode=rest)&(irs_mode=rest))->(fms_positioncalculat

e=off);

