467,688 research outputs found

    An overview to Software Architecture in Intrusion Detection System

    Full text link
    Today by growing network systems, security is a key feature of each network infrastructure. Network Intrusion Detection Systems (IDS) provide defense model for all security threats which are harmful to any network. The IDS could detect and block attack-related network traffic. The network control is a complex model. Implementation of an IDS could make delay in the network. Several software-based network intrusion detection systems are developed. However, the model has a problem with high speed traffic. This paper reviews of many type of software architecture in intrusion detection systems and describes the design and implementation of a high-performance network intrusion detection system that combines the use of software-based network intrusion detection sensors and a network processor board. The network processor which is a hardware-based model could acts as a customized load balancing splitter. This model cooperates with a set of modified content-based network intrusion detection sensors rather than IDS in processing network traffic and controls the high-speed.Comment: 8 Pages, International Journal of Soft Computing and Software Engineering [JSCSE]. arXiv admin note: text overlap with arXiv:1101.0241 by other author

    Improving the benefits of multicast prioritization algorithms

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-014-1087-zPrioritized atomic multicast consists in delivering messages in total order while ensuring that the priorities of the messages are considered; i.e., messages with higher priorities are delivered first. That service can be used in multiple applications. An example is the usage of prioritization algorithms for reducing the transaction abort rates in applications that use a replicated database system. To this end, transaction messages get priorities according to their probability of violating the existing integrity constraints. This paper evaluates how that abort reduction may be improved varying the message sending rate and the bounds set on the length of the priority reordering queue being used by those multicast algorithms.This work has been partially supported by EU FEDER and Spanish MICINN under research Grants TIN2009-14460-C03-01 and TIN2010-17193.Miedes De Elías, EP.; Muñoz Escoí, FD. (2014). Improving the benefits of multicast prioritization algorithms. Journal of Supercomputing. 68(3):1280-1301. doi:10.1007/s11227-014-1087-zS12801301683Amir Y, Danilov C, Stanton JR (2000) A low latency, loss tolerant architecture and protocol for wide area group communication. In: International Conference on Dependable Systems and Networks (DSN), IEEE-CS, Washington, DC, USA, pp 327–336Chockler G, Keidar I, Vitenberg R (2001) Group communication specifications: a comprehensive study. ACM Comput Surv 33(4):427–469CiA (2001) About CAN in Automation (CiA). http://www.can-cia.org/index.php?id=aboutciaDéfago X, Schiper A, Urbán P (2004) Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput Surv 36(4):372–421Dolev D, Dwork C, Stockmeyer L (1987) On the minimal synchronism needed for distributed consensus. J ACM 34(1):77–97International Organization for Standardization (ISO) (1993) Road vehicles—interchange of digital information—controller area network (CAN) for high-speed communication. Revised by ISO 11898-1:2003JBoss (2011) The Netty project 3.2 user guide. http://docs.jboss.org/netty/3.2/guide/html/Kaashoek MF, Tanenbaum AS (1996) An evaluation of the Amoeba group communication system. In: International conference on distributed computing system (ICDCS), IEEE-CS, Washington, DC, USA, pp 436–448Miedes E, Muñoz-Escoí FD (2008) Managing priorities in atomic multicast protocols. In: International conference on availability, reliability and security (ARES), Barcelona, Spain, pp 514–519Miedes E, Muñoz-Escoí FD (2010) Dynamic switching of total-order broadcast protocols. In: International conference on parallel and distributed processing techniques and applications (PDPTA), CSREA Press, Las Vegas, Nevada, USA, pp 457–463Miedes E, Muñoz-Escoí FD, Decker H (2008) Reducing transaction abort rates with prioritized atomic multicast protocols. In: International European conference on parallel and distributed computing (Euro-Par), Springer, Las Palmas de Gran Canaria, Spain, Lecture notes in computer science, vol 5168, pp 394–403Mocito J, Rodrigues L (2006) Run-time switching between total order algorithms. In: International European conference on parallel and distributed computing (Euro-Par), Springer, Dresden, Germany, Lecture Notes in Computer Science, vol 4128, pp 582–591Moser LE, Melliar-Smith PM, Agarwal DA, Budhia R, Lingley-Papadopoulos C (1996) Totem: a fault-tolerant multicast group communication system. Commun ACM 39(4):54–63Nakamura A, Takizawa M (1992) Priority-based total and semi-total ordering broadcast protocols. In: International conference on distributed computing systems (ICDCS), Yokohama, Japan, pp 178–185Nakamura A, Takizawa M (1993) Starvation-prevented priority based total ordering broadcast protocol on high-speed single channel network. In: 2nd International symposium on high performance distributed computing (HPDC), pp 281–288Rodrigues L, Veríssimo P, Casimiro A (1995) Priority-based totally ordered multicast. In: Workshop on algorithms and architectures for real-time control (AARTC), Ostend, BelgiumRütti O, Wojciechowski P, Schiper A (2006) Structural and algorithmic issues of dynamic protocol update. In: 20th International parallel and distributed processing symposium (IPDPS), IEEE-CS Press, Rhodes Island, GreeceTindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems. Microprocess Microprogr 40(2–3):117–134Tully A, Shrivastava SK (1990) Preventing state divergence in replicated distributed programs. In: International symposium on reliable distributed systems (SRDS), Huntsville, Alabama, USA, pp 104–113Wiesmann M, Schiper A (2005) Comparison of database replication techniques based on total order broadcast. IEEE Trans Knowl Data Eng 17(4):551–56

    Maximizing resource usage in multifold molecular dynamics with rCUDA

    Get PDF
    [EN] The full-understanding of the dynamics of molecular systems at the atomic scale is of great relevance in the fields of chemistry, physics, materials science, and drug discovery just to name a few. Molecular dynamics (MD) is a widely used computer tool for simulating the dynamical behavior of molecules. However, the computational horsepower required by MD simulations is too high to obtain conclusive results in real-world scenarios. This is mainly motivated by two factors: (1) the long execution time required by each MD simulation (usually in the nanoseconds and microseconds scale, and beyond) and (2) the large number of simulations required in drug discovery to study the interactions between a large library of compounds and a given protein target. To deal with the former, graphics processing units (GPUs) have come up into the scene. The latter has been traditionally approached by launching large amounts of simulations in computing clusters that may contain several GPUs on each node. However, GPUs are targeted as a single node that only runs one MD instance at a time, which translates into low GPU occupancy ratios and therefore low throughput. In this work, we propose a strategy to increase the overall throughput of MD simulations by increasing the GPU occupancy through virtualized GPUs. We use the remote CUDA (rCUDA) middleware as a tool to decouple GPUs from CPUs, and thus enabling multi-tenancy of the virtual GPUs. As a working test in the drug discovery field, we studied the binding process of a novel flavonol to DNA with the GROningen MAchine for Chemical Simulations (GROMACS) MD package. Our results show that the use of rCUDA provides with a 1.21x speed-up factor compared to the CUDA counterpart version while requiring a similar power budget.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was jointly supported by the Fundación Séneca (Agencia Regional de Ciencia y Tecnología, Región de Murcia) under grants (20524/PDC/18, 20813/PI/ 18, and 20988/PI/18) and by the Spanish MEC and Eur-opean Commission FEDER under grants TIN2015-66972-C5-3-R, TIN2016-78799-P, and CTQ2017-87974-R (AEI/FEDER, UE). Researchers from the Universitat Politècnica de València are supported by the Generalitat Valenciana under grant PROMETEO/2017/077.Prades, J.; Imbernon, B.; Reaño González, C.; Peña-García, J.; Cerón-Carrasco, JP.; Silla Jiménez, F.; Pérez-Sánchez, H. (2020). Maximizing resource usage in multifold molecular dynamics with rCUDA. International Journal of High Performance Computing Applications. 34(1):5-19. https://doi.org/10.1177/1094342019857131S519341Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. doi:10.1016/j.softx.2015.06.001Banegas-Luna, A. J., Imbernón, B., Llanes Castro, A., Pérez-Garrido, A., Cerón-Carrasco, J. P., Gesing, S., … Pérez-Sánchez, H. (2018). Advances in distributed computing with modern drug discovery. Expert Opinion on Drug Discovery, 14(1), 9-22. doi:10.1080/17460441.2019.1552936Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688. doi:10.1002/jcc.20290Csermely, P., Korcsmáros, T., Kiss, H. J. M., London, G., & Nussinov, R. (2013). Structure and dynamics of molecular networks: A novel paradigm of drug discovery. Pharmacology & Therapeutics, 138(3), 333-408. doi:10.1016/j.pharmthera.2013.01.016Franco, A. A. (2013). Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Advances, 3(32), 13027. doi:10.1039/c3ra23502eFrisch MJ, Trucks GW, Schlegel HB, et al. (2016) Gaussian 16 Revision A.03. Wallingford, CT: Gaussian. Inc.Halder, D., & Purkayastha, P. (2018). A flavonol that acts as a potential DNA minor groove binder as also an efficient G-quadruplex loop binder. Journal of Molecular Liquids, 265, 69-76. doi:10.1016/j.molliq.2018.05.117Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435-447. doi:10.1021/ct700301qHornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712-725. doi:10.1002/prot.21123Imbernón, B., Cecilia, J. M., Pérez-Sánchez, H., & Giménez, D. (2017). METADOCK: A parallel metaheuristic schema for virtual screening methods. The International Journal of High Performance Computing Applications, 32(6), 789-803. doi:10.1177/1094342017697471Iserte, S., Prades, J., Reano, C., & Silla, F. (2016). Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm. 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). doi:10.1109/ccgrid.2016.26Bentham Science Publisher, B. S. P. (2006). Scoring Functions for Protein-Ligand Docking. Current Protein & Peptide Science, 7(5), 407-420. doi:10.2174/138920306778559395Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926-935. doi:10.1063/1.445869Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. doi:10.1038/nrd1549Lagarde, N., Zagury, J.-F., & Montes, M. (2015). Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling, 55(7), 1297-1307. doi:10.1021/acs.jcim.5b00090Noroozi, M., Angerson, W. J., & Lean, M. E. (1998). Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. The American Journal of Clinical Nutrition, 67(6), 1210-1218. doi:10.1093/ajcn/67.6.1210Patra, M., Hyvönen, M. T., Falck, E., Sabouri-Ghomi, M., Vattulainen, I., & Karttunen, M. (2007). Long-range interactions and parallel scalability in molecular simulations. Computer Physics Communications, 176(1), 14-22. doi:10.1016/j.cpc.2006.07.017Pezeshgi Modarres, H., Dorokhov, B. D., Popov, V. O., Ravin, N. V., Skryabin, K. G., & Dal Peraro, M. (2015). Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519. Biochemistry, 54(19), 3076-3085. doi:10.1021/bi501227bPhillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289Prades, J., Reaño, C., Silla, F., Imbernón, B., Pérez-Sánchez, H., & Cecilia, J. M. (2018). Increasing Molecular Dynamics Simulations Throughput by Virtualizing Remote GPUs with rCUDA. Proceedings of the 47th International Conference on Parallel Processing Companion - ICPP ’18. doi:10.1145/3229710.3229734Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., … Lindahl, E. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845-854. doi:10.1093/bioinformatics/btt055Reano, C., & Silla, F. (2015). A Performance Comparison of CUDA Remote GPU Virtualization Frameworks. 2015 IEEE International Conference on Cluster Computing. doi:10.1109/cluster.2015.76Reaño, C., Silla, F., Shainer, G., & Schultz, S. (2015). Local and Remote GPUs Perform Similar with EDR 100G InfiniBand. Proceedings of the Industrial Track of the 16th International Middleware Conference on ZZZ - Middleware Industry ’15. doi:10.1145/2830013.2830015Sánchez-Linares, I., Pérez-Sánchez, H., Cecilia, J. M., & García, J. M. (2012). High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinformatics, 13(Suppl 14), S13. doi:10.1186/1471-2105-13-s14-s13Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., … Wriggers, W. (2010). Atomic-Level Characterization of the Structural Dynamics of Proteins. Science, 330(6002), 341-346. doi:10.1126/science.1187409Yoo, A. B., Jette, M. A., & Grondona, M. (2003). SLURM: Simple Linux Utility for Resource Management. Lecture Notes in Computer Science, 44-60. doi:10.1007/10968987_

    Promoting Public Health and Safety: A Predictive Modeling Software Analysis on Perceived Road Fatality Contributory Factors

    Get PDF
    Extensive literature search was conducted to computationally analyze the relationship between key perceived road fatality factors and public health impacts, in terms of mortality and morbidity. Heterogeneous sources of data on road fatality 1970-2005 and that based on interview questionnaire on European road drivers’ perception were sourced. Computational analysis was performed on these data using the Multilayer Perceptron model within the dtreg predictive modeling software. Driver factors had the highest relative significance. Drivers played significant role as causative agents of road accidents. A good degree of correlation was also observed when compared with results obtained by previous researchers. Sweden, UK, Finland, Denmark, Germany, France, Netherlands, and Austria, where road safety targets were set and EU targets adopted, experienced a faster and sharper reduction of road fatalities. However, Belgium, Ireland, Italy, Greece and Portugal experienced slow, but little reduction in cases of road fatalities. Spain experienced an increase in road fatalities possibly due to road fatalities enhancing factors. Estonia, Slovenia, Cyprus, Hungry, Czech Republic, Slovakia and Poland experienced a fluctuating but decreasing trend. Enforcement of road safety principles and regulations are needed to decrease the incidences of fatal accidents. Adoption of the EU target of -50% reductions of fatalities in all countries will help promote public health and safety
    • …
    corecore