29 research outputs found

    Pemilihan kerjaya di kalangan pelajar aliran perdagangan sekolah menengah teknik : satu kajian kes

    Get PDF
    This research is a survey to determine the career chosen of form four student in commerce streams. The important aspect of the career chosen has been divided into three, first is information about career, type of career and factor that most influence students in choosing a career. The study was conducted at Sekolah Menengah Teknik Kajang, Selangor Darul Ehsan. Thirty six form four students was chosen by using non-random sampling purpose method as respondent. All information was gather by using questionnaire. Data collected has been analyzed in form of frequency, percentage and mean. Results are performed in table and graph. The finding show that information about career have been improved in students career chosen and mass media is the main factor influencing students in choosing their career

    Feature extraction and classification of movie reviews

    Get PDF

    Constructing patch-based ligand-binding pocket database for predicting function of proteins

    Get PDF
    Background Many of solved tertiary structures of unknown functions do not have global sequence and structural similarities to proteins of known function. Often functional clues of unknown proteins can be obtained by predicting small ligand molecules that bind to the proteins. Methods In our previous work, we have developed an alignment free local surface-based pocket comparison method, named Patch-Surfer, which predicts ligand molecules that are likely to bind to a protein of interest. Given a query pocket in a protein, Patch-Surfer searches a database of known pockets and finds similar ones to the query. Here, we have extended the database of ligand binding pockets for Patch-Surfer to cover diverse types of binding ligands. Results and conclusion We selected 9393 representative pockets with 2707 different ligand types from the Protein Data Bank. We tested Patch-Surfer on the extended pocket database to predict binding ligand of 75 non-homologous proteins that bind one of seven different ligands. Patch-Surfer achieved the average enrichment factor at 0.1 percent of over 20.0. The results did not depend on the sequence similarity of the query protein to proteins in the database, indicating that Patch-Surfer can identify correct pockets even in the absence of known homologous structures in the database

    A comparative study of Persian sentiment analysis based on different feature combinations

    Get PDF
    In recent years, the use of internet and correspondingly the number of online reviews, comments and opinions have increased significantly. It is indeed very difficult for humans to read these opinions and classify them accurately. Consequently, there is a need for an automated system to process this big data. In this paper, a novel sentiment analysis framework for Persian language has been proposed. The proposed framework comprises three basic steps: pre-processing, feature extraction, and support vector machine (SVM) based classification. The performance of the proposed framework has been evaluated taking into account different features combinations. The simulation results have revealed that the best performance could be achieved by integrating unigram, bigram, and trigram features

    Discriminative structural approaches for enzyme active-site prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far.</p> <p>Results</p> <p>This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis.</p> <p>Conclusions</p> <p>This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.</p

    Improved protein surface comparison and application to low-resolution protein structure data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed.</p> <p>Results</p> <p>The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification.</p> <p>Conclusions</p> <p>Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.</p
    corecore