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ABSTRACT 

Nowadays, the avionics software has been becoming more and more critical for 

both civil and military aircraft. However, the software may become crazy 

sometimes and may cause the catastrophic result if any failure in software. 

Therefore, the software safety assessment is not only crucial to the specific 

software, but also for the system and aircraft. Although there are some industry 

standards as guidelines for development of software system, applications of 

these standards to practical software systems are still challenged and hard to 

operate in practice. This thesis tries to solve this problem. 

After analyses and summaries of the system safety assessment process and 

existing software safety assessment process in different fields, research wants to 

propose the systematic and comprehensive software safety assessment process 

and method for avionics software.  

The thesis presents the research process, and proposes one suitable avionics 

software safety assessment process. Meanwhile, thesis uses a real functional 

block in flight management system as a case study, and then conducts the 

software safety requirement assessment based on the proposed software safety 

assessment method. 

After analysis the result of case study, this proposed software safety assessment 

process and methods can quickly and correctly identify the software design errors. 

So, this analysis can use to prove the feasibility and validity of this proposed 

software safety assessment process and methods, which will help engineers 

modify every software design errors at the early stage in order to guarantee the 

software safety. 
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1 Introduction 

1.1 Background  

With rapid development of computer, software already has been applied in 

different fields. Compared with human, software has the incomparable capability, 

and it can make decisions unemotionally and more accurately. Due to this reason, 

the scale and complexity of software have increased tremendously, which make 

its proportion of the critical function in the complicated modern systems also has 

risen sharply. Nowadays, software is playing a vital role in hazard control and 

operation of safety-critical function or system [1]. For example, the development 

cost of software in Fly-by-wire system can occupy about 60-70% of the total cost 

of the entire Fly-by-wire systems [2]. In the integrated avionics system of F-22 

Raptor, the implementation of avionics function and system is up to 80% by using 

software [3].  

Software can bring lots of benefits. In the meanwhile, it can cause some serious 

problems. Comparing with hardware, the safety and quality of airborne software 

are lower due to the software characteristics. In some circumstances, software 

may not be performed according to its design, which can have adverse effects on 

the airborne system, and even lead to mishaps. In recent years, the number of 

accidents caused by software failure are increasing. Software failures may cause 

severe damage to aircraft, which may threaten and harm life [1]. For example, 

Turkish Airlines Flight 1951 crashed during the approach on 25 February 2009, 

and six passengers and three pilots died in this accident. The final accident 

investigation report shows that the radio altimeter system failure is the major 

factor, which made aircraft stall. However, the report also points out the airborne 

software on Flight 1951 lacked the programme which could deal with the stall 

situation, and this reason also contributes to the accident [4]. So that, software 

has critical influence on the airborne system safety, especially the airborne 

software system. 

The software safety assessment process aims to solve software unsafe problem, 

and software safety assessment methods focus on identifying the software failure 
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which could lead to the system or aircraft level hazard. Meanwhile, the software 

safety assessment process and method can reduce the development cost of 

software. 

1.2 Research Objectives 

This MSc-by-Research project is designed to study and develop technical 

methods and processes for safety-critical avionics software safety assessment.  

 On the basis of the airborne software lifecycle introduced in Software 

Considerations in Airborne Systems and Equipment Certification 

(DO-178C) [5], work out the systemic software safety assessment process 

for avionics software. 

 According to objectives of each process in software development, briefly 

introduce various safety assessment methods in accordance with each 

process. 

 Focus on objectives of requirement safety assessment, proposes the proper 

safety assessment methods.  

 Based on the existing standard and requirement safety assessment result, 

applies the Development Assurance Level assignment process to software 

level. 

Through the proposed software safety assessment process and suitable methods, 

software error and fault can be identified and modified, which it can ensure 

software safety can be guaranteed during each stage of software lifecycle. 

Thereby, the proposed safety assessment process and method can be used to 

prove software safety in different phase of software lifecycle and improve 

reliability of software, and even entire system. 

1.3 Methodology 

Before work on the software safety assessment process, the research starts with 

getting familiar with the software lifecycle. Currently, lots of standards and 

guidelines are accepted by the authority and manufacturer, such as DO-178C [5], 

Standard Practice for System Safety (MIL-STD-882E) [6] and so on. Among 

these standards and guidelines, Software life cycle processes (ISO/IEC 
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12207) [7], NASA Software Safety Guidebook (NASA-GB-8719.13) [8] and 

DO-178C [5] gives detailed description of the software life cycle which includes 

the software development process. Furthermore, Guidelines and Methods for 

Conducting the Safety Assessment Process on Civil Airborne Systems 

and Equipment (SAE ARP 4761) [9] and Guidelines for Development of 

Civil Aircraft and Systems (SAE ARP 4754A) [10] provide detailed safety 

assessment process for aircraft and system level, and suggest several safety 

assessment methods, such as Functional Hazard Assessment, Fault Tree 

Analysis and Failure Mode and Effects Analysis. Meanwhile, the standards such 

as DO-178C provide the objectives and activities of software lifecycle. Based on 

the standards, guidelines and the summaries of the software safety assessment 

process from other aspects, works out the comprehensive and practicable 

avionics software safety assessment process, and determines the objectives and 

activities of the proposed avionics software safety assessment process. The 

Figure 1-1 shows the flowchart of research methodology.  

 

Figure 1-1 Process of Research Methodology 

After determination of the proposed software safety assessment process, 

consider the proper software safety assessment methods for each step according 
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to objectives and tasks found in the previous study. Safety assessment methods 

not only use at aircraft and system level, but also use on software, such as Fault 

Tree Analysis and Failure Mode and Effects Analysis. Meanwhile, some of the 

emerging methods can be used in the proposed software safety assessment 

process.  At the end, the research uses case study to prove the rationality and 

feasibility of new avionics software safety assessment process and methods. 

1.4 Thesis Structure 

The thesis includes 6 chapters. 

Chapter 1: Introduction. Briefly describes the background and existing problem 

of avionics software safety. Lists all the objectives of this research, and gives the 

precise description of the research methodology.  

Chapter 2: Literature Study. Briefly introduces the literature study on the software 

safety assessment process in different aspects, and the software lifecycle 

described in DO-178C. And then, detailed introduces the traditional and emerging 

software safety assessment methods. The literature study is the fundamental of 

the proposed software safety assessment process and methods.   

Chapter 3: Avionics Software Safety Assessment Process. Detailed discusses 

the content of proposed avionics software safety assessment process, and lists 

objectives and activities of each sub-process. The Chapter also recommends 

suitable software safety assessment methods for each sub-process. At last, this 

Chapter gives the general transition criteria, which makes the proposed software 

safety assessment more comprehensive. 

Chapter 4: Proposed Methods for Avionics Software Safety Assessment Process. 

Detailed describes the content and proposed methods for software safety 

requirement assessment and software architecture safety assessment process. 

This Chapter gives the several examples for presenting the feasibility of the 

proposed method. 

Chapter 5: Case Study. Detailed describes how to apply the avionics software 

safety assessment process and methods to the practical software function in civil 
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aircraft. The result of case study proves the feasibility of proposed avionics 

software safety assessment process and methods. 

Chapter 6: Conclusion and Further Work. This Chapter summarizes all the 

achievements in the research, and points out the relevant work which has not 

been fully solved in this research.  
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2 Literature Study 

2.1 Introduction 

In the literature study, the author has researched on several parts. Firstly, the 

Chapter shows the investigation of usage of software in military and civil aircraft, 

and several air accidents caused by software failure, which presents the 

importance of software safety. Second, research of both system safety 

assessment process and kinds of software safety assessment process gives 

ideas of developing the proposed avionics software safety assessment process. 

Last, the Chapter discusses the traditional and emerging safety assessment 

methods, such as Fault Tree Analysis, Formal Methods.  

2.2 The Importance of Software Safety  

Safety is defined as the state that the risk is acceptable [10]. Safety in software 

can be understood as the capability of maintaining in the state which the risk has 

been reduced at an accredited level. Software safety can make sure that the 

related software hazards are under control and will not propagate to a system. 

Therefore, software safety is the critical property for the system safety. The 

importance of software safety can be experienced from all aspects, and this 

section gives the introduction from two points, one is the proportion of function or 

system implemented by software in the aircraft system, and the other is to 

demonstrate several catastrophic air accidents which were caused by software 

failure. 

In modern avionics, the system functions are usually implemented by some 

complicated computer software [11]. The progress of computer and software has 

changed the aviation industry [12]. Nowadays, many safety-critical systems and 

functions are implemented and controlled by computer and software in modern 

aircraft. 

According to the NASA study of flight software complexity, the percent of function 

which provided by software in military aircraft has risen from 8% in 1960 to 80% 

in 2000, as shows in Figure 2-1. The software size has grown rapidly, and the 
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software size has increased from 1000 lines of code to 1.7M lines of code. For 

example, the F-22 has 2.5M lines of code [13].  

 

Figure 2-1 Software in Military Aircraft [13] 

Same as the military, many airborne systems and functions, especially the safety-

critical systems and functions, have been implemented by software in civil aircraft. 

According to the journal from Aerospace Lab [14], the airborne system has been 

changed a lot because of the development of computer and software technology 

over the last 30 years, and software volume has grown rapidly in these years. For 

example, avionics system in Airbus A380 has more than 100 million lines of code. 

The Figure 2-2 shows the growth of software volume in different types of Airbus 

aircraft.  

The reason of software volume growth is easy to understand, because faster 

computer and software can achieve more flexibility of the aviation system. Since 

the widespread use of software, the engineer has been concerned with the 

software failure and its implication for related safety-critical functions. If one 

software is unsafe and people trust a lot, the destruction of software failure can 

be erroneous [15]. Even the smallest error can cause the most severe 

consequence, which might lead to significant damage or loss of life. 
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Figure 2-2 Growth of Software Volume in Civil Aircraft [14]   

As the Figure 2-3 shows, any error found in the entire software life cycle, such as 

the error found in the requirement, design, code, and integration process, can 

contribute to the most severity result like loss of human life. These errors may 

arise at anytime and anywhere in the software life cycle [16].  Software safety is 

to identify the hazard which can lead to the system failure. Furthermore, software 

safety could decrease the error rate during the software lifecycle, and reduce the 

probability of hazard occurrence and the risk level.  

 

Figure 2-3 Sequence of Software Error Lead to the Failure Condition [5]  

The failure of safety-critical software could cause the severe harm and damage 

to the system and aircraft, and potentially, lost the human life. Some software-

related air accidents are described below. 
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 Korean Air Flight 801 [15] 

The Korean Air Flight 801, crashed in Guam on August 1997, and it killed 225 of 

254 persons on board. National Transportation Safety Board considered that 

there were two identified software errors in Minimum Safe Altitude Warning, 

which might be the contributing factors in this crash. 

 American Airlines Flight 965 [15] 

The American Airlines Flight 965 crashed into the west slope of the mountain on 

December 20, 1995. This accident caused 159 deaths, and the aircraft was totally 

destroyed. The reason of this accident was that the flight management system 

incorrectly understands the waypoint identifier when pilot type the similar 

identifier. Although the final report pointed that the major factor of this accident 

was the pilot error, the poor design of flight management system also contributed 

to this crash.   

 British Airway Flight 027 [17] 

The British Airways Flight 027 nearly collided with an aircraft from Korean Air 

Cargo during the flight at the Chinese airspace region. The altitude between two 

aircraft was only 600 feet. Fortunately, the pilot found this problem immediately 

and took the corresponding actions which prevented this catastrophe. After the 

investigation, the reason of this accident was due to the failure of the collision 

avoidance system installed of the Korean Air Cargo aircraft. The failed collision 

avoidance system determined wrong altitude of cargo aircraft and provided the 

wrong command, and this collision avoidance system was damaged during the 

maintenance.  

 Qantas Flight 72 

On October 20, 2008, the Qantas Flight 72 departed from Singapore to Australia 

with 303 passengers. During the cursing at 37,000ft, the autopilot was 

disconnected automatically. When the pilot has evaluated the situation, the 

aircraft began to pitch down, and then descended 650ft. After 15 Seconds when 

the pilots controlled aircraft, aircraft pitched down again and descended 400ft at 

this time. About 1 hour later, the aircraft landed at Learmonth. Fortunately, no 
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one died in this accident. According to the Australian transportation safety report, 

the failure of air data inertial reference units installed in the aircraft was one major 

factor of this accident. The aircraft installed three sets of air data inertial reference 

units, and one of the three had sent the incorrect data to aircraft system before 

the autopilot disconnected [18].  

According to the Airbus statistical analysis of commercial aviation accidents 

happened during 1958-2016, accident caused by System, Component Failure or 

Malfunction included the failure of power plant, software and database systems 

approximately occupy 12% of the total number of hull losses accidents since 1997 

[19].  

 

Figure 2-4 Percentage of Hull Losses by Accident Category 1997-2016 [19] 

Any failure of software can lead to a potential risk situation which could lead to 

the loss of property and lives. Therefore, software failure has emerged as one of 

the new sources of hazard [20]. Over-trusting or underestimating the complexity 

of software could lead the occurrence and propagation of hazard, which may 

contribute to the system, even aircraft failure.  

Therefore, people want the correct and safe software. Unfortunately, it is difficult 

to correctly produce the software, even harder to ensure the software safety, 

because safety is an incredibly complex issue that depends on many factors. For 

example, safety engineers hope to detect and correct all the errors before 

implemented. In fact, some errors can be identified and some cannot be found.  
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Meanwhile, new errors might be introduced. So that, this is one reason that some 

software may have the defects after implemented, and some software was 

deemed as safe, but it still can cause the hazard.  

Software safety is not a software-specific issue, and is a systems issue [21]. If all 

the errors or failure can be found and corrected at the early time, or can be 

detected during the whole software life cycle, the software will reduce the 

probability of hazard occurrence. Therefore, software safety should be integrated 

into software lifecycle and system development process. Through the 

assessment of safety-critical software during the software lifecycle, it will help to 

guarantee the correctness of software requirements, code and implementation. 

Thereby, the software safety can be guaranteed, and the confidence level of 

software can be kept at a higher level. For system safety, the software safety 

assessment can be used as evidence to prove the system hazard has been 

controlled and eliminated. The next section will discuss two system safety 

assessment processes which are introduced in APR4754A and military standard.  

2.3 System and Software Safety Assessment Process 

For the safety-critical system, it is essential to perform the safety assessment, 

which can identify, control and reduce all of the safety risks at the acceptable risk 

level. This safety assessment not only conducts at system-level, but also involve 

with software-level [22].  

This section mainly discusses the system safety assessment process, software 

safety assessment process, and the relationship between these two processes. 

The section lists several system safety assessment processes and software 

safety assessment processes which are acceptable to the aviation and military. 

And then, the section analyses the relationship between system safety 

assessment and software safety assessment.  

2.3.1 System Safety Assessment Process 

 System Safety Assessment Process in Civil Aircraft 
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In civil aircraft, ARP 4754A and ARP4761 are two wide acceptance guidelines 

related to aircraft and system safety assessment. These two guidelines provide 

the detailed safety assessment process and various safety assessment methods. 

ARP4754A provides the detailed system safety assessment process which is to 

establish the safety objectives and to demonstrate compliance with other related 

safety requirements during the period of system design [10]. ARP4761 provides 

the guidelines and methods for conducting the safety assessment on system 

level or at aircraft level of civil aircraft for certification [9].  

 

Figure 2-5 Safety Assessment Process in ARP4754A [10] 
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In APR4754A, the system safety process uses various assessment processes 

and methods to evaluate system design and functions, which ensure all the 

hazards have been found and controlled. Figure 2-5 shows the system safety 

process.  

The system safety assessment process in ARP4754A includes four parts, which 

are functional hazard assessment (FHA), preliminary system safety assessment 

(PSSA), system safety assessment (SSA), and Common Cause Analysis (CCA) 

respectively. Before conducting the system safety assessment process, the 

outputs of aircraft PSSA and FHA are used for the input file of system safety 

assessment, such as the list of aircraft level failure conditions, and high-level 

safety requirements. After the aircraft functions are allocated to system-level, it 

can start to conduct system safety assessment. The system assessment process 

can be summarized as shows in Figure 2-6. 

 

Figure 2-6 System Safety Assessment Process in ARP4754A 

The first step is to conduct system-level functional hazard assessment. This 

process is to identify the system-level failure condition according to the list of the 

aircraft-level failure conditions, safety objectives and system functions, and to 

determine the severity of each failure condition according to its effect. After 

finished the system-level FHA, preliminary system safety assessment and 

common cause analysis can be started. PSSA is to complete the failure 



 

15 

conditions list, to generate lower-level safety requirements, and to verify the 

proposed system architecture by reviewing related safety requirements. PSSA is 

the iterative process, and it can be conducted during the entire software lifecycle. 

At the lowest level, PSSA can be used for identifying the software or hardware 

safety requirements. Common cause analysis is to verify and determine 

independence of the system, function or item. During the CCA, it generates the 

system safety requirements for PSSA to validate the proposed architecture. The 

last step is system safety assessment. SSA evaluates the implemented system-

level function to prove whether the relevant safety requirements are satisfied or 

not. In SSA, the common safety assessment methods are fault tree analysis and 

failure mode and effects analysis. Those two methods help to determine the 

causes of the related failure conditions. After the SSA, it can start the software 

and hardware level safety assessment process. Figure 2-6 shows the primary 

relationships in the system safety assessment process. In fact, each process can 

be entered or re-entered depending to the requirement. Meanwhile, there are 

many feedback loops between each process. 

The second part is the introduction of system safety assessment process in 

military standards, MILT-STD-882E [6]. The basic idea of the military system 

safety assessment process is similar with the ARP4754A, which is to identify and 

assess the hazard.  

 System Safety Assessment Process in MILT-STD-882E 

The system safety assessment process has eight components. Figure 2-7 gives 

the flowchart of system safety assessment process in MILT-STD-882E [6]. Here 

gives the brief introduction of each element.  

‒ Element 1 is Document the System Safety Approach. The document 

should include the result of risk management, specified and derived 

system requirements, and the description of the acceptable process of 

hazard and risk by authority, and the Hazard Tracking System report.  
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Figure 2-7 System Safety Process in MIL-STD-882E [6] 

‒ Element 2 is Identify and Document Hazards. Documented all the 

hazard identified in this safety assessment process, and the hazard 

should include software and hardware, interfaces, operational 

environment.   

‒ Element 3 is Assess and Document Risk. By using the table of severity 

category and probability level, assessed all the hazards. The severity 

category table is to identify the potentially harmful, such as death or 

injury, the effect on the environment, and the monetary loss. The 
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probability level table is for assessing the likelihood of each hazard 

occurrence. After assigning the severity and probability, it used the Risk 

Assessment Code to evaluate each risk. Last, document all the hazard 

in Hazard Tracking System report. 

‒ Element 4 is Identify and Document Risk Mitigation measures. Identified 

methods of the risk mitigation and reduction, such as using design 

alternative to eliminate or reduce the hazards. All the alternatives should 

be documented in Hazard Tracking System report. 

‒ Element 5 is Reduce Risk. Selected the applicable mitigation methods, 

and controlled the hazard to stay at a reasonable and receivable risk 

level. This should consider the cost, effectiveness and feasibility of the 

selected method.  

‒ Element 6 is Verify, Validate, and Document Risk Reduction. Through 

the verification and validation of implementation, proved the 

effectiveness of the selected mitigation methods. Documented all the 

verification and validation result in Hazard Tracking System report. 

‒ Element 7 is Accept Risk and Document. The appropriate authority 

should accept all the risk before the hazard happened.  

‒ Element 8 is Manage Lifecycle Risk. Through the entire system lifecycle, 

the system safety process should be used for identifying and 

maintaining the Hazard Tracking System.  

The system safety process aims to identify, control, reduce and document all the 

system-level hazards during the system lifecycle. The process can also focus on 

selecting the proper method of control, reduce and eliminate the hazards.   

2.3.2 Software Safety Assessment Process 

In this section, the author summarizes software safety assessment process from 

different aspects. The software safety assessment process focuses on the 

content and selected safety assessment methods. 
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 Software Safety Assessment in Military  

Military standards such as MIL-STD 882E, consider that the software safety 

assessment process conducts various safety assessment activities and tasks on 

safety-critical software and functions according to the level of rigor [23] [24].   

The process has nine sub-processes and involves software development process. 

This software safety assessment process aims to reduce the risk during the 

software lifecycle, which can add robustness for software. Figure 2-8 shows the 

software safety assessment process in Naval Surface Warfare Centre.  

 

Figure 2-8 Software Safety Assessment Process in Military [24] 

The first step is to determine the safety scope of program and tasks, and the 

second step is to determine Software Criticality Index (SwCI) for each software 

safety-significant function. The rest of steps in this safety assessment process 

have a closed relationship with the software development process, which focus 

on software safety requirement, architecture, code and testing verification.  

The basic idea of the military software safety assessment process is to conduct 

various verification and validation actions on different software functions 

according to its Software Criticality Index. Figure 2-9 shows the basic idea of the 

Software Criticality Index assignment process in the military software safety 

assessment process. 
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Figure 2-9 Basic Idea of Software Criticality Index Assignment Process in 

Software Safety Assessment Process 

The assignment process can be summarized as the following steps [6]: 

 Step 1: After the system safety assessment, starts to identify the software 

safety-significant functions and hazards related to these functions.  

 Step 2: Starts to determine the software control category of the identified 

hazard by using the software control category table.  

 Step 3: Through a combination of software control category and the severity 

category table, determines the software safety criticality index for each 

safety-significant function.  

 Step 4: Determines the level of rigor (LOR) tasks by using software Safety 

Criticality Index. 

 Step 5: Reviews the result and execution of level of rigor tasks:  

‒ Step 5a: If LOR tasks are fully completed, uses results to assign the 

software hazards to the system. 

‒ Step 5b: If LOR tasks are not performed or not completed, assigns risk 

level to software based on MIL-STD-882E; 

This process uses Software Criticality Index to determine the level of each 

software safety-significant function, and perform the various assessment 

activities for the different Software Criticality Index. Assessment activity includes 

software safety assessment sub-process and proper safety assessment methods. 

Table 2-1 and Table 2-2 show the activities of each step in this process, and give 

the recommended safety assessment methods for each step. 
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Table 2-1 Activities of Each Step in Software Safety Assessment Process-1 [23] 

[24] 

Steps Activities (includes method) 

System Definition and 
Software Safety 
Planning 

a) Define program safety scope. 

b) Conduct Functional Hazard Assessment and 
identify the software Safety-Significant Functions 
for each subsystem. 

Determine Software 
Criticality Index 

a) Assign Software Criticality Index to each 
software Safety-Significant Functions according 
to Figure 2-9. 

Software 
Requirements Hazard 
Analysis 

If Software Criticality Index is 1-3, it need to conduct 
assessment tasks: 

a) Conduct Software Requirements Hazard 
Analysis for each software Safety-Significant 
Functions. 

Software Architectural 
Hazard Analysis 

If Software Criticality Index is 1-3, it need to conduct 
assessment tasks: 

a) Review all architectural related documents to 
assess current hazards and review functional 
hazard analysis. 

Software Design 
Hazard Analysis 

If Software Criticality Index is 1-2, it need to conduct 
assessment tasks: 

a) Collect design explanation documents, such as 
the explanation of how the proposed architectural 
is implemented within the design. 

b) Conduct Software Causal Factor Analysis. 

c) Review all design documents and previous 
architectural analysis by using Conceptualized 
Control Flows. 

Code Level Hazard 
Analysis 

If Software Criticality Index is 1, it need to conduct 
assessment tasks: 

a) Conduct Data Structure Analysis. 

b) Conduct Data Flow Analysis. 

c) Conduct Compliance Checklist. 

Operator 
Documentation Safety 
Review 

a) Review operation documents such as the user 
manual, to identify new hazards and ensure 
adequacy of procedural controls. 
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Table 2-2 Activities of Each Step in Software Safety Assessment Process-2 [23] 

[24] 

Steps Activities (includes method) 

Software Safety 
Testing and 
Verification 

If Software Criticality Index is 1-4, it need to conduct 
assessment tasks: 

a) Determine the safety testing requirements, such 
as the safety-specific or the in-depth safety 
testing in accordance with the Software Criticality 
Index by using AOP-52 and the JSSSEH.  

b) Analyze test results.  

Formal Review 

a) Provides enough evidence that the software 
failure related to the system risk has been 
identified and defined, and that risk level keeps at 
the accepted level by the appropriate authorities.  

 

 Software Safety Assessment in Computer Science 

IEEE Standard for Software Safety Plans [25] is used for the safety-critical 

software lifecycle, such as software development, maintenance. In this standard, 

it describes that the detailed steps in software safety analysis, and it includes the 

following steps [25]: 

 Software safety analyses preparation 

 Software requirements safety analysis 

 Software design safety analysis 

 Software code safety analysis 

 Software test safety analysis 

 Software change safety analysis 

IEEE Standard for Software Safety Plans introduces the detailed objectives and 

activities of each sub-process of software safety assessment process. It also 

suggests the proper safety assessment methods according to objectives. Table 

2-3 shows the objectives and proposed methods in each step of software safety 

assessment process. 
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Table 2-3 Objective and Proposed Methods in Software Safety 

Assessment Process [25] 

Steps Objectives Method 

Software 
safety 
analyses 
preparation 

Allocates documents to support 
the software safety analysis 
process, such as system FHA 
result, software requirements 
and the interface between 
hardware and software.  

a) Review 

Software 
requirements 
safety analysis 

Evaluates the software 
requirements such as functional, 
interface and safety. Identifies 
errors and failure that could lead 
to the hazard.  

a) Criticality 
analysis 

b) Specification 
verification 

c) Software system 
and function 
assessment 

Software 
design safety 
analysis 

 

According to the safety 
requirements, verifies the design 
of safety-critical function, and 
proves that it doesn’t introduce 
any new hazard during the 
design. 

 

a) Functional 
assessment  

Software 
element analysis 

Software code 
safety analysis 

 

Verifies the design of safety-
critical functions is entirely 
implemented in the code 
correctly.  

 

a) Code Logic 
analysis 

b) Code Data 
analysis 

Code Data Flow 
Analysis 

Software test 
safety analysis 

Proves that the safety 
requirements have been 
correctly implemented by 
software design. All the software 
functions have been tested, and 
the result is acceptable. 

 

a) Software Unit 
Test 

b) Interface testing 

c) Integration 
testing 

Software 
change safety 
analysis 

 

Proves that the change doesn’t 
introduce the new hazard; 
doesn’t effect on the previously 
solved hazard, and doesn’t 
cause the more severe effect on 
existing hazards.  

a) Review 
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2.3.3 Relationship between System Safety Assessment and Software 

Safety Assessment  

System safety assessment starts with identifying the related hazards and 

generates the safety requirements for system design which achieve to control, 

reduce and mitigate the hazard. The software safety assessment has the same 

purpose, and it applies the assessment process at the software level. As 

mentioned above, software safety is the system issue. Any failure of software 

may cause the system failure. So that, the software safety assessment process 

should contribute to the assurance of system safety by assuring the software 

safety.   

Software safety assessment should be involved in the system safety assessment, 

and becomes the part of the system safety assessment. The output of system 

safety assessment is used as the input of software safety assessment, and the 

output of software safety assessment will be the feedback for system assessment. 

The relationship between software safety assessment and system safety 

assessment shows in Figure 2-10. For example, the system safety assessment 

determines the development assurance level of system-level functions or items. 

After this, the software assurance level assignment is based on the output of 

system safety assessment and proposed software architecture. Meanwhile, the 

software development assurance level will be returned to the system for 

verification and validation.  

 

Figure 2-10 Relationship between System Safety Assessment Software Safety 

Assessment 
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Therefore, software safety assessment is not only important to the specific 

software, but also for the related system and whole aircraft. Software safety 

assessment aims to increase the confidence level that the software will perform 

as expected by identifying and controlling all the related hazards.  

The next section will discuss the traditional and emerging software safety 

assessment methods, and these methods focus on identifying the failure or error 

that could lead to a hazard, and mitigate the software contributors to hazards. 

2.4 Software Safety Assessment Techniques 

Safety assessment includes kinds of safety assessment techniques to satisfy 

different objectives. The common safety assessment techniques, such as Fault 

Tree Analysis, Failure Modes and Effects Analysis, start to be used for safety-

critical software. Meanwhile, some new methods such as formal method apply 

mathematics and logic to assess the software. This section will mainly discuss 

the working principle and working steps of both the traditional and emerging 

software safety assessment techniques.  

2.4.1 Traditional Software Safety Assessment Methods 

This section mainly discusses three safety assessment methods which are 

functional hazard assessment, fault tree analysis, and failure mode and effects 

analysis respectively.   

 Functional Hazard Assessment  

Functional Hazard Assessment (FHA) is the comprehensive functional 

assessment process to identify the failure condition and to classify the failure 

condition according to its severity [9]. FHA can conduct in both aircraft and 

system level, and it usually begins in the early stage of aircraft or system 

development process. The aircraft level FHA is a high-level assessment, and it 

mainly assesses functions at the beginning of an aircraft development. The 

identified hazards from the aircraft level FHA are related to the aircraft function. 

The system level FHA is to assess the system function, thereby identifies and 

classifies the single or combination hazards which influence on aircraft. The FHA 
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aims to identify all associated failure conditions and classify the severity level 

according to its effects. The classification of failure conditions establishes the 

safety requirements of aircraft, system or software.  

Generally, FHA conducts at the higher level, such as aircraft and system level.  

But it can also identify hazards at software level. The principle and process of 

software FHA and aircraft/system FHA are same. The general process is shown 

in Figure 2-11: 

 

Figure 2-11 Functional Hazard Assessment Process [9] [10] 

The basic idea of conducting FHA is to identify the scope of assessment firstly, 

and to determine all the possible failure conditions by the assumption of the 

function failure, such as “loss control” and “loss warning”. Last, to define the 

classification and effect by the related supporting materials.  
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The input of FHA is the system functions and functional architecture. The output 

of FHA should include several information associated with aircraft, system or 

software: 

‒ The related failure conditions. 

‒ The effects of failure condition, which include the effect on aircraft, crew 

and passenger. 

‒ Classification of each failure condition according to its effect. The 

Classification is divided into five categories, Catastrophic, Hazardous, 

Major, Minor, and No Effect.  

‒ Assumed environment is considered during the FHA.   

The output of FHA is the list of failure conditions and its classification, which is 

the fundamental of the fault tree analysis. The fault tree analysis can use to 

identify failure conditions as its top event. The next section will introduce how to 

decompose the failure condition and how to find the basic cause of the related 

failure condition.  

 Failure Fault Tree Analysis 

Fault Tree Analysis (FTA) is a top-down analysis approach that was developed 

in 1962 under U.S. Air Force Ballistics Systems Division at Bell Laboratories [26]. 

FTA can be applied to almost every phase of software lifecycle. For example, it 

can be used in software requirement assessment for eliciting safety-related 

requirement, and can also be used in software design.  

FTA is to identify the software errors or mistakes which caused the failure 

condition or hazard. By using the graphical presents the combination of 

component failures or errors that leads to the high-level failure [27]. The typical 

fault tree is constructed by symbols, and each symbol expresses the different 

meanings or attributes. Table 2-4 shows some frequently used fault tree 

construction symbols [28]. 
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Table 2-4 Symbol of Fault Tree Analysis [28] 

Symbol Name Description 

 

Intermedia Event 

The event can be analysed 
and decomposed further. 

 

 

 
Basic Event 

It presents the event is the 
basic reason of the hazard, 
and cannot decomposed any 
more. 

 

Undeveloped Event 

This is used for some event 
cannot developed further due 
to the lack of information or 
out of scope. 

 

 
AND gate 

If all of the input faults occur, 
the out fault happen. 

 

OR gate 

If at least one of the input 
faults occurs, the output fault 
happens.  

 

 

 
Transfer In 

The tree will be developed 
further as the occurrence of 
the symbol of Transfer out. 

 

Transfer Out 
The fault tree must be 
attached at the symbol of 
Transfer in. 

The FTA starts with the list of failure conditions that have been found in system-

level FHA. Each failure condition should have one individual tree, and the primary 

procedure of FTA is to assume the failure condition has happened, and to go 
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backward to identify all the possible causes. The general process of fault tree 

construction shows in Figure 2-12: 

 

Figure 2-12 Construction step of Fault Tree Analysis [29] 

Software Fault Tree Analysis is the approach that applies normal FTA to software 

level, which helps to identify the software errors or failure. The construction steps 

are same with the normal FTA. However, it needs to take account of software 

function and software architecture [8]. Before construction, software FTA needs 

to specify the purpose and scope of this fault tree. Then, uses the list of failure 

conditions found in the system functional hazard assessment as the top events 

of software FTA. After defining top event of the fault tree, it can start to 

decompose until found the basic events of this fault tree. The general procedure 

of SFTA shows in Table 2-5: 

Table 2-5 Step of Software Fault Tree 

Step 1 Define the purpose and scope of the software fault tree 
analysis. 

Step 2 Define all the undesired event (failure conditions). 

Step 3 Identify causes for top-level fault (upper tier). 

Step 4 Identify next level of events (intermediate tier). 

Step 5 Identify root causes.  

Step 6 Analysis the result. 
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Cut set analysis can be performed to determine the minimal cut sets of the 

corresponding fault tree after the construction. This analysis gives the several 

sets of the basic events that can cause the top event individually. 

Fault tree analysis can identify all the possible causes of the related failure 

condition, which can help engineer to recognize the weakness of the system or 

software. The other advantage of FTA is that can help engineer identify the 

human error. However, FTA has some disadvantages, such as FTA only focuses 

on the cause of the failure, but it cannot provide any suggestion or information if 

the failure occurs. FTA doesn’t care about the effects and solution of each failure 

condition.  

 Failure Mode and Effects Analysis 

Due to the working principle of FTA, FTA cannot consider the common mode 

failure, which means one error or mistake may cause more than one hazard. So, 

many standards and researches recommend the bi-direction approach which can 

work backwards and forwards [16]. Failure Mode and Effects Analysis (FMEA) is 

one of the bottoms-up analysis methods, and it was developed by the military for 

studying the possible failure of the military system in 1950s [30]. This method 

cares about how each component failed, and how the component failure 

propagated to the system. FMEA is one of the fault analysis methods to identify, 

control and eliminate the possible failure mode during each phase of the 

development, and it focuses on failure prevented. 

The Risk Priority Number (RPN) is the important part of FMEA analysis, and it is 

used to rank each identified failure mode.  The RPN is using the values of Severity 

(S), Occurrence (O), and Detection (D). The severity means the consequences 

of the failure. The occurrence means the frequency of the failure occurred, and 

the detection means the probability of the failure detection. These three factors 

can be ranked from 1 to the 10, and 10 is the most serious [31]. RPN value is to 

multiply the ranking of three factors and the formula shows as below: 

RNP=Severity × Occurrence ×Detection.  
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The RPN should be used for each possible failure modes for determining the 

effects. However, this RNP may lead to the reversible ranking. One failure has a 

less severity value, but receives a higher RNP than one more severe failure mode. 

For example, the RNP of a failure mode which the severity ranking is “2”, may be 

lower than a failure mode which the severity ranking is “1”, because of the higher 

occurrence or detection ranking. 

 

Figure 2-13 Failure Mode and Effects Analysis Process [31] 

The output of FMEA typically includes the list of identified components or 

functions, the failure modes related to identified function, and the effect of this 

failure [9]. The process of FMEA shows in Figure 2-13. 

Software Failure Mode and Effects Analysis is to apply FMEA to software. The 

procedure of Software Failure Mode and Effects Analysis is similar with FMEA, 

and it starts to identify all possible failure modes related software. And then, it 

works forward to find the effects on the system or aircraft.  



 

31 

FTA and FMEA are both analytical methods for fault analysis, but they focus on 

different purposes.  

 

Figure 2-14 Difference between FTA and FMEA [32] 

The working principle of FTA and FMEA shows in Figure 2-14. FTA focuses on 

the consequences of the failure condition. Therefore, this method is to identify all 

the possible basic causes related to the hazard by checking all the available 

components. The cause of a hazard can be the single failure or the combination. 

However, FMEA focuses on the individual failure modes, and it exams all the 

possible failure modes for determining effects on the higher-level component or 

system. [33]. 

2.4.2 Emerging Software Safety Assessment Methods 

Besides traditional safety assessment methods introduced in the previous section, 

there are many new methods for software safety assessment, and some of them 

have been already used in the practical software safety assessment project. This 

section briefly introduces the formal methods, and gives the detailed explanation 

of model checking.  

 Formal Method 

Formal Method is not a single method, and it is the set of techniques and tools. 

Formal method is to describe and verify the safety problem by using mathematics 

and logic. This method aims to guarantee the safety of system and software. 
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Formal method includes three parts of activities, and they are respectively formal 

specification, program refinement and formal verification [34].  

Formal specification refers to a collection of methodologies for system objects, 

and its operations. Formal specification also can be the description of the 

behaviour of each object in the development process. Formal verification is the 

next step after the formal specification, and it usually uses two techniques, which 

are theorem proving and model checking. Program refinement is the new 

technology which combines the formal method and automated reasoning. 

Theorem proving uses the logical formula to regulate the system and its 

properties. A formal system will provide axioms or regulations, and theorem 

proving applies these axioms or rules to prove whether the system has specific 

properties or not. Model checking is a technique to check the desired properties 

of one finite state model. This technique can examine each possible state of the 

system to check whether the desired properties hold for a model or not. 

Properties can be related to system or software safety, liveness and functional 

[16]. Compared with theorem proving, model checking can be fully automated 

and conducts the verification task without human intervention. However, model 

checking has a disadvantage which is the state explosion. The different states 

rise exponentially in the concurrent system due to the increasing scale of the 

system. However, the development of Binary Decision Diagrams and Symbolic 

Model Checking has solved this problem. In the next section, the author will 

mainly discuss the related knowledge and the working principle of model 

checking. 

 Model Checking 

As mentioned above, the working principle of model checking is to exhaustively 

and automatically search the given model and to verify whether the desired 

properties are held in this model or not. If the answer is yes, it proves the model 

and specification is consistent. Otherwise, it gives the encounter example which 

points out the error. The working principle can be described as Figure 2-15. 
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Figure 2-15 Model Checking Formula [35] 

In the formal modelling techniques, a model is a formal description of the object, 

such as a function, a system, and a piece of equipment [34]. Kripke structure is 

one of the modelling languages. 

 Formal Modelling Language - Kripke structure 

A Kripke structure is used to express the model in the model checking. The Kripke 

structure was proposed by Saul Kripke in 1963, and used to present the 

behaviour and transition relationship of the system [36]. The Kripke structure can 

describe all the internal relationships of a state transition system.  

A Kripke structure consists of five tuples, and it presents as 𝐾 =  (𝑆, 𝑆0, 𝛿, 𝐴𝑃, 𝐿). 

𝑆 is a finite set of states. 𝑆0  is the initial state or the set of initial state, and 

𝑆0 belongs to 𝑆.  𝛿 is the transition relation between each state. 𝐴𝑃 presents the 

set of atomic propositions, and atomic propositions are the propositions cannot 

be further divided, such as the state is true. 𝐿 means the labelling function, and it 

presents as 𝐿: 𝑆 →  2𝐴𝑃.  𝐿(𝑎) is the set of atomic propositions, and it expresses 

as the value of L is true when under the state a [37]. The Kripke structure can be 

express as the graph which has the label, root and direction. The set of the node 

equals to the set of finite states 𝑆; the set of the edge equals to the set of transition 

relation 𝛿; the label of the node equals to 𝐿, and the root of the graph equals to 

the 𝑆0.  
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So, a Kripke structure can be translated into one state transition graph. However, 

the state transition graph is not the formal model, and is the way in helping to get 

the better understating of the software behaviour. Figure 2-16 shows example of 

a state transition graph, and this graph can be expressed in a Kripke structure.  

 

Figure 2-16 State Transition Graph for Kripke Structure [38] 

The Kripke structure of Figure 2-16 can be expressed as: 

‒ 𝑆 = {𝑆0, 𝑆1, 𝑆2} 

‒ Initial state is 𝑆0 

‒ Transition relation 𝛿 = {(𝑆0, 𝑆1), ( 𝑆1, 𝑆0), ( 𝑆0, 𝑆2), ( 𝑆2, 𝑆1)} 

‒ 𝐿(𝑆0) = {𝑎, 𝑏}, 𝐿(𝑆1) = {𝑏, ¬𝑐}, 𝐿(𝑆2) = {𝑎, 𝑐} 

The informal model can be formally modelled by the Kripke structure, and the 

properties should be also translated into the formal specification. In model 

checking, it usually uses temporal logic to express the property.  

 Temporal Logic 

Temporal logic is to specify the property over time, but it doesn’t really care about 

the time. It cares about the states and their relative position in the model. 

Temporal Logic can also express the dynamic state of the system. Generally, 

temporal logic mainly is divided into two categories. One is Linear Temporal 

Logics, and the other is Computation Tree Logic. 
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‒ Linear Temporal Logic   

Linear Temporal Logic (LTL) was introduced by Pnueli in the 1970s [39]. It 

is widely used to express the behaviour of events on a calculation path. LTL 

formula consists of a formula 𝑝 and a temporal logic operators “A”, such as 

A 𝑝. Figure 2-17 is the graphic representation of Linear Temporal Logic, and 

shows that every node has a unique successor. Each path can use to 

describe one LTL formula. 

 

Figure 2-17 Linear Temporal logic [40] 

The LTL formula consists of the following components [38] [37]: 

- Given the atomic proposition set 𝐴𝑃.  (State label 𝑝 ∈  𝐴𝑃). 

- Basic Boolean Operators.  ¬(Negation), ∧(Conjunction). 

- Basic Temporal Operators. X (next time), F (eventually), G (always), 

U (until). 

The syntax of LTL formula is defined as following [38] [37]: 

- If all the atomic proposition 𝑝 ∈  𝐴𝑃, then 𝑝 is the valid LTL formula. 

- If 𝑝 and 𝑞 are two valid LTL formulas, then ¬𝑝,  𝑝 ∨  𝑞,  𝑝 ∧  𝑞,  𝑝 →

𝑞,  𝑝 ↔  𝑞, X𝑝, F𝑝, G𝑝, (𝑝 U 𝑞) are also valid LTL formulas. 

Use the syntax can describe the state transition in one model, such as 

“Always after p eventually q ”. It can be formalized as AG (p → AFq). Figure 

2-18 is shown the typical LTL formulas. 
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Figure 2-18 Example of LTL Formula 

If there is a given Kripke structure K =  (S, S0, δ, AP, L), and LTL formula 𝑝. In 

LTL model checking algorithm, the model checker will exam whether the path 

π satisfy 𝑝 or not.  

‒ Computation Tree Logic 

Computation Tree Logic (CTL) was created by E. Emerson and E. Clarke in 

1979. It is used for presenting the property of Branching Time Temporal in 

the program at the initial stage of development [41]. Figure 2-19 shows 

graphic representation of Computation Tree Logic and shows every node 

has several successors. Compared with LTL, CTL uses the computation tree 

instead of a linear path, and introduces the path quantifiers to present that 

the properties must be held in all states or some states starting from the initial 

state.  

 

Figure 2-19 Computation Tree Logic [40] 
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In CTL, there are two path quantifiers. One is “A” which means all executions 

or paths, and the other is “E” which means for some execution. CTL syntax 

requires that one of path quantifiers and one of temporal operators should 

be used in a pair, and path quantifier should be written before the temporal 

operator, such as AG and EX. So, XA and XF are not allowed in CTL syntax.  

The syntax of CTL formula, it combines with the basic temporal operators X 

(next time), F (eventually), G (always), U (until), and the path quantifiers (A, 

E) to describe state transition: 

[
𝐴
𝐸

] [

𝑋
𝐹
𝐺
𝑈

] 𝑝 

In CTL formula, EX, EG and EU are the basic combination operators, and 

rest of combination operators can be transformed, such as ¬EX 𝑝 = AX¬𝑝. 

This section gives several CTL formula examples and its descriptions. Thesis 

uses one computation tree as a running example, and this computation tree 

is with varying distribution of the red and black states. The given formula 

𝑝 and 𝑞 are true if the black states satisfy p and red states q [37]. 

AG 𝑝 is true when 𝑝 satisfies all the states on all paths which starts from the 

initial state in a computation tree. Figure 2-20 shows the AG 𝑝  in a 

computation tree. 

 

Figure 2-20 AG 𝒑 
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AF 𝑝 is true when there is one state which satisfies 𝑝 on all paths starting 

from the initial state in a computation tree. Figure 2-21 shows the AF 𝑝 in 

a computation tree. 

 

Figure 2-21 AF 𝒑 

EG 𝑝 is true when every state satisfies 𝑝 on a path which starts from the 

initial state in a computation tree. Figure 2-22 shows the EG 𝑝  in a 

computation tree. 

 

Figure 2-22  EG 𝒑 

E (𝑝 U 𝑞) is true if there is a path starting from the initial state satisfies 𝑝 

until reaches one state which satisfy 𝑞. Figure 2-23 shows the E (𝑝 U 𝑞) in 

a computation tree. 
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Figure 2-23 E (𝒑 U 𝒒) 

The syntax of CTL formulas need to follow the several rules, and shows 

as below [37]: 

- If all the atomic propositions 𝑝 𝜖 𝐴𝑃, then 𝑝 is the valid CTL formula. 

- If 𝑝 and 𝑞 are two valid CTL formulas, then ¬𝑝, 𝑝 ∨  𝑞, 𝑝 ∧  𝑞, 𝑝 →

𝑞,  𝑝 ↔  𝑞, AX𝑝, EX𝑝, AF𝑝, EF𝑝, A (𝑝 U 𝑞), E(𝑝 U 𝑞) are also valid 

CTL formulas. 

- The valid CTL formula 𝑝 can only be created by applying the first 

two steps within a limitation times. Otherwise, the formula 𝑝 is not 

a valid CTL formula.  

CTL model checking is to verify whether all the states or some states in 

the path 𝜋 of a Kripke structure K satisfy the CTL formula 𝑝 or not. The 

syntax of CTL model checking can be described as below: 

K, S| = p  expresses that one formula p is true when at state S in Kripke 

structure K.  π = {S0, S1, S2, … } means the path in Kripke Structure, and S0 

is the current state which is also the initial state. Si+1 is the successor state 

of S0. So, the semantics of CTL can be defined as [37] [38]: 

- 𝐾, 𝑆| = 𝑝  if  𝑝 ∈  𝐿(𝑆)  

- 𝐾, 𝑆| = ¬𝑝   (𝑝 is false at state 𝑆). 

- 𝐾, 𝑆| = 𝑝1 ∧ 𝑝2, if 𝑝1 ∈  𝐿(𝑆) and 𝑝2 ∈  𝐿(𝑆). 
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- 𝐾, 𝑆| =AX 𝑝, if for all paths 𝜋 = { 𝑆0, 𝑆1, 𝑆2, 𝑆3, … }, starting in 𝑆0, p is 

true when at state s1. 

- 𝐾, 𝑆| = EX  𝑝 , if there exists a path 𝜋 = { 𝑆0, 𝑆1, 𝑆2, 𝑆3, … }, starting 

in 𝑆0, 𝑝 is true when at state 𝑆1.  

- 𝐾, 𝑆| =E (𝑝1 U 𝑝2), if there exists a path 𝜋 =

{ 𝑆0, 𝑆1, 𝑆2, 𝑆3, … }, starting in 𝑆0, 𝑝1 is true until 𝑝2 is true.  

There is some CTL formula used to describe safety features: 

- AG 𝑝 means invariant. In requirement specification, it will use for 

describing the status of system or software function cannot be 

changed at any time, if AG 𝑝 is true.  

- EF 𝑝 means potential. In requirement specification, it will use for 

describing the status of system or software function might be 

changed at a particular time, if EF 𝑝 is true. 

- AF 𝑝 means Inevitable. In requirement specification, it can describe 

the hazard.  

Compared with CTL, LTL focuses on the individual path, buy CTL focuses 

on the multiple paths. The syntax of LTL is simpler than CTL, because CTL 

has two path quantifiers. For semantically, two logical are Incomparable. 

So, depending on the target problem and its requirements to choose the 

proper temporal logic. 

 Model Checker  

Based on the different platforms and purposes, lots of research institutions and 

labs developed various types of model checkers, such as SPIN developed by Bell 

Labs and NuSMV developed by Carnegie Mellon University.  

SPIN is one of the typical Explicit-State Model Checkers, and it can verify the 

multi-threaded software efficiently. So, this model checker is suitable for verifying 

the concurrent software design [42].  

NuSMV is one of the symbolic model checkers which re-implemented the SMV 

model checker by Carnegie Mellon University, and this checker supports the 
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verification of properties expressed in both CTL and LTL formula [43]. Table 2-6 

briefly shows the comparison between two model checkers.   

Table 2-6 Comparison of Model Checkers 

Name Input Language 
Properties description 
language 

Platform 

SPIN Promela LTL Windows, Linux 

NuSMV SMV CTL, LTL 
Windows, Linux, 
MacOS 

2.5 Summary 

After the literature review, there are several findings in software safety 

assessment process and methods.  

First, the software safety assessment process is essential for software, system, 

even the aircraft. This process helps engineer to identify the software hazards 

which contributes to the high-level failure. This process can control, reduce and 

eliminate the hazard at the initial stage of development. The software safety 

assessment process guarantees correctness of software and adds rigor and 

robustness to safety significant software. 

Software safety assessment is not a simple and independent process, and it has 

a closed relationship with other processes, especially the software development 

process. The software safety assessment process should be integrated into the 

entire software lifecycle, and there is a one-to-one correspondence relationship 

between software safety assessment process and software development process. 

For example, the development process includes the requirement process, and 

the proposed software safety assessment process should have one sub-process 

which focuses on requirement assessment and verification.  

Last, software FTA and software FMEA are two recommended approaches for 

identifying the software failure which contributes to system hazards. However, 

these two fault analysis approaches don’t have the capability of assuring the 
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correctness and consistency. Model checking is one of the emerging approaches 

in software assessment method, and it checks whether a desired property to be 

held in a target model or not. If the answer is yes, it can confirm the correctness 

and consistency of the model and properties. So, combined FTA, FMEA and 

model checking not only can elicit the software safety requirements, but also can 

prove the correctness and consistency. 
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3 Avionics Software Safety Assessment Process 

3.1 Introduction  

This Chapter discusses the proposed software safety assessment process for 

avionics software. As mentioned in pervious, the software safety assessment 

should have the one-to-one corresponding relationship with software lifecycle, 

especially the software development process. Several guidelines or standards 

discuss software development process model for different purposes, such as DO-

178C [5]. 

3.2 Software Development Process in DO-178C 

DO-178C is one of the widely accepted standards to assure safety of airborne 

software, and this document provides the guidelines for development and safety 

assurance of airborne software based on software lifecycle [5].  

Software lifecycle is divided into five parts, and software development process is 

the secondary part of the DO-178C. And the software development process 

includes four sub-processes, and they are respectively software requirement 

process, software design process, software coding process and integration 

process. Figure 3-1 shows content and objectives of the software development 

process.  

 

Figure 3-1 Software Development Process in DO-178C 
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The software requirement process is to develop the high-level software 

requirements which include functional, safety and performance requirements. 

The software architecture process is to develop software architecture and lower-

level requirements that can be used for the software coding process. The coding 

process is to implement software design included software architecture and 

lower-level requirements. The last is the integration process, and this process is 

to produce and load the executable object code and related files.  

Through the objectives of each sub-process in software development process, 

three objectives are necessary for considering during software safety 

assessment, which are software requirement, software architecture and code. 

Therefore, the software safety assessment process should focus on these 

components, and assess each individually. However, requirements are divided 

into different categories, such as the functional, safety, interface and so on. In 

this research, the author focuses on the safety-related requirements, which may 

involve software function or interface.  

Besides software development process, the safety assessment process should 

also include the software testing. Software testing provides evidence to prove the 

confidence level of the software development process by demonstrating whether 

the software satisfied its requirements or not [5]. As mentioned in Chapter two, 

different kinds of software safety assessment process include that all the sub-

processes which is from the beginning of software development to the end of 

software testing.  

So, the completely proposed avionics software safety assessment process 

should consist of four parts, and they are requirement assessment, architecture 

assessment, software code assessment and software test assessment. The next 

section discusses the detailed objectives and tasks of each sub-process. 

3.3 Avionics Software Safety Assessment Process  

Based on the avionics software development process and existing software 

safety assessment process, the proposed avionics software safety assessment 

process should include software safety requirement assessment, software 
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architecture safety assessment, software code safety assessment and software 

test safety assessment. Figure 3-2 shows the interactive relationship between the 

development process and proposed software safety assessment process. 

 

Figure 3-2 Proposed Avionics Software Safety Assessment Process 

The software safety requirement assessment is the first step of the entire 

software safety assessment, and it mainly verifies correctness of software safety 

requirements and consistency between the safety requirements and software 

functions. The software architecture safety assessment is to assign and re-assign 

the Development Assurance level of software, which ensures the software 

architecture conforms to the assigned Development Assurance level. The 

software code safety assessment is to verify whether the code implements all the 

requirements as intended or not. The final sub-process is the software test safety 

assessment, which is to check all the software testing document and test cases 

are correct, and all the found hazards are controlled or eliminated. 

However, software safety assessment process contains many contents, which 

are hard to focus on all sub-processes of the proposed software safety 

assessment process. So, this research places emphasis on the previous two sub-
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processes which show in Figure 3-3. One is software safety requirement 

assessment, and the other is software architecture safety assessment.  

Chapter four will discuss these two sub-processes, and Chapter five will use the 

practical case study to prove feasibility of safety requirement assessment process.   

 

Figure 3-3 Emphasis of Research 

The next section gives the brief introduction of the entire proposed software 

safety assessment process, and proposed the proper methods for each sub-

process according to its objectives. 

3.3.1 The Objectives and Tasks of Each Steps 

This section gives the description of each sub-process, and points out the 

objectives and available safety assessment methods according to its objectives. 

 Software Safety Requirement Assessment 

The objective of Software Safety Requirement Assessment is to identify and elicit 

software safety requirements, and then to verify the correctness and consistency 

of safety requirements. In this process, it has two tasks. One is the safety 

requirements elicitation and the other is requirements verification. The first task 

needs to identify the associated hazards by examining the consequences of the 

whole software failed, or some software components failed. Then, it to find the 
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basic causes related to this hazard. For this task, some traditional safety 

assessment methods can help to identify the hazards and basic events, such as 

FHA and FTA. The second task is to verify the safety requirements which elicited 

from the previous task, and some emerging methods such as formal method can 

be used.  

 Software Architecture Safety Assessment 

The objective of Software Architecture Safety Assessment is to verify whether the 

proposed software architecture satisfies the assigned development assurance 

level of software or not. In this process, it provides two kinds of software 

Development Assurance Level assignment process. The activity of this process 

is to assign and re-assign the software development assurance level. Through 

comparing the results, the engineer can check the software architecture.  

 Software Code Safety Assessment 

The objective of is Software Code Safety Assessment is to ensure software code 

which is consistent with the relevant requirements. According to different 

analytical purpose, code analysis has the various tasks. For example, code logic 

analysis is to find and correct logic errors. There are lots of analytical tools based 

on the type of programming language, such as SPARK Toolset for Ada, and 

Eclipse for language C. Code data analysis focuses on the data structure. Data-

flow analysis can help the compiler to optimise the program, and formal 

inspection of source code is to assess the quality of code. 

 Software Test Safety Assessment 

The objective of Software Test Safety Assessment is to prove all the hazards 

which found in the entire safety assessment process have been controlled or 

reduced, and all the hazards has been maintained at an acceptable level. This 

process mainly conducts review or checking to perform the analysis. For example, 

it will check and review the safety-related testing documents, test cases and other 

testing material related to safety and quality of software.  
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3.3.2 Transition Criteria of Proposed Avionics Software Safety 

Assessment Process 

Transition criteria are the entrance and exit requirements for each process, and 

determine whether one process can be entered or exited. The general transition 

criteria are shown as below, and might need to be more specific when apply to 

the practice.  

 Software Safety Requirement Assessment  

‒ The entry criteria for the Software Safety Requirement Assessment are: 

Preliminary system safety analysis has been finished, and system 

architecture has been established and formally released.  All system 

level requirements have been allocated to the software level. 

‒ The exit criteria for the Software Safety Requirement Assessment are: 

Software safety-related requirements have been elicited and verified. 

The verification results and specifications of software safety-related 

requirement have been documented and formal released. All the 

hazards found in this process have been documented.  

 Software Architecture Safety Assessment 

‒ The entry criteria for the Software Architecture Safety Assessment are: 

Initial software architecture has been established. System function has 

been allocated to software level, and the development assurance level 

of the related system has been assigned and verified. 

‒ The exit criteria for the Software Architecture Safety Assessment are: 

Enough evidence generated to prove the final software architecture 

satisfies the software development assurance level, and software 

architecture has been documented and formally released. All the 

hazards found in this process have been documented. 

 Software Code Safety Assessment 

‒ The entry criteria for the Software Code Safety Assessment are: Review 

of software architecture has been finished and all source code has been 

generated.  

‒ The exit criteria for the Software Code Safety Assessment are: All the 

source code could be traced to the corresponding safety requirements, 
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and source code could be proved the consistent with the related safety 

requirements.  All the hazards found in this process have been 

documented. 

 Software Test Safety Assessment 

‒ The entry criteria for the Software Test Safety Assessment are: the 

corresponding verification activity has been performed.  

‒ The exit criteria for the Software Test Safety Assessment are: enough 

evidence generated to prove all of the hazards have been eliminated or 

controlled at an acceptable level, and all identified error or deviation is 

documented and feedback as a Problem Report. 

3.4 Summary  

The Chapter firstly introduces the software development process in DO-178C, 

and produces the proposed avionics software safety assessment process 

according to the software development process and literature study. The Chapter 

also lists the objectives of each sub-process, and recommends the software 

safety assessment methods for each sub-process. The Chapter also discusses 

the general transition criteria between each sub-process. 
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4 Proposed Methods for Avionics Software Safety 

Assessment 

4.1 Introduction 

As mentioned in Chapter 3, this research focuses on the first two sub-processes 

of the avionics software safety assessment process proposed in Chapter 3. This 

Chapter will discuss in detail the assessment process for software safety 

requirement and architecture, and proposes the proper software safety 

assessment methods for each sub-process.  

This Chapter is divided into two parts. The first part is to discuss the software 

safety requirement assessment process and the proposed safety assessment 

method. The second part is to introduce the assignment process of software 

development assurance level and to use for verification.  

4.2 Methods for Software Safety Requirements Assessment 

Process  

In the IEEE Recommended Practice for Software Requirements 

Specifications (IEEE Std 830-1998) [44] gives the 13 categories of software 

requirements and includes function, interface, and safety requirement. Safety 

requirement is the requirement that indicates the “shall” and “shall not” 

behaviour of software, system and aircraft, such as the light shall not be 

turned on until the button is pressed.  

The scope of the safety requirement is widely. Sometime, the safety requirement 

will involve with all the requirements which include functions for safety-critical 

system and software. Sometimes, the safety requirements will consist of those 

requirements which protection operations, fail-safe design or other design related 

to safety.  

Safety requirement is the set of safety objectives obtained from aircraft-level, 

system-level, and software-level safety assessment process. Usually, it is 

decomposed the higher-level requirements from the top-level to the lower-level. 

At aircraft level, the safety requirements are those requirements generated from 
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the aircraft FHA based on aircraft functions. At the system level, the safety 

requirements are all those system-level requirements generated from the system 

FHA. So, the elicitation of software safety requirement is the same process with 

the aircraft level and system level.  

Through the literature study, the author found FTA and FMEA are two useful 

approaches for eliciting safety requirements, and the model checking is the 

proper method for verification. So, the proposed method for safety requirement 

elicitation and verification is to combine fault analysis approaches and model 

checking together. 

The software safety requirement assessment process includes four steps. The 

first one is to identify associated hazards, and then to determine software errors 

or fault which caused the hazard. Third is to create safety requirements formal 

specification by using temporal logic, and last is to conduct the formal verification 

by using model checker tools. The next section will discuss each step in detail. 

Figure 4-1 shows the general software safety requirement assessment process. 

 

Figure 4-1 Process of Software Safety Requirement Assessment 

The previous two steps aim to obtain the safety requirements by using process 

the traditional safety assessment methods. The entire safety assessment 

process begins with the identification of the hazards associated with software, 

and identifies all the possible causes that can contribute to the failure conditions. 
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4.2.1 Identify hazard  

The first step of the software safety requirement assessment process is to identify 

all the hazards related to the target software. In this step, it will use software 

functional hazard assessment, but it doesn’t need to perform all the actions of 

normal FHA procedure. Software functional hazard assessment only focuses on 

identifying and classifying the failure conditions. And then, it determines the 

effects of each failure condition. Figure 4-2 shows the process of software FHA 

for identification.   

 

Figure 4-2 Process of Hazard Identification 

First, software FHA is to determine all the functions associated with target 

software. After preliminary system safety analysis, it can get the software function 

list and software initial architecture. This function list is the important input of 

software FHA, and is utilized to identify the failure condition. However, the hazard 

is very general, such as loss of control. If loss of control hazard needs to be 

examined, it might identify several failures related to many systems. So, it is 

necessary to define the scope of the safety assessment process, and specify the 

system function. 

Second, software FHA is to identify the related failure conditions according to its 

function. It should consider the consequences when software function failed, and 

then identify the hazards associated with this function. Environmental and 

emergency configuration list needs to be created.  

Third, software FHA is to determine the effects of each failure condition should 

be considered from three aspects, and respectively are effect on passenger, 

aircraft and crew. Last, it is to determine the classification of the failure condition 

according to its effect. The classification criterion should be accorded to the 

classification of software level in DO-178C. In DO-178C, it gives five levels to a 
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failure condition which ranges from level A to level D, and level A is the most 

serious. The output should be documented in the Table 4-1 .  

Table 4-1 Software FHA [8] [10] 

Functional 
Failure 
Condition 

Flight 
Phase 

Effect of Failure 
Condition to 
Aircraft/Crew/Passenger 

Classification 

     

The output of software FHA is the list of hazards and its classification. This list is 

the input of the next step, and also is crucial supporting materials for software 

development assurance level assignment process. 

4.2.2 Identify safety requirements 

After software FHA, it can start to identify all the possible causes related to the 

hazard by using the traditional fault analysis methods. In this step, it uses the bi-

directions approaches, software fault tree analysis and software failure mode and 

effects analysis to go backward and forward for eliciting the safety requirement. 

 Software Fault Tree Analysis 

Software Fault Tree Analysis is to find the software error and failure which lead 

to the occurrence of the failure condition. The process of software fault tree 

analysis has been shown in Chapter two. Software fault tree analysis will be 

finished until the event cannot be developed anymore or the event doesn’t belong 

to the scope of software, such as the damage of electronic components.  

After construction, each software fault tree needs to conduct the minimum cut set 

analysis, and the minimum cut sets are used as the input of software 

development assurance level assignment process.  

 Software Failure Mode and Effects Analysis 

The critical step of Software Failure Mode and Effects Analysis is to list all the 

possible failure modes of software functions or components. In this research, the 

potential failure modes of software FMEA are the list of errors derived in the 
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software FTA and several possible software failure modes recommended in 

NASA software safety guidebook, such as incorrect logic, incorrect input and 

output [8].  

The output of software failure mode and effects analysis should be documented 

in the table, and should list the following information: 1) function or component; 

2) function description; 3) failure mode; 4) effects; and 5) comment. The software 

FMEA format is shown in Table 4-2. 

Table 4-2 Output of Software Failure Mode and Effects Analysis 

Component/Function: 

Failure Mode Effect on Software Effect on System Comment 

    

 Safety Property  

After finished the previous steps of software safety requirement assessment 

process, it can get several basic events which compose a list of software errors 

or mistakes contribute to the hazard. This list can be regarded as the software 

safety requirements. However, some safety requirements may be generally. So, 

it is necessary to specify the safety requirement according to its function 

description and architecture.   

The last step is to verify the specified safety requirement elicited from the 

previous steps, and the proposed safety requirement verification method is model 

checking.  

4.2.3 Formal Verifications 

In order to conduct formal verification on software requirement, it must be 

translated into a verifiable form firstly. So, it needs to establish the formal model 

for software requirement at the beginning. And then, the safety requirements 

need to be translated into the formal description by using the temporal logic. After 

created a formal model and a formal requirement specification, it can apply both 

model and specification into the model checker. Finally, verification tool conducts 
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the assessment automatically. Figure 4-3 shows the verification process of 

software safety requirements. 

 

Figure 4-3 Verification Process of Safety Requirement [16] 

The first step of verification process is to establish the formal model of the 

software, and it uses the Kripke structure.  

 Modelling the software  

Before using formal modelling techniques, it needs to finish preparatory work. To 

get the related software information is necessary for establishing the model. 

Preparatory work includes gathering related documents and information such as 

the system architecture, system function description, system requirement, target 

software function description, and software architecture and requirements. By 

using these documents and information, understand the relationship between the 

system and software, and this relationship includes the functional allocation 

relationship, logic mode, and so on. Software modelling is the process to 

transform the relationship in the abstract.  

At the beginning of modelling, it needs to divide software into several functions. 

The entire formal model is made up of the several sub-models. Then, analyzes 

software function and its architecture to determine how many states do this 

function have, what kind of transition relationship between each state, and to 

identify the propositions of each state. The state transition diagram can help to 

establish. 
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In practice, formal modelling is the hardest part of the entire project due to the 

complexity of software. So, the simplest way of modelling is to separate the 

software according to its architecture and functions. 

 Defining the Safety Properties 

As mentioned in Chapter two, model checking uses temporal logic to represent 

the property. No matter what kind of temporal logic, the translation is 

straightforward.  

Firstly, all the safety requirement needs to be checked whether the definition is 

clear and unambiguous or not. Then, uses temporal logic to substitute the 

informal specification, and it is attention that the time sequence and logical 

relationship of the informal specification are two critical factors of formalisation. 

Here shows one example from a NASA project.  

“HDG switch lamps shall be lit when HDG mode is active” [16] [45] is one of safety 

requirements for Lateral Modes function in Flight Guidance system. This 

requirement has two variables, lamp and mode. Lamp has two states, on or off. 

So, does mode. This requirement requires when the mode is active, the lamp 

must turn on.  So, this property will be translated as:  

AG (HDG_Lamp=true ↔ HDG_Mode_active) 

HDG_Lamp is the variable to determine the state of HDG Lamp, and 

HDG_Mode_active is to determine the state of HDG mode. Both types of 

variables are Boolean, true or false. AG means verify this property for all the state 

in all the path.  

The next section is to verify the safety requirement by using a model checker. 

The type of model check has been discussed in the previous Chapter, and the 

working principle of model checker will be introduced in the case study. 

 Microwave Oven Problem 

To make this process more concrete, this section presents one small examples. 

Microwave Oven is the most representative example in model checking. The 
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microwave functions are easy to understand, so this is a best example to present 

the entire model checking process [46].  

‒ System Modelling  

First, it needs to understand and define the system function and system 

architecture. The microwave oven has following functions:  

- Microwave oven can cook the food;  

- Microwave oven can open or close the door. 

- Microwave oven can be reset if there is a wrong input (door open). 

Microwave oven also has several safety requirements:  

- If the microwave oven is cooking, the door shall not open. 

- If the Start button was pressed when the door was opened, the 

microwave enters the error mode.  

- If the Reset button was pressed, the error mode shall not be active. 

According to related information, it can start to create the model of the 

microwave oven. There are five variables in this model, and they are “start”, 

“reset”, “closed”, “error”, and “cook”. Figure 4-4 is the state transition graph 

for a microwave system. The Kripke structure of microwave system can be 

described as:  

The state set S is 𝑆 =  (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5).  

𝑆1 is the initial state. The transition relation is  

R =  {(S1, S2), ( S1, S3), ( S3, S1), ( S4, S1), (S2, S5), (S3, S4) 

, ( S4, S3), ( S5, S3), ( S5, S2), ( S4, S4)} 

The labels of each state are: 

           𝐿 (𝑆1)  = {¬close, ¬start, ¬cook, ¬error, ¬reset}  

           𝐿 (𝑆2)  = {¬close, start, ¬ cook, error, ¬reset}  

           𝐿 (𝑆3)  = {close, ¬start, ¬ cook, ¬error, reset}  
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           𝐿 (𝑆4)  = {close, start, cook, ¬error, ¬reset} 

           𝐿 (𝑆5)  = {close, start, ¬cook, error, reset} 

 

Figure 4-4 State Transition Graph  

‒ Properties Specification  

The second step is to translate the requirement into temporal logic. Here 

choose two properties. One is “No Cook while door is open”. This 

requirement means the close state should be ALWAYS happen before the 

cook state at any time. This property can be formalized as SPEC 

AG( (!closed) → AX (!cook)). The second one is “The state of cook will be 

eventually happened at some time” and this can be translated as SPEC 

EF(cook). The temporal operator EF can be explained as there exists one 

state which can satisfy this specification in this model.   

‒ Translate model and specification into NuSMV  

Last, translates both Kripke model and CTL specification into NuSMV by 

using SMV input language. The NuSMV code shows as below:                        
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MODULE main 

VAR 

start:boolean; 

reset:  boolean; 

closed :  boolean; 

error: boolean; 

cook : boolean; 

ASSIGN 

init(error):= FALSE; 

init(cook):= FALSE; 

next(error):= 

case 

(start & !closed):  TRUE; 

(closed & reset):  FALSE; 

TRUE            : error; 

esac; 

 

 

 

 

 

 

 

next(cook):= 

case 

(start & closed) : TRUE; 

(!closed) : FALSE; 

TRUE: cook; 

esac; 

 

SPEC AG((!closed)-> AX(!cook)) 

SPEC EF (cook) 

The verification result generated by NuSMV shows in Figure 4-5 and Figure 

4-6: 

 

Figure 4-5 Verification Result 1 of Microwave Problem 
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Figure 4-6 Verification Result 2 of Microwave Problem 

‒ Result Analysis 

In this microwave example, the author chose two safety requirements for 

comprehensively presenting the software requirement formal verification 

process. The verification result proves the consistency between the formal 

model and formal specification, and also proves the correctness of safety 

requirements. 

Through this example, NuSMV can be proved as a convenient and easy-

understanding verification tool, because the transition between an informal 

model and SMV language is straightforward. In a word, NuSMV is an 

effective method for safety requirement verification, and can be applied to 

the practical case.  

4.3 Methods for Software Architecture Safety Assessment 

Process 

The purpose of architecture safety assessment is to determine whether software 

architecture satisfies safety requirement or not, especially the Development 

Assurance Level (DAL). Architecture safety assessment can give an early 

assessment of the credibility of a proposed software architecture, which can help 
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to reduce the risk that safety problems are uncovered in the later stage of 

software lifecycle where they are expensive to correct or modify.  

The software architecture safety assessment process is the iterative process. It 

should begin at the initial stage of software development, and repeat during the 

entire software lifecycle. Figure 4-7 shows the process of software architecture 

safety assessment.  

 

Figure 4-7 Process of Software Architecture Safety Assessment 

If there are any changes or new hazards introduced in the software architecture, 

it needs to review the initial DAL of software, and to check the new software 

architecture whether satisfies the software DAL or not. If the architecture requires 

the higher level of safety, it needs to re-assign the DAL of software until the 

current design and architecture can satisfy the software DAL. The next section 

will discuss and compare two different kinds of software DAL assignment process. 

4.3.1 Software Development Assurance Level Assignment Process 

In ARP4754A [10], it has already explained the detailed DAL assignment process. 

The research will apply this DAL assignment process to the software architecture 

safety assessment process as one of the assessment methods for software 

architecture. Before explaining the software DAL assignment process, the 

Chapter will introduce the Development Assurance Level firstly.  

 Introduction of Development Assurance Level 
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Modern aircraft have integrated a lot of complex systems and functions, and the 

safety margin may be reduced by the unsafe system, software or item. The 

authority concerns on the error introduced during the development process that 

will cause the severe failure condition. So, the authority wants to use the series 

of activities to identify and control all the hazard during the product lifecycle [10]. 

Development Assurance Level (DAL) is the process used to identify the error 

through a series of planned and systematic actions during the system or software 

lifecycle. DAL not only means the software level, but also includes the set of 

guidelines and activities to guarantee the safety during each stage of the lifecycle. 

The objectives of assurance activities are to identify, control and eliminate the 

errors, such as requirement, design and code error.    

In ARP4754A [10], it divides DAL into two categories, the functional development 

assurance level (FDAL), and item development assurance level (IDAL). FDAL is 

to perform the assurance activities on functions which guarantee the safety of 

functional development, and the FDAL is usually used for aircraft-level and 

system level. However, the IDAL is to perform the assurance activities on item 

level, such as software. In software standard, such as DO-178C, item 

development assurance level is a software level. 

When assigned the FDAL or IDAL, it needs to consider two kinds of 

independence attributes, which are functional independence and item 

development independence. Functional Independence is to ensure that the 

likelihood of common mode error has been minimized by implementing and 

performing the different functions. Item Development Independence is to ensure 

that the likelihood of common mode error between two items has been minimized 

by several actions, such as using different operating systems. So that, the 

independence attributes can eliminate the common mode error, and establish the 

acceptable confidence level of function or item. 

The next section will discuss the software DAL assignment process. One is 

assignment without the software architecture consideration, and the other is 

assignment with the software architecture consideration. 

 Software DAL Assignment without Software Architecture Consideration  
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In general, the FDAL and IDAL assignment process are a top-down decomposed 

process, and it starts with the list of the failure conditions and fault trees 

constructed in fault tree analysis.  

When assigned software DAL without consideration of software architecture, the 

software DAL assignment process is to assign all the software FDAL and IDAL 

by using Table 4-3.  

Table 4-3 General Principle for DAL Assignment [5]  

 

Firstly, it assigns the top level FDAL of software according to the classification of 

related failure condition which identified in high level FHA. And then, IDAL for all 

items in this function should be designated as the same level of the top-level 

function FDAL. The above table shows the corresponding relationship between 

the severity classification of failure conditions and DAL. 

 Software DAL Assignment with Software Architecture Consideration 

The assignment process with software architecture consideration requires the 

enough evidence to prove that the functional independence and item 

development independence of Functional Failure Sets (FFS) member has been 

satisfied.  FFS is uses to express the combination of errors or faults which can 

lead to the hazards. Conceptually, FFS is equivalent to the result of the minimal 

cut set analysis in FTA.   

Basically, if members within a given FFS can be proved that its functional 

independence to be satisfied, their FDAL can be assigned a lower level than the 

classification of related top-level failure condition according to Figure 4-8. In IDAL 

assignment, if the members of FFS has item development independence, IDAL 
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can use the same row which is used for FDAL assignment. The IDAL also can be 

gracefully degraded. 

 

Figure 4-8 Assign Development Assurance Level to Functional Failure Set 

Members [10] 

4.3.2 Comparison of Existing Software DAL Assignment Process 

The purpose of DAL is to reduce the probability occurrence of failure during the 

entire software lifecycle. The difference between two kinds of software DAL 

assignment process is that if both functional independence and item development 

independence can be satisfied, the DAL of some FFS members would be 

degraded.  

The assignment process without software consideration is more conservative. 

According to Table 4-3, all the software IDAL should be assigned to the same 

level as the classification of its related top-level failure condition. For example, if 

a failure condition is catastrophic, and the corresponding software IDAL should 
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be assigned as A level. Although this process can guarantee the safety, the 

higher development assurance level implies a higher level of rigour and more 

costly development and assurance activities. Figure 4-9 shows that the cost of 

development, especially in the verification tasks, will be the significantly 

increased when the critical level is higher [47].  

 

Figure 4-9 Cost of Different Development Assurance Level Software 

In order to guarantee safety and reduce the cost, ARP 4754A provides a way for 

software DAL assignment process, which can help to degrade some IDAL in 

some circumstance.  

4.3.3 Software Development Assurance Level Assignment Process 

Case Study 

This section gives four cases of FDAL and IDAL assignment process. The 

division of cases is related to independence of function and item development.  

 No evidence to prove both the Independence Functional and Item 

Development can be satisfied 

If there is no evidence to prove both the functional and item development 

independence have been satisfied, assessment process of all FDAL and IDAL 

will use Table 4-3. The FDAL and IDAL are assigned to the same level as the 
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top-level FDAL. For example, if top-level FDAL is level B, the rest of all FDAL and 

IDAL will be assigned to level B. 

 Both Functional Independence and Item Development Independence can be 

proved 

If both functional independence and item development independence are 

presented, it can allow both FDAL and IDAL to use option 1 or option 2 in Figure 

4-8. Figure 4-10 shows one example of this situation. First, it needs to calculate 

the FFS of this fault tree. In FFS calculation, " ∗ " expresses the AND gate and 

" + " expresses the OR gate. So, calculation is shown as below: 

FC = F1 ∗  F2                                 (1) 

F1 = F1 + I1                                  (2) 

F2 = F2 + I3                                  (3) 

Put (3) and (2) into (1),  

FC = (F1 + I1)  ∗ (F2 + I3)  = F1 ∗ F2 +  F2 ∗ I1 + F1 ∗ I3 +  I1 ∗ I3 

So, the FFSs for the failure condition are {F1, F2},{F1,I3},{I1,F2},{I1,I3}. First, 

assign FDAL to F1 and F2. If this failure condition is a catastrophic failure 

condition and both F1 and F2 satisfy the functional independence, the 

assignment of F1 and F2 can use option1 or option2 in Figure 4-8. The IDAL can 

also use the option1 or option2 in Figure 4-8. So, the correct assignment result 

of FDAL and IDAL shows in Table 4-4:  

Table 4-4 Accepted Assignment of FDAL and IDAL of Example 1 

FDAL Assignment IDAL Assignment 

F1 F2 I1 I3 

A C A C 

C A C A 

B B B B 

A B A B 

B A B A 
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Figure 4-10 Fault Tree Example-1 [10] 

In fact, if the F1 is A level and F2 is level C can be accepted, the F1 is level A 

and F2 is level B won’t be considered anymore. Because the development cost 

of level B is higher than level C.  

Here give several unaccepted results of assignment process in Table 4-5. 

Table 4-5 Unaccepted Assignment of FDAL and IDAL of Example 1 

FDAL Assignment IDAL Assignment 

F1 F2 I1 I3 

A C C A 

C A A C 

F1 and I3, or I1 and F2 are two members of FFS in this fault tree. This means 

that if both F1 and I3 happen, it will lead to the top-level hazards. The assignment 
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of FFS members must be followed with the general principle. For example, the 

top-level failure condition is catastrophic, and more than one failure could lead to 

this failure. So, one failure can be assigned level A, and the rest failures can be 

assigned at least C level. Or, all the failures can be assigned at the level B. So, 

both the DAL of F2 and I2 assigned at level C cannot be accepted. 

 Functional Independence is proved but Item Development Independence is 

not satisfied 

If independent Functions can be proved, but Items doesn’t satisfy the 

independence, and one of the item error can lead to a common mode error. The 

IDAL of the non-independent items should be assigned to the same level of the 

related failure condition. Figure 4-11shows one example under this situation.  

First, it needs to calculate FFS of this fault tree.  

FC = (F1 + I1 + I2) ∗  (F2 + I3 + I2) 

FC = F1 ∗ F2 + F1 ∗ I3 + F1 ∗ I2 + I1 ∗ F2 + I1 ∗ I3 + I1 ∗ I2 + I2 ∗ F2 + I2 ∗ I3
+ I2 ∗ I2 

Because I2 ∗ I2 = I2, so it equals to: 

FC = F1 ∗ F2 + F1 ∗ I3 + F1 ∗ I2 + I1 ∗ F2 + I1 ∗ I3 + I1 ∗ I2 + I2 ∗ F2 + I2 ∗ I3

+ I2 

In this fault tree, Item I2 will cause both F1 and F2 failure, so I2 can individually 

lead to the catastrophic top-level failure condition. So, Item I2 is a single member 

of FFS. So, the formula can be simplified as:  

FC = F1 ∗ F2 + F1 ∗ I3 + I1 ∗ F2 + I1 ∗ I3 + I2 

The FFSs for the failure condition is: {F1,F2},{F1,I3},{F2,I1},{I3,I1},{I2}. 

The I2 is a common mode error of this fault tree, so the IDAL of I2 should be 

assigned same as the related top-level failure condition classification. 
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Figure 4-11 Fault Tree Example 2 [10] 

So, IDAL of I2 should be assigned as level A. The correct result of assignment 

result of FDAL and IDAL shows in Table 4-6： 

Table 4-6 Accepted Assignment of FDAL and IDAL of Example 2 

FDAL Assignment IDAL Assignment 

F1 F2 I1 I2 I3 

A C A A C 

C A C A A 

B B B A B 

The assignment of rest FDAL and IDAL are same with Table 4-5. So, the 

explanation of Table 4-6 will not show anymore.  
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Here shows some unaccepted assignment cases and explanation. 

Table 4-7 Unaccepted Assignment of FDAL and IDAL of Example 2 

FDAL 
Assignment 

IDAL Assignment 
Comment 

F1 F2 I1 I2 I3 

B B B B B The I2 cannot be level B due to 
it is the common mode error. 

A C C A A Same reason with line2 in 
Table 4-5. 

C A A A C Same reason with line2 in 
Table 4-5. 

 

 Only Item development independence can be proved 

The FDAL is assigned to the same level as the top-failure condition by using 

Table 4-3. All the IDAL can be degraded by using the option 1 or option 2 in 

Figure 4-7. However, the failure of each independent item won’t lead to the top-

level failure condition. Otherwise, it should be assigned at the same level of top-

level failure condition. 

4.4 Consideration of Software Development Assurance Level 

Assignment Process 

The DAL assignment process and architecture assessment is the complex and 

time-consuming process, and this process need lots of supporting material to 

support the assignment process and the verification process. Here discusses the 

preparation work before the assignment process and the questions need to be 

cared during the assignment process.  

 Preparation Work  

The goal of software development assurance level assignment is that assign the 

correct and proper software DAL to each software components according to 

software architecture and requirements. Before the assignment, the research 

needs to obtain some supporting information for software DAL assignment 
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process. Figure 4-12 shows the input and output of FDAL and IDAL assignment 

processes. 

 

Figure 4-12 FDAL/IDAL Assignment Process 

Firstly, it conducts FHA to identify the all failure condition related to software, and 

the identified failure conditions and its severity classification are a precondition 

for the entire DAL assignment. Second, it needs to conduct SFTA. SFTA need to 

undertake two kinds of tasks. One is assignment DAL by using the fault tree 

structure, and the other is to determine the FFS of each failure condition. Third, 

proposed system and software architecture are the important supported 

documents for FDL and IDAL assignment process. Last, the assignment process 

may require the additional documents, such as initial software function list, 

system and software function requirements, safety requirements and operational 

requirements. These materials are the fundamental of software architecture 

safety assessment.   

 Independence of Function and Item development   

As mentioned, independence attribute is one of the most important prat of 

architecture safety assessment process. If software function and items can be 

claimed independence, the software DAL can be degraded.  

The item development independence can be achieved as designed and 

implemented by different teams and different processes, and may install in a 
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different operating system. If there is no evidence to show any common errors in 

components, item development independence could be substantiated. 

The functional independence can be achieved as by using different requirement 

to implement one function and partition. By using different requirement to 

implement one function, such as the aircraft navigation function can be 

implemented by GPS navigation system or IRS navigation system.   

Partition is for functional independence that avoids the occurrence of common 

mode error during the development process. If there is the partition for each 

function which implemented in the common design, the DAL of the partitioning 

function would be assigned at the same level of classification of the top-level 

hazard during its development. If the partition not be used or if its independence 

cannot be proved, the FDAL of function should be re-assigned the same level of 

the IDAL of common design, or the function should be re-allocated to the lower 

level in order to spate the common design and independent part. 

4.5 Summary  

This Chapter discusses the content and proposed methods of software safety 

requirement assessment process and software architecture safety assessment 

process. By using several examples, the Chapter detailed describes each step of 

the software safety requirement assessment process, and different software DAL 

assignment situations in the software architecture safety assessment process. 
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5 Case Study 

5.1 Introduction  

The research uses the practical case study to exam the proposed software safety 

requirement assessment process and software architecture safety assessment 

process. The case study chooses the flight management system which is one of 

the highly software intensive system in avionics system. Due to the complex and 

complicated of the flight management system, it is hard to analyse all the system 

functions at once. So, the author chose one typical function in FMS which is the 

position calculation function for this case study. 

The Chapter illustrates the procedure of applying the safety requirements 

assessment process to the position calculation function in flight management 

system, and it is organized as follows. Section 5.1 provides an overview of the 

flight management system. Section 5.2 presents the logic of position calculation 

function in FMS. Section 5.3 describes formal verification tool, NuSMV. Section 

5.4 presents the safety requirement elicitation process by using traditional safety 

assessment methods. Section 5.5 provides the formal modelling of position 

calculation function.  Section 5.6 shows the analysis of safety requirements 

assessment result.  

5.2 Overview of Flight Management System 

The initial requirement of Flight Management System is for navigation which can 

help the pilot to arrive the desired destination. At 1970s, an area navigation 

(RNAV) computer began to be installed on the aircraft. At the same time, the fuel 

crisis drove the development of aircraft performance management, which helped 

to optimize the commercial aircraft navigation and to improve the efficiency of 

aircraft operation. In late 1970s, Boeing Company organized a flight desk 

technology group for the development of initial FMS, and wanted to combine flight 

management computer and control display units together. This system has 

become as the core part of aircraft flight planning and navigation function [48]. 
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The development of FMS starts with the Flight Management Computer (FMC) 

which is the key component. Besides FMC, the current FMS has three main 

components [49]  

 The Automatic Flight Control or Automatic Flight Guidance System 

 The Aircraft Navigation System 

 An Electronic Flight Instrument System 

 

Figure 5-1 Overview of FMS Components [50] 

Flight Management Computer is the computer system that uses database to 

proceed with various tasks, such as pre-schedule and modify the flight path. One 

of main tasks of FMC is to continuously update with the aircraft current position 

by using multiple and available navigation sensor information.  

The Automatic Flight Control System receives various sensor information from 

different systems. The Automatic Flight Control System can allow pilots to choose 

different operation modes, such as Autopilot and manual control. Depending on 

operation mode, Automatic Flight Control System will automatically control the 

flight control surface or display the control command on PDFs for the pilot to 

follow it.  
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The task of Navigation System is to calculate the aircraft position continuously. It 

uses multiple navigation sensor information, such as Global Positioning System, 

Radio navigation system, Inertial Reference System and other information. 

FMS can help the pilot to carry out various tasks, which lead FMS to become one 

of the important avionics systems in modern aircraft. The current FMS has been 

developed into an integrated system, which combined multiple functions such as 

trajectory prediction, navigation, guidance and performance optimization. 

Typically, FMS provides several functions, flight planning, flight trajectory 

management, flight guidance management, navigation management, and 

preformation management optimisation. Figure 5-2 shows the organization of 

main FMS functions and briefly introduces each function. 

 

Figure 5-2 Overview of FMS Function 

Flight Planning extracts the navigation data from navigation database and 

establishes the complete flight path by using navigation information, which 

includes airport information, waypoint, route, approach procedure and departure 

procedure. Flight Planning function allow pilot to select the current or alternative 
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flight plan, to create the new or user-defined route, and to edit the existing route 

information and restriction, such as altitude, speed, and the time of arrival.   

Flight Trajectory Management predicts and establishes the lateral and vertical 

flight profile data in each waypoint for the current, alternative or temporary flight 

plan according to aircraft performance information. 

Flight Guidance Management is to calculate the vertical and lateral steering 

commands according to pre-scheduled flight path and current aircraft status 

information. The Flight Guidance Management aims to lead the aircraft to fly in 

accordance with the desired path. Flight Guidance Management also provides 

required navigation performance (RNP), area navigation (RNAV) and time 

navigation (TNAV). 

Navigation Management combines various navigation information which come 

from each navigation sensor, and calculates the aircraft position, speed and 

attitude information. Aircraft position calculation is one of the ways to determine 

aircraft position during the flight. It will use the sensor data provided by navigation 

sensor, and the ground-based Navaid position information extracted from the 

navigation database. After getting the estimated position, the position data and 

the selected sensor data will be displayed on PFDs for the pilots. Meanwhile, 

position data will also be used for generating path steering which used for aircraft 

Flight Control system. Navigation system also has navigation radio tuning, which 

manages and tunes all the navigation radio equipment. This function provides 

automatic navigation tuning equipment which can be used for aircraft position 

calculation, and automatic ILS approach. Meanwhile, navigation system also 

provides the navigation radio tuning interface for manual.  

Performance Management Optimise is to calculate the optimal height, speed or 

other performance data of the flight path. It can calculate the other information, 

such as time of arrival, distance or other data during the flying. 

There are lots of interactive relationships between each function in FMS. For 

example, the navigation database provides navigation sensor and navaid position 
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data for position calculation function, and provides stored flight plan data for path 

definition function.  Figure 5-3 shows the FMS block diagram.  

 

Figure 5-3 FMS Block Diagram [51] 

For this case study, the author chose the position calculate function in navigation 

management, and assumed that the aircraft is only installed the single FMS, 

which means it only has one set of FMSA. The next section gives the detailed 

description of position calculation function logic.  

5.3 Overview of Position Calculation Function 

To satisfy the navigation requirements, FMS uses various sensor data from GPS, 

Radio Navigation AIDs, Inertial Reference System (IRS), Air Data Computer, and 

Attitude/Heading Reference. These sensor data are used to determine the 

aircraft position, direction, and speed information. 
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Position calculation function is one of the primary functions in FMS navigation 

system. There are several navigation sensor receivers installed in aircraft, such 

as the GPS receiver, the Radio Navigation Source Receiver, which includes VOR 

receiver and DME receiver. The position calculation selects the proper and 

available sensor that provides the best navigation plan for calculating and 

estimating the aircraft position.  

The working principle of position calculation function is to choose the available 

navigation sensor and to calculate the aircraft position and other data. Position 

calculation function has three parts, which are navigation source selection logic, 

calculation algorithm and monitor function respectively. In this case study, the 

author focuses on navigation source selection logic and monitor function. The 

navigation source selection logic is to choose the proper and available navigation 

sensors. In this case study, the author assumed there are three navigation 

sensors installed on FMS, which are GPS, Radio Navigation sensor, and IRS. 

The basic logic of position calculation shows in Figure 5-4. 

 

Figure 5-4 Position Calculation Logical [51] 

In FMS position calculation function, the basic selection sequence is: 

1. GPS. 
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2. Radio Navigation Source.  

3. IRS. 

The selection logic is that FMS will use GPS data firstly. However, if the GPS 

sensor is detected any failure or loses of GPS signal, which means GPS is not 

available anymore. FMS will select the secondary navigation source of selection 

sequence, and set the failed GPS sensor into rest mode automatically. This 

means when GPS sensor is not available, the FMS will choose Radio Navigation 

sensor automatically. However, if the radio navigation sensor is detected any 

failure or loses signal, FMS will select the third order of selection sequence for 

navigation and set failed radio navigation sensor into rest mode automatically. 

When both GPS and radio navigation sensor are not available, the FMS will use 

IRS for navigation. However, if all of navigation sensor failed, the FMS position 

calculation will be turned off automatically.  

FMS position calculation also has the monitor function. It continuously monitors 

all the navigation sensors to make sure that each sensor provides the valid and 

correct information to the FMS. If it finds any failure of navigation sensor or other 

navigation equipment, it will set the failed sensor into rest mode. The monitor 

function mainly monitors two aspects. One is navigation sensor status, and other 

is the data that the sensor sent to FMS. If sensor status is abnormal or sensor 

data is incorrect, the monitor will take action to this sensor. 

This case study will focus on conducting software safety assessment on position 

calculation function. The next section will briefly introduce the verification tool, 

NuSMV.  

5.4 Verification Tool NuSMV 

There are lots of formal verification tools, and some are already discussed in the 

previous Chapter. In this case study, the author chose to use NuSMV. NuSMV is 

a symbolic model checker, which is re-engineered and re-implemented of SMV 

by Carnegie Mellon University. NuSMV is an open source and flexible methods 

for model checking. This section introduces the installation of NuSMV, the 

software architecture of NuSMV, and the input language of NuSMV. 
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5.4.1 NuSMV Installation 

NuSMV is the open source software and operates under Linux system. Other 

operating system such as windows or Macos needs to simulate the Linux system 

firstly before install NuSMV. There are two ways to install NuSMV, and here gives 

the briefly description. 

 First Step: The Preparation  

As Chapter mentioned before, the precondition of NuSMV installation is to install 

the Linux operating system. Nowadays, it has various brands of the Linux system, 

such as Ubuntu or Red Hat. NuSMV can be used in almost Linux operating 

system, so there is no requirement for operating system choosing. However, it 

needs to make sure that all the following aid software already installed before 

NuSMV installation.  

‒ ANSI C compiler; 

‒ GNU tat and gzip tool; 

‒ GNU Bison v.1.25 or latest version; 

‒ GNU Flex v.2.6.0 or latest version; 

‒ GNU make. 

This case study chose Ubuntu Linux system. Ubuntu is one of the most famous 

open source operating system, and it is the Linux distribution which based on the 

Debian architecture [52]. The installation of Ubuntu won’t discuss in thesis.  

 Second Step: The Installation 

After finished all the preparation work, it can download the latest version of 

NuSMV from the official website. It can start to install the NuSMV, and here gives 

two ways of installation. The results of two kinds of installation are totally same. 

The first installation way is to use NuSMV source code.  

‒ The NuSMV Source Code Installation  

Source Code NuSMV is already compiled for most common operating 

system and architecture. However, for some unfamiliar operating systems 

and some people who want to re-engineer, NuSMV provides the source code 
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version to install. The NuSMV user manual [43] provides the detailed 

installation steps, and this section only gives the briefly introduction of source 

code installation. Table 5-1 shows the installation steps [43]. 

Table 5-1 Installation Steps of NuSMV Source Code [43] 

Step Function Command 

1 Move to the directory where 
build NuSMV. 

# cd /home/nusmv 

2 Unpack the distributions. #  gzip –dc /tmp/NuSMV-
2.6.0.tar.gz | tar xf - 

3 Create a directory for 
building.  

# mkdir build 

4 Enter this new built 
directory. 

# cd build 

5 Configure by invoking 
cmake. 

# cmake 

6 Enter the directory before 
compile NuSMV. 

# pwd 

<TOPDIR>/NuSMV/build 

7 Compile NuSMV. #make 

8 Set the path of master. 
nusmvrc into environment 
variable. 

# export NUSMV_LIBRARY_PATH 

=<TOPDIR>/NuSMV/share/nusmv 

 

 

‒ The NuSMV Binary Code Installation  

NuSMV website provides the Binary Code, which is the pre-compiled version, 

and this version can be used for most operating systems and architecture. 

This Version doesn’t need to conduct the above steps, and the installation 

steps of pre-compiled version are quite simple. The author recommends this 

installation way, which is more easy and convenient.  Table 5-2 shows the 

installation step of pre-compiled version. 
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Table 5-2 Installation Step of NuSMV Binary Code 

Step Function Command 

1 Unpack the zip-
file 

#  gzip –dc /tmp/NuSMV-2.6.0.tar.gz | tar xf - 

2 Run NuSMV  bin/NuSMV(Tab) /<file path >/xxx.smv 

 

If it shows the result is same with Figure 5-5 the after installation and run 

command in terminal, it means NuSMV installation successful. 

Figure 5-5 NuSMV Installation Result 

 

After installation of the NuSMV, it can start to model the position calculation 

function. NuSMV cannot use model directly, so it need to translate model into the 

language which NuSMV can recognize and understand. The next part will briefly 

discuss the input language, SMV language.  

5.4.2 NuSMV Architecture  

NuSMV is completely written in ANSI C and is designed as one open source 

system. The NuSMV architecture consists of several modules.  Different modules 

implement different functions, and communicates with others by defined 

interfaces. The architecture of NUSMV shows in Figure 5-6. 
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Figure 5-6 Architecture of NUSMV [53] 

 Kernel Module is to provide the lower level function such as dynamic memory 

allocation, and also provides all the basic Binary Decision Diagram primitives 

[53]. 

 Parser Module processes the input file to check the correctness of statement 

syntactic, and builds the parse tree for representing the internal format of this 

input file [53].  

 Compiler compiles the parsed model into Binary Decision Diagram. 

Instantiation sub-module is to process the parse tree, and to build a 

description of the finite state machine to represent the input model. Finite 

State Machine Compiler sub-module constructs and manipulates the Finite 

State Machine at the Binary Decision Diagram level, and then conducts all 

the semantic checks on the input model [53]. 

 Model Checking module provides several functions, such as CTL model 

checking, counterexample generation and inspection, invariant checking, 

and so on [53].  
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 Interactive shell. By using the interaction shell, the user can access to all of 

NuSMV functions [53].   

5.4.3 NuSMV Input Language 

NuSMV uses SMV language to describe the Kripke structure and specification. 

The previous Chapter already presents one NuSMV code example. NuSMV is 

made up of modules, and each module consist of variables.  The common input 

language shows in Table 5-3 [54]. 

Table 5-3 SMV Language Example 

Name Code Example 

Module define 
statement  

MODULE –Name 

 

VAR --Define variable name 
and type 

 

 

ASSIGN – The relationship 
between states 

MODULE main 

 

VAR 

a: boolean; 

b: boolean; 

c:{on, off}; 

 

ASSIGN 

Variable assignment 
statement  

ASSIGN 

 

init(xx) – Initialize the 
variable 

ASSIGN 

 

init(d):=off 

 

Transition Constraint 
statement  

TRANS xxxx TRANS (a & !b) -> 
next(!(a & !b)) 

Specification 
statement  

SPEC xxxxx SPEC AG (a −>  !b) 

The Kripke structure is used in model checking to represent the behaviour of a 

finite state system. In NuSMV, it can use SMV language to describe the Kripke 

structure by create one module or several modules.  

Figure 5-7 show Kripke structure in NuSMV.  
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Figure 5-7 Kripke Structure in NuSMV [55] 

 

In NuSMV, module consists of three parts, and they are variable, constraint, and 

CTL or LTL specification. Variables are used to describe each state of the Kripke 

structure. Constraint are used to describe the transition relationship between 

each state. Specification is described by CTL or LTL temporal logical and used 

to describe the requirement.  

After all the preparation works finished, it can start to conduct software safety 

assessment methods and process for position calculation function.  

5.5 Position Calculation Safety Requirement Elicitation Process 

As mentioned in the previous Chapter, the software safety assessment process 

has four steps. Due to the larger content of software safety assessment, this 

research mainly focuses on safety requirement assessment and architecture 

safety assessment process. So, this case study presents how to apply the safety 

requirement assessment process and initial DAL allocation process to a practical 

case.  

In safety requirement assessment process, it has four sub-processes. First is to 

identify the associated hazards. Second, it identifies the software errors or faults 

caused the hazards. These two steps are to elicit safety requirements. Third, it 

creates safety requirements specification. Last step is to use NuSMV to verify the 

safety requirements. The next section discusses the safety requirements 

elicitation process of FMS position calculation function. It mainly has two tasks, 

which are to identify hazards and identify causes related to hazards. 
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5.5.1 Identify Hazards 

The first step is to identify which hazard related to target software. In this step, it 

uses the Functional Hazard Assessment. 

The case study is about the position calculation function. First, it needs to identify 

the functional requirement of FMS position calculation, which is the fundament of 

FHA. The Chapter already discussed the logic of FMS position calculation. In a 

word, the position calculation is to choose the available and proper navigation 

source, which can let FMSA to calculation the aircraft position information, and 

thus indicates the information in PFDs.  

Through analysis of the functional requirement, the author found one failure 

condition related position calculation and shows in Table 5-4 . 

Table 5-4 Failure Condition for Position Calculation 

Failure 
Condition 

Phase Effects 
Classificatio
n 

The both sides 
of PFD indicate 
the wrong 
navigation and 
position 
information 

Climb; 
Curies; 
Descent; 
Approach; 
Landing 

1. For aircraft: It significantly 
reduces the safety margin.  

2. For Crew: It will significantly 
increase in workload to crew.  

3. For passenger: No effect. 

Hazardous 

Due to the calculation failure or other reasons, PDFs will show the wrong position 

and navigation information to the pilot. This failure condition is applicable during 

the climb, curies, descent, approach and loading phase. The effects of failure 

include three parts, which are effect on aircraft, on crew, and on the passengers. 

For aircraft, it will significantly reduce the safety margin and may lead the aircraft 

deviate the pre-scheduled route. For crew, crew needs to deselect the FMS as 

the navigation source and need to use other ways to calculate the position. This 

will add work to crew. However, there is no effect on the passenger.  

The classification of this failure condition is assigned as hazardous.  Because of 

lack of the system architecture, it only can use the conservative DAL assignment 

process, which means the DAL of this failure condition is same as the DAL of 



 

89 

entire FMS. According to standard [56], the DAL of FMS usually is assigned as 

the B level. So, the classification is assigned as hazardous.  

Appendix A.1 shows some failure conditions related to FMS navigation functions.  

However, the FMS navigation system has lots of sub-system or sub-functions, 

which means it is difficult to list all of hazard related to the navigation system.  So, 

case study only focuses on failure condition related the position calculation 

function. The next section will determine the basic events contribute to this failure 

condition. This step will use fault tree analysis and failure mode and effects 

analysis. 

5.5.2 Identify Safety Requirements  

Once the failure condition has been identified, it can start to trace backward to 

find software faults or error. This step will use fault tree analysis and failure mode 

and effects analysis. The result of FTA and FMEA will be considered as the safety 

requirements of the case study.  

 Fault Tree Analysis 

The first step is to use the failure condition “The both sides of PFD indicate the 

wrong navigation and position information” as the top event of fault tree, and then 

list all the possible causes according to its functional analysis. The completely 

decomposing process will present in appendix A.2, and here only discusses the 

sub-tree which directly related to position calculation function.  

The top event of the subtree is “The incorrect of output of FMSA position 

calculation” and shows in Figure 5-8. The fault tree first splits into “FMSA position 

calculation failure” and “Failure of Database”, because the incorrect output is 

caused by position function failed or used the incorrect navigation information to 

calculate the position. The “failure of database” is out of scope of the case study, 

and will not be decomposed anymore. So, it is an undeveloped event. In the next 

level, the “FMSA position calculation failure” can be divided into two events. One 

is “The selected Navigation Source incorrect” or “The Calculation algorithm 

functional failure”. However, “The Calculation algorithm functional failure” is not 

included in this case study, so it is the undeveloped event. The event of “The 
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selected Navigation Source incorrect” is caused by selection algorithm error, or it 

cannot detect the abnormal sensor and still use the abnormal sensor for 

navigation. “Navigation source selection logical failure” means when GPS is 

available, but system chooses the Radio Navigation sensor. The “Undetected 

sensor failure” is related to the failure of monitoring function. It will discuss in the 

next fault tree.   

 

Figure 5-8 Fault Tree of “The both sides of PFD indicate the wrong navigation 

and position information” 

The lower levels of the FTA are shown in Figure 5-9. The position calculation 

function has three types of navigation sensor, GPS, Radio Navigation, and IRS. 

If one of navigation sensors failed and undetected, but the system also selects 

this failed sensor as navigation source, it will cause the “undetected navigation 

source failure”.  At the next level, the “GPS failure undetected” caused by both 
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GPS failure and monitor function failure happened in the meantime. The monitor 

function is a software functional block, and it continuously monitors the status and 

data of each navigation sensor. If the monitor finds any sensor status is abnormal 

or the sensor sent wrong data, it will rest the sensor and choose the next available 

navigation sensor automatically.  

 

Figure 5-9 Subtree of “The both sides of PFD indicate the wrong navigation and 

position information” 

After finished construction, it needs to conduct the minimum cut set analysis of 

fault tree. The result of minimum cut set analysis will be regarded as the FFS, 

which can be considered as the safety requirement of position calculation function. 

The calculation process of fault tree shows in Appendix A.2, and here only gives 

the result. The FFS are  {The navigation source selection logical failure},  

{Navigation Source Monitor function failure, GPS equipment Failure}, {Navigation 
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Source Monitor function failure, GPS data transmission channel Failure}, 

{Navigation Source Monitor function failure, Radio Navigation equipment Failure}, 

{Navigation Source Monitor function failure, Radio Navigation data transmission 

channel Failure}, {Navigation Source Monitor function failure, IRS equipment 

Failure}, {Navigation Source Monitor function failure, IRS data transmission 

channel Failure}.  

Through the fault tree analysis and minimum cut set analysis, it can get the 

following safety requirements which related to “undetected navigation sensor 

failure”:  

1. All Navigation sensor only can be active when sensor status is normal and 

sensor data correct can be satisfied at the same time. Otherwise, the failed 

navigation sensor will be turned to rest automatically. For example, if GPS 

sensor is abnormal or GPS data are wrong, the GPS mode will change to 

rest automatically. 

2. If all navigation sensors are turned to rest mode, the FMS position calculation 

function will be turned off automatically. 

There are safety requirements which related to “navigation source selection 

logical failure” 

1. If GPS is chosen, the rest of navigation source cannot be active. 

2. If GPS is failure, the system will choose radio navigation sensor. 

3. If GPS and radio navigation sensor are both failed, the system will choose 

IRS. 

As mentioned in Chapter four, these fault trees are the fundamental of DAL 

assignment process in architecture safety assessment process. However, it is 

lack of information related to software architecture, so it only can assign the initial 

DAL of all the FFS member as the same level of the top event. Some FFS 

members can be degraded if there is enough evidence to provide that both 

functional independence and item development independence are satisfied. 

However, the “Navigation Source Monitor function failure” cannot be degraded, 

because this event is the common mode error of this fault tree. So, it should be 
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assigned as the same level as the DAL of top level failure condition, which is B 

level. 

 Failure Mode and Effects Analysis 

The first step in the FMEA is to develop a list of the possible failure modes of 

position calculation function. In this case study, the author chose to use the basic 

events of the fault tree as the list of failure modes. Table 5-5 summarizes all basic 

events from the previous fault tree analysis. 

Table 5-5 Basic Event list of Fault Tree 

Number Basic Event Software or 
Non-Software 

1 Data transmission channel of FMSA to Left 
PFD is incorrect 

Non-Software 

2 Data transmission channel of FMSA to Right 
PFD is incorrect 

Non-Software 

3 The navigation source selection logical failure Software 

4 Navigation Source Monitor function failure Software 

5 GPS equipment Failure Non-Software 

6 GPS data transmission channel Failure Non-Software 

7 Radio navigation equipment Failure Non-Software 

8 Radio navigation data transmission 
channel Failure 

Non-Software 

9 IRS equipment Failure Non-Software 

10 IRS data transmission channel Failure Non-Software 

Table 5-6 shows the example for software FMEA “Navigation source selection 

logical failure”. “Navigation source selection logical failure” will lead to incorrect 

selection of navigation sensor. The selected navigation sensor and the position 

calculation algorithm doesn’t match. For example, the position calculation applies 

the radio navigation sensor data to the GPS position calculation algorithm. The 

result of this failure mode is incorrect output of FMS position information.  
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Table 5-6 FMEA for Navigation Source Selection Logical Failure 

Function: FMS position calculation 

Failure Mode Effect on System 

Navigation source 
selection logical failure 

FMS cannot calculate the aircraft position, and 
thus FMS cannot output the correct position 
information. 

Table 5-7 shows the example for software FMEA “Navigation Source Monitor 

function failure”and the rest of FMEA table presents in Appendix A.3. Navigation 

source selection logical failure will lead the FMS position calculation function to 

use the incorrect sensor data, such as the GPS sensor already failed, but it keeps 

sending the wrong data to FMS. However, the monitor doesn’t detect this failure, 

and then the system still uses the wrong data to estimate the aircraft position. 

This will lead the position calculation function cannot send the correct aircraft 

position information to pilots.  

Table 5-7 FMEA for Navigation Source Monitor function failure 

Function: FMS position calculation 

Failure Mode Effect on System 

Navigation 
Source Monitor 
Function Failure 

Position Calculation function may not use the correct 
navigation source to calculate. FMS cannot calculate the 
aircraft position, and thus FMS cannot output the correct 
position information. 

After FTA and FMEA, it can get the safety requirements of FMS position 

calculation. After summarized and specified, the list of safety requirement shows 

in appendix A.4. 

5.6 Formal Modelling 

As mentioned before, the case study focuses on monitor function and navigation 

source selection logic in the position calculation function. If it wants to model the 

position calculation function, it needs to divide function into two parts, which are 

sensor model and monitor model. 
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In sensor model, each of navigation sensor has three states, which are null, active, 

and rest. The monitor function will monitor the sensor status and sensor data of 

each sensor. Sensor status has three states, which are null, abnormal and normal. 

Sensor data have three states, which are null, correct and wrong. The initial state 

of each sensor is null, and the sensor status and sensor data are both null. Only 

if both sensor statuses are normal and sensor data is correct are satisfied 

simultaneously, the sensor can be active. Otherwise, the sensor will be turned to 

rest. If the sensor state is changed to rest, it cannot change to active or null state 

any more. So, the state transition graph shows in Figure 5-10.  

 

Figure 5-10 Sensor State Transition Graph 

The monitor function has been involved in the sensor model, and this monitor 

model is mainly cares about turning on or off the FMS position calculation function. 

In monitor model, FMS position calculation function has three states, which are 

null, on and off. The initial state is null. Only If all the navigation source sensors 

are into rest state, the FMS position calculation function will be turned to off 

automatically. If there is at least one navigation sensor in active state, the FMS 

position calculation function will be turned on. The state transition graph is same 

as sensor, but the translation relationship is different. Figure 5-11 shows the 

monitor model. 
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Figure 5-11 Monitor Function State Transition Graph 

After modelling, it can start to translate model into NuSMV by using SMV 

language. The NuSMV code of FMS position calculation model shows in 

appendix A.6. The next section will show the safety requirement verification result. 

5.7 Result Analysis 

Before verification, it needs to translate safety requirement into specification. And 

then the author uses NuSMV to verify safety requirement.  

After safety requirement elicitation process, it gets several safety requirements. 

However, it is not specific enough. So, it firstly needs to specify the safety 

requirements according to function. For example, one of the safety requirement 

is that navigation mode (such as GPS mode) only can be active when both sensor 

status is normal and sensor data correct are satisfied at the same time. Otherwise, 

this navigation sensor will be turned to rest. This requirement can be divided into 

three categories, GPS mode, radio navigation mode, IRS mode. GPS mode has 

two input variables, GPS sensor status and GPS sensor data. If both GPS sensor 

status is normal and GPS sensor data is correct can be both met, the GPS mode 

will be active. If GPS sensor status is abnormal or GPS sensor data is wrong, the 

GPS mode will be rest. So, this requirement can be translated into two 

specifications shows as below, and AG means the specification can be satisfied 

for all states.  
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- If both GPS sensor status is normal and GPS sensor data is correct can be 

both met in the meantime, the GPS mode will be active. 

- Specifiction1: SPEC AG((gpssensor_status=normal) 

& (gpssensor_data=wrong)−> (gps_mode=active)) 

- If GPS sensor status is abnormal or GPS sensor data is wrong, the GPS 

mode will be rest. 

- Specifiction2: SPEC AG((gpssensor_status=abnormal) | 

(gpssensor_data=wrong)−> (gps_mode=rest)) 

Put these two specifications into model, the result shows in Figure 5-12 and 

Figure 5-13. 

 

Figure 5-12 NuSMV Result of Specification 1 

 

Figure 5-13 NuSMV Result of Specification 2 
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Here gives one counterexample of GPS navigation mode. The requirement is that 

if both the GPS sensor status and GPS sensor data were not satisfied 

simultaneously, the GPS mode would not be active. Figure 5-14 shows the 

counterexample.  

- If one of the GPS sensor status is normal or GPS sensor data is correct 

can be satisfied, the GPS mode would be active. 

- Specification3: AG((gpssensor_status=normal) 

| (gpssensor_data=correct)−> (gps_mode=active)) 

 

Figure 5-14 NuSMV Counterexample Result 

The counterexample shows that one state which doesn’t satisfy this specification. 

It can be explained as: when GPS sensor data correct but the GPS sensor status 

is abnormal, and the GPS mode still be rest. According to the result of fault tree 

analysis, if the position calculation function wants to choose GPS as the 

navigation source, the GPS sensor data correct and the GPS sensor status is 

normal should be satisfied at the same time. So, this specification cannot be 

satisfied by the model.  

Here only gives the GPS mode safety requirements example, and the rest of the 

safety requirement and verification results respectively shows in appendix A.4 

and A.5.  

The emphasis of this case study is to show how to apply software safety 

assessment process and method to one practical software case. Through 
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understanding the functional logic, it can establish the formal model and elicit the 

safety requirements. By using NuSMV verification tool, the result can be used to 

prove the correctness and consistency of safety requirements.   

5.8 Summary  

This Chapter uses the FMS position calculation as a practical case study to 

present the flow of the recommended software safety requirement assessment 

process. By analysing verification result, it proved the correctness of software 

safety requirements, and the consistency between the formal model and safety 

requirements. Meanwhile, it proved the feasibility of suggested software safety 

assessment methods.  

This software safety requirement assessment process and proposed software 

safety assessment method can help engineer to identify the errors or mistakes of 

the requirement at the early stage of development, which will reduce the workload 

and saving money. 
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6 Conclusion and Further Work 

6.1 Conclusion 

This research aims to develop one comprehensive and systematic avionics 

software safety assessment process derived from software lifecycle introduced 

in DO-178C and existing safety assessment process. Meanwhile, the research 

suggested the recommended safety assessment methods for each step in this 

software safety assessment process according to its objectives.  

The proposed avionics software safety assessment process has the congruent 

relationship with the DO-178C avionics software lifecycle, which will assist the 

engineer clearly understand the scope and component of avionics software 

safety assessment. This process also sets the order of software safety 

assessment activities and the engineer can follow these activities to monitor the 

software at each phase of the entire software lifecycle.  

The recommended safety assessment methods are the way which engineer used 

in software safety assessment activities, and aim to identify, evaluate and modify 

the software error, which guarantees and improves the software can perform as 

its expected. Figure 6-1 shows how each objective improves the software safety.  

 

Figure 6-1 The Relationship between Objectives and Achievement 

For the safety requirement assessment process, the research developed a 

methodology for combination of traditional safety assessment such as FHA, FTA 

and FMEA, with the emerging method, Formal Verification. This combination 
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method aimed to provide the comprehensive and correctness assessment for 

avionics software safety requirements.  

For the architecture safety assessment process, the research summarized and 

compared the existing Development Assurance Level assignment process, and 

proposed the recommendation allocation process for avionics software according 

to efficiency and cost.  

In case study, the research firstly analysed the FMS and position calculation. 

Secondly, the research established the formal model of FMS position calculation 

in NuSMV, and elicited the safety requirements by using traditional safety 

assessment methods. The formal model verified eleven safety requirements and 

generated enough evidence to prove the consistency and correctness of 

requirements. Finally, the results of case study proved the feasibility of this safety 

requirement assessment process and the combination method.  

This research found the combination of the formal method and traditional safety 

assessment method, especially the Bi-Directional Analysis would be the effective 

and flexible methods for avionics software safety. Nowadays, there are more and 

more aviation companies or organizations to use the model-based approach for 

developing software and conducting safety assessment. This combination safety 

assessment method can be a part of new model-based approach and be the 

efficient support for safety assessment.  

6.2 Further Work  

As the lack of software architecture of FMS position calculation function, the 

author only assigned the initial DAL to each FFS member according to the 

classification of top level failure condition, and put forward the degraded 

suggestions for some FFS members in case study. Due to the lack of software 

architecture, it was hard to have enough evidence to prove each FFS member 

has both development independence and item development independence. 

Therefore, it cannot degrade the DAL of FFS member. However, the author has 

given the suggestion of DAL degraded.  
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Model-based approaches have become increasingly mature, and could be 

applied to every phase in software safety assessment process. For example, the 

software safety assessment process is based on the software lifecycle model. In 

proposed software safety assessment process, the software safety requirement 

assessment process is based on the software formal model. 

Currently, this formal model is only used for safety requirement verification. In 

further work, it can be expanded for each software safety assessment stage to 

achieve the safety purposes. For example, the model can be used in architecture 

safety assessment and code safety assessment, which can help to validate the 

software architecture and the implementation whether satisfies the proposed 

architecture or not. In order to make the formal model be suitable for the entire 

software safety assessment process, the formal model needs to be developed at 

the early stage of software lifecycle. Through each step of software development 

and safety assessment process, the model can be modified and applied, thereby 

it ensures the correctness of software design and implementation and the 

software safety. 

Furthermore, software safety engineer wants to use quantitative methods which 

used in hardware to assess the software safety. Nowadays, there are two 

quantitative methods for software safety, one is fault density, and the other is fault 

rate.  

Fault density is defined as the ratio of faults in a software to the size of a software, 

and it has the closed relationship with the number of fault. If one software contains 

more fault, its fault density will increase [57]. This means more than one fault will 

occur when software is running, which will decrease the software safety. For most 

safety critical software, the fault density 1 fault per thousand lines of code is 

acceptable [58]. But, fault density is difficult to calculate, because the new fault 

may be introduced when the code change. 

The other is quantitative method is the failure rate, and this is the most common 

measure for hardware. However, to use software failure rate to assess software 

safety is a difficult issue, and there is even argument in defining software failure 

rate quantitatively. Unlike hardware maintenance, the software maintenance is 
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more complex and will undergo during its entire lifecycle. During each 

maintenance, some new defects may be introduced, and failure rate will be higher. 

When software failure rate can be estimated as a fixed value, the additional 

maintenance may be required. This causes the failure rate will be changed again. 

So, software failure rate is hard to quantifiable. 

Software failure is the result of design error or fault that has been introduced in 

software lifecycle, especially the software development [59]. To solve this 

problem, the existing software safety standards are to use the approach and 

concept to limit and assure the software development process. In civil airborne 

software, the engineers use Development Assurance Level (DAL) to measure the 

rigor level of software development, and it can limit the error rate occurred in 

software development process to an acceptable level [10]. In proposed avionics 

software safety assessment process, the DAL assignment is one of the proposed 

method for software.  DAL assignment accords with the most severity of related 

system hazard that the software could contribute. In some study, the authors think 

software failure rate also can be determined based on the severity of hazard, and 

DAL and failure rate has the corresponding relationship. For example, A level 

corresponds to the failure rate of 1 × 10−9 per flying hour [58].   

Nowadays, there are some arguments about the reliability of software safety 

quantitative method. Some studies regard that these data can prove whether 

software is safe, and some studies think the failure rate of software is no meaning, 

because it doesn’t make any mathematical sense. Moreover, the failure rate is 

kind of technical measure which helps the engineer to express their own opinion 

about the life characteristics of this software [60].  

In my opinion, these methods only can use to show the probability of failure 

occurrence, and it cannot identify and modify the failure. In the further work, how 

to combine software safety quantitative method with the qualitative software 

safety assessment such as FTA and formal method will be ever more important. 

This new combination will make software safer. 
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APPENDICES 

Appendix A Position Calculation Safety Requirements Assessment Process  

A.1 Functional Hazard Assessment Result  

Table A-1 Functional Hazard Assessment 

Functional Failure Condition  Number Phase Effects 
Classification  

Navigation   1   
 

FMS 
Navigation 

The both sides of 
PFD indicate the 
wrong navigation 
and position 
information 

1-1a Climb; 
Curies; 
Descent; 
Approach 

Landing 

1. For aircraft: It leads aircraft deviate from its 
scheduled flight path, and significantly reduce the 
safety margin.  

2. For Crew: It will significantly increase in 
workload to crew.  

3. For passenger: No effect. 

Hazardous 

Unannunciated 

modification of the 
installed navigation 
database 

 

1-1b ALL 1. For aircraft: It significant reduces in safety 
margins. 

2. For Crew: It will significant increase in workload 
to crew.                                        

3. For passenger: No effect. 

Hazardous 

Loss Navigation 
Function 

1-1c ALL 1. For aircraft: It slightly reduces in safety margins.      

2. For Crew: It will slightly increase in workload to 
crew.                                         

3. For passenger: No effect. 

Hazardous 
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A.2 Fault Tree Analysis  

A.2.1 Fault Tree Construction Result 

 

Figure A-1 The Fault Tree of “The both sides of PFD indicate the wrong navigation and position information’’
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Figure A-2 Subtree of “The both sides of PFD indicate the wrong navigation and 

position information”-1 
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Figure A-3 Subtree of “The both sides of PFD indicate the wrong navigation and position information”-2 
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A.2.2 Minimum Cut Set Analysis The minimum cut set starts 

with the “incorrect output of FMSA position calculation” 

 

Figure A-4 Fault Tree Minimum Cut Set Analysis 

In Minimal Cut Set Analysis, the AND gate can be 
expressed as in “+”; the OR gate can be expressed 
as “∗ ”. So, the calculation shows below: 

F1 = I1 + I2 

F2 = I3 + I4 

F3 = I5 + I6 

F4 = F1 ∗ I7 

F5 = F2 ∗ I7 

F6 = F3 ∗ I7 

F7 = F4 + F5 + F6 

F8 = F7 + I8 

F9 = F8 + I9 

F10 = F9 + I10 

Because I10 and I9 are undeveloped event, so it 
doesn’t need to be considered.  

So, F10 = F7 + I8
= I8 + I7 ∗ (I1 + I2 + I3 + I4 + 15
+ I6)  

  =  I8 + I7 ∗ I1 + I7 ∗ I2 + I7 ∗ I3 + I7 ∗ I4
+ I7 ∗ 15 + I7 ∗ I6 

The minimum cut sets are 

{I8}, {I7, I1}, {I7, I2}, {I7, I3}, {I7, I4}, {I7, I5}, {I7, I6} 
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A.3 Failure Mode and Effects Analysis  

Table A-2 FMEA of Navigation Source Selection Logical Failure 

Function: FMS position calculation 

Failure Mode Effect on System 

Navigation 
Source Selection 
Logical Failure 

FMS cannot calculate the aircraft position, and thus FMS 
cannot output the correct position information. 

 

Table A-3 FMEA of Navigation Source Monitor Function Failure 

Function: FMS position calculation 

Failure Mode Effect on System 

Navigation 
Source Monitor 
Function Failure 

Position Calculation function may not use the correct 
navigation source to calculate. FMS cannot calculate the 
aircraft position, and thus FMS cannot output the correct 
position information. 

 

Table A-4 FMEA of GPS Equipment Failure 

 

 

Table A-5 FMEA of GPS Data Transmission Channel Failure 

Function: FMS position calculation 

Failure Mode Effect on System 

GPS Equipment 
Failure 

Position Calculation function cannot use GPS sensor 
information to calculate aircraft position.  

FMS cannot output the correct position information. 

Function: FMS position calculation 

Failure Mode Effect on System 

GPS Data 
Transmission 
Channel Failure 

Position Calculation function cannot use GPS sensor 
information to calculate aircraft position.   

FMS cannot output the correct position information. 
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Table A-6 FMEA of Radio Navigation Equipment Failure 

 

Table A-7 FMEA of Radio Data Transmission Channel Failure 

 

Table A-8 FMEA of IRS Equipment Failure 

 

Table A-9 FMEA of IRS Data Transmission Channel Failure 

 

Function: FMS position calculation 

Failure Mode Effect on System 

Radio Navigation 
Equipment 
Failure 

Position Calculation function cannot use Radio 
Navigation sensor information to calculate aircraft 
position.   

FMS cannot output the correct position information. 

Function: FMS position calculation 

Failure Mode Effect on System 

Radio Data 
Transmission 
Channel Failure 

Position Calculation function cannot use Radio 
Navigation sensor information to calculate aircraft 
position.   

FMS cannot output the correct position information. 

Function: FMS position calculation 

Failure Mode Effect on System 

IRS Equipment 
Failure 

Position Calculation function cannot use IRS sensor 
information to calculate aircraft position.   

FMS cannot output the correct position information. 

Function: FMS position calculation 

Failure Mode Effect on System 

IRS Data 
Transmission 
Channel Failure 

Position Calculation function cannot use IRS sensor 
information to calculate aircraft position.   

FMS cannot output the correct position information. 
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A.4  Safety Requirement Specification Table 

Table A-10 Safety Requirement Specification Table  

Numbe
r  

Safety Requirements  Formal Specification 

1 • If both GPS sensor status is 

normal and GPS sensor 

data is correct can be met 

simultaneously, the GPS 

mode will be active. 

SPEC 
AG((gpssensor_status=normal) & 
(gpssensor_data=correct)-> 
(gps_mode=active)) 

2 If GPS sensor status is 
abnormal or GPS sensor 
data is wrong, the GPS 
mode will be rest. 

SPEC 
AG((gpssensor_status=abnormal) | 
(gpssensor_data=wrong)-> 
(gps_mode=rest)) 

3 Counterexample: If GPS 
sensor status is normal or 
GPS sensor data is correct 
can be met, the GPS mode 
will be active. 

SPEC 
AG((gpssensor_status=normal) | 
(gpssensor_data=correct)-> 
(gps_mode=active)) 

4 • Radio Navigation Mode will 

be active only if GPS mode 

is rest and both Radio 

Navigation sensor is normal 

and sensor data is correct 

are satisfied simultaneously.  

SPEC AG((gps_mode=rest) & 
(radiosensor_status=normal)&(radio
sensor_data=correct)-> 
(radio_mode=active)) 

5 Counterexample: If both 
Radio Navigation sensor 
status is normal or Radio 
Navigation sensor data is 
correct can be meet, the 
Radio Navigation mode will 
be active. 

SPEC 
AG((radiosensor_status=normal)|(ra
diosensor_data=correct)-> 
(radio_mode=active)) 

6 • IRS Mode will be active only 

if both GPS mode and 

Radio Navigation mode are 

rest and both IRS sensor is 

normal and sensor data is 

correct are satisfied 

simultaneously. 

SPEC AG((gps_mode=rest) & 
(radio_mode=rest)&(irssensor_statu
s=normal)&(irssensor_data=correct)
-> (irs_mode=active)) 

 

 



 

119 

Table A-11 Safety Requirement Specification Table-Continued 

7 IRS Mode will be turned to rest 
if IRS sensor is abnormal or 
IRS sensor data is wrong. 

SPEC 
AG((irssensor_status=abnormal | 
irssensor_data=wrong)&(gps_mode
=rest) & (radio_mode=rest)-> 
(irs_mode=rest)) 

8 If GPS or Radio Navigation 
mode is active, the IRS mode 
will be rest.  

SPEC 
AG((gps_mode=active)|(radio_mode
=active)-> (irs_mode=rest)) 

9 If all of sensor are turned to 
rest, the FMS position 
calculation function will be 
turned off.  

SPEC AG(gps_mode=rest & 
radio_mode=rest & irs_mode=rest) 
-> (fms_positioncalculate=off) 

10 If there is at least one sensor is 
active, the FMS position 
calculation function will be 
turned on. 

SPEC AG(gps_mode=active | 
radio_mode=active | 
irs_mode=active)-> 
(fms_positioncalculate=on) 

 

11 Counterexample: If GPS mode 
is active and both Radio 
Navigation and IRS mode rest, 
the FMS position calculation 
function will be turned off. 

 

SPEC AG((gps_mode=rest & 
radio_mode=rest & 
irs_mode=active) -> 
(fms_positioncalculate=off)) 
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A.5 Safety Requirement Verification Result  

Specification 1 to 3 already shows in previous chapter, so here doesn’t present 

again.  

1. If both GPS sensor status is normal and GPS sensor data is correct can be 

met simultaneously, the GPS mode will be active. 

2. If GPS sensor status is abnormal or GPS sensor data is wrong, the GPS mode 

will be rest. 

3. Counterexample: If GPS sensor status is normal or GPS sensor data is 

correct can be met, the GPS mode will be active. 

4. Radio Navigation mode will be active only if GPS mode is rest and both Radio 

Navigation sensor is normal and sensor data is correct are satisfied 

simultaneously. 

- SPEC AG((gps_mode=rest) & 

(radiosensor_status=normal)&(radiosensor_data=correct)−> 

(radio_mode=active)) 

 

Figure A-5 Verification Result of Specification 4 
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5. Counterexample: If Radio Navigation sensor status is normal or Radio 

Navigation sensor data is correct can be met, the Radio Navigation mode will 

be active. 

- SPEC AG((radiosensor_status=normal) | (radiosensor_data=correct) −>

 (radio_mode=active)) 

 

Figure A-6  Verification Result of Specification 5 

6. IRS Mode will be active only if both GPS mode and Radio Navigation mode 

are rest and both IRS sensor is normal and sensor data is correct are satisfied 

simultaneously. 

- SPEC AG((gps_mode=rest) 

& (radio_mode=rest)&(irssensor_status=normal)&(irssensor_data=correc

t)−> (irs_mode=active)) 
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Figure A-7  Verification Result of Specification 6 

7. IRS Mode will be turned to rest if IRS sensor is abnormal or IRS sensor data 

is wrong. 

- SPEC AG((irssensor_status=abnormal | 

irssensor_data=wrong)&(gps_mode=rest) & (radio_mode=rest)−> 

(irs_mode=rest)) 

 

Figure A-8 Verification Result of Specification 7 

8. If GPS or Radio Navigation mode is active, the IRS mode will be rest.  

- SPEC AG((gps_mode=active)|(radio_mode=active)−> (irs_mode=rest)) 
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Figure A-9 Verification Result of Specification 8 

9. If all of sensor are turned to rest, the FMS position calculation function will be 

turned off. 

- SPEC AG(gps_mode=rest &  radio_mode=rest &  irs_mode=rest) −> 

(fms_positioncalculate=off) 

 

Figure A-10 Verification Result of Specification 9 
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10. If there is at least one sensor is active, the FMS position calculation function 

will be turned on. 

- SPEC AG(gps_mode=active  | radio_mode=active  | irs_mode=active)−> 

(fms_positioncalculate=on) 

 

Figure A-11 Verification Result of Specification 10 

11. Counterexample: If GPS mode is active and both Radio Navigation and IRS 

mode rest, the FMS position calculation function will be turned off. 

- SPEC AG((gps_mode=rest &  radio_mode=rest  &  irs_mode=active) −>

 (fms_positioncalculate=off)) 

 

Figure A-12 Verification Result of Specification 11 
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A.6 FMS Position Calculation Function NuSMV Code 

MODULE main 

VAR 

gpssensor_status:{null,abnormal,normal}; 

gpssensor_data:{null,wrong,correct}; 

gps_mode:{null,active,rest}; 

radiosensor_status:{null,abnormal,normal}; 

radiosensor_data:{null,wrong,correct}; 

radio_mode:{null,active,rest}; 

irssensor_status:{null,abnormal,normal}; 

irssensor_data:{null,wrong,correct}; 

irs_mode:{null,active,rest}; 

fms_positioncalculate: {null,on,off}; 

 

ASSIGN 

init(gps_mode):=null; 

init(gpssensor_status):=null; 

init(gpssensor_data):=null; 

--gps transimition 

TRANS ((gpssensor_status=null) & (gpssensor_data=null))->(gps_mode=null); 

TRANS (gpssensor_status=normal & 

gpssensor_data=correct)->(gps_mode=active); 

TRANS ((gpssensor_status=abnormal) | 

(gpssensor_data=wrong)&(gps_mode=null))->(gps_mode=rest); 
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TRANS ((gpssensor_status=abnormal) | 

(gpssensor_data=wrong)&(gps_mode=active))->(gps_mode=rest); 

 

ASSIGN 

init(radio_mode):=null; 

init(radiosensor_status):=null; 

init(radiosensor_data):=null; 

--radio transition 

TRANS (gps_mode=active)->(radio_mode=rest); 

TRANS ((gps_mode=rest)&(radio_mode=null)&(radiosensor_status=null) & 

(radiosensor_data=null))->(radio_mode=null); 

TRANS ((radiosensor_status=normal & radiosensor_data=correct & 

gps_mode=rest))->(radio_mode=active); 

TRANS ((radiosensor_status=abnormal | 

radiosensor_data=wrong)&(gps_mode=active))->(radio_mode=rest); 

TRANS (radiosensor_status=abnormal | radiosensor_data=wrong & 

radio_mode=active & gps_mode=rest)->(radio_mode=rest); 

 

ASSIGN 

init(irs_mode):=null; 

init(irssensor_status):=null; 

init(irssensor_data):=null; 
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--irs transition  

TRANS 

((gps_mode=rest)&(radio_mode=rest)&(irs_mode=null)&(irssensor_status=null) 

& (irssensor_data=null))->(irs_mode=null); 

TRANS ((irssensor_status=normal & irssensor_data=correct)&(gps_mode=rest) 

& (radio_mode=rest))->(irs_mode=active); 

TRANS 

(((gps_mode=active)|(radio_mode=active))|((irssensor_status=abnormal | 

irssensor_data=wrong)))->(irs_mode=rest); 

 

ASSIGN 

init (fms_positioncalculate):=null; 

--fms positioncalculate 

TRANS ((gps_mode=null) & (radio_mode=null) & 

(irs_mode=null))->(fms_positioncalculate=null);  

TRANS ((gps_mode=active) & (radio_mode=active) & 

(irs_mode=active))->(fms_positioncalculate=on); 

TRANS ((gps_mode=active) | (radio_mode=active) | 

(irs_mode=active))->(fms_positioncalculate=on); 

TRANS 

((gps_mode=rest)&(radio_mode=rest)&(irs_mode=rest))->(fms_positioncalculat

e=off); 


