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Maximizing resource usage in Multi-fold
Molecular Dynamics with rCUDA

Javier Prades1, Baldomero Imbernón2, Carlos Reaño3, Jorge Peña-Garcı́a2, Jose Pedro
Cerón-Carrasco2, Federico Silla1 and Horacio Pérez-Sánchez2

Abstract
The full-understanding of the dynamics of molecular systems at the atomic scale is of great relevance in the fields of
chemistry, physics, materials science and drug discovery just to name a few. Molecular dynamics (MD) is a widely used
computer tool for simulating the dynamical behavior of molecules. However, the computational horsepower required
by MD simulations is too high to obtain conclusive results in real world scenarios. This is mainly motivated by two
factors: (1) the long execution time required by each MD simulation (usually in the nanosecond and microsecond scale,
and beyond) and (2) the large number of simulations required in drug discovery to study the interactions between a
large library of compounds and a given protein target. To deal with the former, Graphics Processing Units (GPUs) have
come up into the scene. The latter has been traditionally approached by launching large amounts of simulations in
computing clusters that may contain several GPUs on each node. However, GPUs are targeted as a single node that
only runs one MD instance at a time, which translates into low GPU occupancy ratios and therefore low throughput. In
this work, we propose a strategy to increase the overall throughput of MD simulations by increasing the GPU occupancy
through virtualized GPUs. We use the rCUDA middleware as a tool to decouple GPUs from CPUs, and thus enabling
multi-tenancy of the virtual GPUs. As a working test in the drug discovery field, we studied the binding process of a
novel flavonol to DNA with the GROMACS MD package. Our results show that the use of rCUDA provides with a 1.21x
speed-up factor compared to the CUDA counterpart version while requiring a similar power budget.
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Introduction

Molecular dynamics (MD) has been consolidated as a
popular tool in theoretical studies in molecular sciences.
MD tools solve Newton’s equations of motion for a given
molecular system, which sample atomic motions usually
in the nanoseconds to microseconds and milliseconds
scale. These simulations are becoming more accurate along
with the development of improved force fields, making
it possible to accurately study processes such as protein
folding Shaw et al. (2010). A MD simulation starts with
a molecular configuration and a physical model, which
includes details about how atomic interactions are modeled.
After the simulation is carried out, the user obtains insightful
conclusions studying and analyzing the trajectory. The
computational horsepower required by MD simulations is
overwhelming as they assess millions of interactions of
particles during many time steps Abraham et al. (2015).
Indeed, the accuracy or realism of the result is directly related
to the amount of sampling.

There are many software packages for developing MD
simulations such as GROMACS Hess et al. (2008), AMBER
Case et al. (2005) or NAMD Phillips et al. (2005) just
to mention a few. Indeed, the development of all of these
standardized tools has democratized the use of MD, even
for those who are not specialists in simulator development.
Of particular interest to us is GROMACS, which is an
open-source MD tool extensively used in chemistry, mainly
(although not limited to) for the simulation of biomolecules.

GROMACS has as a primary goal to achieve the highest
simulation efficiency by offering several parallelization
approaches at different levels; vectorization, multithreading
and CPU-GPU (i.e., Graphics Processing Unit). Some
previous works have been carried out to improve the
performance of a single GROMACS execution by using
these parallel techniques Hess et al. (2008); Pronk et al.
(2013); Abraham et al. (2015); Patra et al. (2007); Poghosyan
et al. (2013).

However, the use of MD simulations for answering real
scientific problems, such as the discovery of new drugs,
typically involves a large number of independent simulations
that are executed in a large computing cluster by using
a resource manager, or job scheduler, such as Slurm Yoo
et al. (2003). These resource managers allow a collection of
heterogeneous resources to be shared among the jobs that are
executed in the cluster. However, these resource managers
are not designed to fully leverage GPUs because they do not
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cio Pérez-Sánchez, Bioinformatics and High Performance Computing
Research Group (BIO-HPC), Universidad Católica de Murcia (UCAM),
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allow the shared access (i.e., multi-tenancy) to them from
different processes Iserte et al. (2016).

In this paper we make use of a multi-tenant virtual
GPU strategy for increasing the throughput of a batch
of independent GROMACS simulations. To that end, we
use the rCUDA middleware Reaño et al. (2015), which
enables remote concurrent use of CUDA-compatible GPUs.
This middleware decouples GPUs from CPUs thus enabling
virtual CUDA-compatible devices on machines without local
GPUs, still delivering an acceptable performance. Moreover,
the physical GPUs are concurrently shared among several
GPU processes and therefore the GPU occupancy can be
improved by running several different GPU processes at the
same time Iserte et al. (2016). In addition to leverage virtual
GPU multi-tenancy in order to increase overall throughput
of a batch of independent MD simulations, we also leverage
CPU-based MD simulations concurrently executed with the
virtual GPU-based simulations in order to further increase
overall throughput. In this regard, we show that by properly
tuning the amount of resources used by each MD simulation,
overall throughput of a batch of MD simulations can be
noticeably increased with respect to the use of traditional
CPU-based or GPU-based approaches. A complementary,
and preliminary, study to the work presented in this paper
was already presented in Prades et al. (2018). Contrary to that
preliminary work, in this paper we provide a more mature
analysis of the multi-tenant virtual GPU strategy when
applied to a bunch of independent GROMACS simulations
by following a different approach. Additionally, a new
molecular system is studied in this paper. In this regard,
we also provide an insight to the problem from a purely
biological perspective.

The rest of the paper is structured as follows. Next
section provides the required background about MD. It
also briefly describes the rCUDA middleware. Afterwards,
our strategy to improve the throughput of MD simulations
in large heterogeneous clusters is thoroughly introduced.
Next, the bio-informatics problem addressed in this paper
is described, followed by the experimental results that show
how system throughput can be increased by making use of
virtual GPU multi-tenancy. Next, analysis of MD results
from the biological side and its validation is commented.
The last section summarizes the conclusions of this study and
provides some directions for future work.

Background

This section provides the necessary background on MD
simulations as well as on the rCUDA remote GPU
virtualization middleware.

MD in Drug Discovery
We draw on our description of Virtual Screening (VS)
methods for drug discovery, which was previously given
in Sánchez-Linares et al. (2012); Imbernón et al. (2017);
Banegas-Luna et al. (2018). VS methods are computational
techniques used in several scientific areas, such as catalysts
and energy materials Franco (2013), and mainly drug
discovery Kitchen et al. (2004), where experimental
techniques can benefit from computational simulation.
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Figure 1. Architecture of the rCUDA middleware

VS methods search within libraries of small molecules
that can potentially bind to a drug target, typically a protein
receptor or enzyme, with high affinity. In some cases,
they actually “dock” small molecules into the structures
of macromolecular targets. Moreover, they look for (i.e.,
score) the optimal binding sites by providing a ranking of
chemical compounds according to the estimated affinity or
scoring Lagarde and othersu (2015). In general, VS methods
optimize scoring functions, which are mathematical models
used to predict the strength of the non-covalent interaction
between two molecules after docking Jain (2006). Indeed,
these candidate molecules will continue the drug discovery
process road-map that goes from in-vitro studies to animal
investigations and, eventually, to human trials Csermely et al.
(2013).

Although VS methods have been used for many years and
have identified several compounds to be used as approved
drugs, VS has not yet fulfilled all its expectations. Neither the
VS methods nor the scoring functions used are sufficiently
accurate to identify high-affinity ligands reliably. To deal
with large numbers of potential candidates (many databases
comprise hundreds of thousands of ligands), VS methods
must be very fast and still they would require a large amount
of computing time for each ligand.

One recent approach to increase accuracy of VS methods
is to use several methods in the pipeline, starting from
high-speed and low accuracy methods such as molecular
similarity, then post-filtering result using mid accuracy
techniques such as molecular docking, and ending up with
more accurate and informative structure-based techniques
such as MD. In this work we will focus our discussion in
the execution of VS calculations with GROMACS.

rCUDA (remote CUDA)
Figure 1 depicts the architecture of the rCUDA middleware,
which follows a client-server distributed approach. The client
part of rCUDA is installed in the cluster node executing
the application requesting GPU services, whereas the server
side runs in the computer owning the actual GPU. The
client side of the middleware offers the same application
programming interface (API) as does the NVIDIA CUDA
API. In this manner, the client receives a CUDA request
from the accelerated application and appropriately processes
and forwards it to the remote server. In the server node, the
middleware receives the request and interprets and forwards
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it to the GPU, which completes the execution of the request
and provides the execution results to the server middleware.
In turn, the server sends back the results to the client
middleware, which forwards them to the initial application,
which is not aware that its request has been served by a
remote GPU instead of a local one.

rCUDA is binary compatible with CUDA 9.0 and
implements the entire CUDA Runtime and Driver APIs
(except for graphics functions). It also provides support
for the libraries included within CUDA (cuDNN, cuBLAS,
cuFFT, etc.). Additionally, it supports several underlying
interconnection technologies by making use of a set of
runtime-loadable, network-specific communication modules
(currently TCP/IP, RoCE and InfiniBand). The InfiniBand
and RoCE communication modules are based on the use
of the RDMA feature present in these network fabrics.
Independently of the exact network used, data exchange
between rCUDA clients and servers is pipelined in order
to attain high performance. Internal pipeline buffers within
rCUDA use preallocated pinned memory, given the higher
throughput of this type of memory, thus allowing that
overall overhead of using a remote GPU is negligible when
InfiniBand is used Reaño et al. (2015). When compared
to other publicly available remote GPU virtualization
frameworks, rCUDA provides the best performance Reaño
and Silla (2015).

System Configurations for Drug Discovery
The computing power required by MD simulators is
tremendous. This need for large computing power comes
from two different aspects. On the one hand, a single
MD simulation requires a huge amount of computations
to be completed. In this way, depending on the exact set
of molecules to be considered, a single simulation may
require several days to be carried out. Besides, in order to
perform a complete analysis when searching for new drugs,
it is common that MD simulations are executed in batches
composed of tens or hundreds of different simulations, each
of them working on a different set of ligands.

The computing power required by MD simulators can
be achieved in several ways. The most traditional one is
based on the use of a large collection of nodes, each
of them composed of one or more processor sockets.
In particular, hardware configurations where each node
leverages two processors are very common because of
the good performance/cost ratio of these systems. In this
scenario, a simulation may either be executed in the CPU
cores of a single node or may span to several cluster
nodes. Nevertheless, considering the cost of inter-node
communications across the network fabric, it may be
advisable to constrain a MD simulation to a single node if
memory resources available in that node are enough for the
problem size under execution. This decision may reduce the
performance of individual simulations but would increase
overall throughput, thus reducing total execution time of the
batch of simulations.

Another possibility to provide the tremendous computing
power required by MD simulators is by using GPUs.
These devices typically reduce total execution time by
one or two orders of magnitude with respect to the use

of CPUs. Unfortunately, using GPUs is not exempt from
several concerns. For instance, GPUs are noticeable more
expensive than CPUs. Also, a single MD simulation does
not usually fully utilize the GPUs assigned to it. This
non-100% utilization has several consequences: (1) some
computing power is wasted at the same time that the
bunch of simulations required for VS takes longer and (2)
GPUs waste some amount of energy while not being 100%
utilized. In order to address this concern, we may think
about concurrently running several MD simulations in the
same GPU. However, it must be noticed that clusters usually
leverage a job scheduler, such as Slurm, in order to dispatch
jobs to nodes and these job schedulers are not able to
provide the same GPU to more than one job. Therefore, when
GPUs are used in the traditional way, their utilization cannot
be easily increased unless the application is improved to
generate a higher GPU utilization, which is not possible most
of the times given that the very nature of the problem being
addressed limits the modifications that can be applied to the
application in order to achieve a higher GPU utilization.

In order to increase GPU utilization and thus make a better
usage of available resources, it is possible to virtualize these
accelerators and make use of the multi-tenancy approach
by leveraging the rCUDA middleware. In this way, a single
GPU would be shared among several MD simulations thus
making that GPU utilization gets closer to 100%. In this
configuration it is possible to concurrently execute several
MD simulations in nodes without GPUs while the GPUs
located in a single server are shared among these simulations.

In this paper we analyze the three configurations
mentioned above (CPU, GPU, and virtualized GPU with
rCUDA) in order to find out which one of them best fits the
tremendous computational needs of MD simulators. In this
regard, although simulation performance is important, given
that these simulations are often batched in tens or hundreds
of instances, we put the focus of this study on overall
throughput instead of individual simulation performance. To
conduct this study, we consider the configurations depicted
in Figure 2 as the basic case studies for each of the three
scenarios presented above. Figure 2(a) displays the basic
case study for the CPU-only configuration. In this case we
assume that MD simulations do not spread beyond a single
node, as discussed above and therefore the basic case study
is composed of a single node comprising a given amount of
CPU cores. In this node, one or more concurrent simulations
can be executed. The exact amount of concurrent simulations
depends on several factors and must be investigated.

Figure 2(b) depicts the basic case study when GPUs are
present in the cluster and are used in the traditional way
(with job schedulers such as Slurm). As in the previous case,
a single node is considered in order to avoid the overhead
of inter-node communications when the simulation spreads
over several cluster nodes. Notice, however, that the GPU-
based MD simulation may not require all the CPU cores
available in the node. In this case it would be possible
to execute one or more CPU-based simulations leveraging
the cores not used by the GPU-based instance. This would
increase overall throughput.

Finally, Figure 2(c) shows the basic case study when
rCUDA is used to virtualize GPUs thus enabling multi-
tenancy. It can be seen in Figure 2(c) that this basic case
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Figure 2. Hardware configurations for each of the baseline
case studies considered in this paper.

study is composed of two nodes: one of the nodes has
the GPU and executes the rCUDA server whereas the
other node does not include GPUs and therefore executes
the MD simulations using the remote GPU in the other
node. Given that this scenario allows to concurrently run
several MD simulations on the same GPU, the exact
amount of simulations must be investigated. The exact
number of simulations sharing the GPU will depend on
the GPU characteristics. Additionally, this analysis should
also include which is the amount of CPU cores provided to
each of the simulations that reports the best performance.
Moreover, the node running the rCUDA server could also
be used to execute additional MD simulations in the GPU,
also using rCUDA. Furthermore, it must be noticed that
this analysis may conclude a configuration for the MD
simulations where several CPU cores (either in the client
node or in the server node) are not used. These cores might be
used to run CPU-only simulations. In this regard, the obvious
goal is to increase as much as possible the overall throughput
when tens or hundreds of MD simulations must be executed.
To that end, in next sections we will compare the throughput
achieved by each of the configurations presented in Figure 2,
obviously considering that the basic case study for rCUDA
includes more resources than the other two basic case studies
(it includes two nodes instead of one node).

However, before analyzing the performance and through-
put of each of these configurations, we need to understand
the bio-informatics problem that is addressed in this paper.
This is done in next section.

Flavonoids as a Working Example

As discussed above, MD is now implemented in drug
design work-flows with a focus on improving the accuracy
of docking predictions on protein-lingad systems, where
the former is the targeted molecule associated to a health
disorder. However, there is an increasing effort in the
search of molecules able to bind DNA Noroozi et al.
(1998). Indeed, they might be used to either protect
living cells from exogenous reactive species (i.e. reactive
oxygen species able to initiate side biological degradation
phenomena) or to specifically hall cell division machinery
(i.e. anticancer molecules reacting with cancer cells). Herein,
we decided to use a recent model system designed by
Halder and Purkayastha (2018), who conducted a joint
molecular docking and experimental study to propose
a new molecule able to bind to the minor groove of
DNA. According to these authors, a fisetin derivative
labeled as DEPHBC [2-(3,4-diethoxyphenyl)-3-hydroxy-
4H-benzo[h]chromen-4-one], strongly binds to the minor
groove of DNA and in addition provides stabilization to the
DNA helix architecture. That latter feature foresees a very
promising application for developing enhanced drugs, and
therefore make the system an ideal working example to test
our computational strategy. For the records, the chemical
structure and atomic charges of the isolated DEPHBC ligand
were fully optimized at the B3LYP/6-31+G(d) level of
theory using the Gaussian16 suite of quantum mechanical
codes Frisch et al. (2016), while the DNA model used
in our study was directly provided by Halder et al
Halder and Purkayastha (2018). The resulting model system
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is subsequently parametrized by using the well-known
AMBER99SB force field Hornak et al. (2006) and a TIP3P
water model Jorgensen et al. (1983). Although, other force
field may be used, the major goal of this contribution is to
show rather than conducting a large assessment/benchmark
of MD parameters, lies beyond the scope of our contribution.
However, such approach has been successfully used to mimic
DNA-related system Pezeshgi Modarres et al. (2015). In
addition, it should be underlined that the use of rCUDA can
be successfully used to produce long MD trajectories and
therefore help to further force field benchmarking studies.

In short, the goal of the paper is consequently to fill the
gap between the earlier reported docking results and the
experimental evidences by accounting for dynamical effects
with the GROMACS analysis.

System Performance and Throughput
This section presents the experimental evaluation of this
study, based on Intel CPUs and NVIDIA GPUs. First of all,
we briefly introduce the hardware and software environment
where the experiments are carried out. Afterwards, the
performance and throughput of GROMACS is analyzed
using CPUs, using real GPUs and using virtual GPUs. In
a later subsection we present the overall throughput of the
three system configurations discussed in previous sections.

Test bed: Hardware and Software Environment
Experiments have been carried out in a cluster based on
two x86-based SYS1028GR-TR Supermicro nodes. Each
of the nodes contains two 10-core Intel Xeon E5-2630 v4
processors, and has a Mellanox ConnectX-4 VPI single-
port InfiniBand adapter (EDR InfiniBand). The nodes are
connected by a Mellanox switch with EDR compatibility (a
maximum rate of 100Gb/sec). One of the nodes is equipped
with one Tesla P100 GPU owning 16 GB of RAM memory.
This node will be used to execute GROMACS using CUDA
in the traditional way. This node will also be used to execute
the rCUDA server. On the other hand, the other node will
be used to execute GROMACS using CPU cores. This node
will also be used as the rCUDA client, that is, it will execute
GROMACS while remotely using the GPU in the other node.

The CentOS 7.3 operating system and the Mellanox
OFED 4.4-2.0.7 were used along with the NVIDIA driver
390.59 and CUDA 8.0. The rCUDA version used is
18.12beta, which is a development version containing all
the functionality required to execute applications from any
domain using remote GPUs although performance is not
fully optimized yet. Regarding GROMACS, version 2016-1
has been used.

Performance Characterization
Although in this paper we put the focus on overall
system throughput, in this section we begin the study by
characterizing the performance of the GROMACS MD
simulator in the three scenarios discussed in previous
sections. Figure 3 depicts the performance attained by the
MD simulator. CPU-only executions of GROMACS are
considered as well as executions using a single (real) GPU
and executions using a remote virtual GPU across the EDR

InfiniBand network. For each of the scenarios, GROMACS
has been configured to use 3, 5, 10 or 20 OMP threads
(simply threads from now on). Notice that it was not
possible to configure GROMACS to use either 1 or 2 threads
because of the nature of the simulations being carried out
(GROMACS forced to 3 the minimum amount of threads to
be used in the simulations).

Figure 3 shows that the best performance for the CPU-
only simulations is achieved when all the cores in the
node are devoted to the simulation. Actually, performance
when 20 cores are used is much larger than twice the
performance when GROMACS is configured to use 10 cores.
Interestingly, performance when 3, 5 and 10 cores are used
is proportional to the number of cores. Performance when 20
cores are used does not follow this trend.

When the local GPU is leveraged in the traditional way
using CUDA (non-virtualized GPU), it can be seen that
performance of GROMACS greatly depends on the exact
number of threads used during the simulation. This result
is very interesting because it shows that performance not
only depends on the use of the accelerator but it also
depends on how that accelerator is used. In the particular
case of the molecules considered in this study, the best
performance is achieved when GROMACS is configured to
use 10 threads. In this regard, performance when 20 threads
are used is slightly lower than that attained for 10 threads.
This result is very important because it shows that a GPU-
based facility where all the simulations are configured to use
GPUs may easily waste resources: (a) in case the simulations
are configured to use all the CPU cores, performance is not
maximized, (b) in case simulations are properly configured
to maximize performance, some cores at every cluster node
will remain idle.

Figure 3 also displays the performance when GROMACS
leverages a remote GPU (no GPU sharing in this case yet). It
can be seen that the performance of a single simulation when
rCUDA is used is noticeably lower than the performance
when the local GPU is used with CUDA. This lower
performance is due to the fact that a development version of
rCUDA has been used in this study. This version of rCUDA,
which is a major step forward with respect to previous
rCUDA versions, contains all the functionality required to
execute CUDA applications although its performance has
not been optimized yet. This performance was optimized in
previous versions of rCUDA Reaño et al. (2015) although the
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Figure 3. Performance of the MD simulations when 3, 5, 10
and 20 threads are leveraged. The three basic case studies are
considered.



functionality of those versions was limited and did not allow
to execute some applications. It is expected that next releases
of the rCUDA middleware will perform significantly better
than the one used in this paper, thus making the overhead
of using remote GPUs negligible, as shown in Reaño et al.
(2015).

In addition to analyze the performance of GROMACS in
each of the configurations depicted in Figure 2, taking a look
at energy can provide a complementary perspective to the
analysis. Figure 4 displays the energy required to perform
the simulations in each of the hardware configurations
considered. The metric used to show energy is relative to
the simulated time: the nanosecond. System energy has
been measured by polling once every second the power
distribution unit (PDU) present in the cluster. Used unit
is APC AP8653 PDU, which provides individual energy
measurements for each of the servers connected to it.
Therefore, energy measurements shown in Figure 4 refer to
the entire node executing the MD simulator.

Figure 4 shows that energy required in the CPU-only
configuration decreases as the amount of threads involved
in the execution of GROMACS increases. This result was
expected given that, although the energy consumed by the
node depends on the amount of active cores, the increment
in energy for larger amounts of active cores is absorbed
by the energy required by the rest of components of the
node. Therefore, the reduction in execution time shown in
Figure 3 for larger amounts of threads compensates the
energy consumed by the additional cores used to run those
threads. As a consequence, the faster the simulation is
completed, the lower energy is required.

In the case of using the GPU in the traditional way with
CUDA (scenario depicted in Figure 2(b)), Figure 4 shows
that energy per ns is also proportional to execution time. The
reason is the same as for the CPU-only scenario: although
using a larger amount of threads requires more CPU cores to
be active, and thus more power consumption (see Figure 5),
and additionally also causes a larger GPU utilization, the
benefits in performance compensate for that increased power
demand at the same time that the additional required energy
is partially hidden by the power consumption of the rest of
the components of the node. Furthermore, notice in Figure 4
that the energy required when 20 threads are leveraged by
GROMACS is slightly larger than the one used when 10
threads are used. This higher energy consumption is aligned
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Figure 4. Energy per simulated ns required by the MD
simulations when 3, 5, 10 and 20 threads are leveraged. The
three basic case studies are considered.
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of the system in the CUDA scenario. Peak power required by
the entire node also shown. Simulator configurations using
either 3, 5, 10 or 20 threads are considered.

with the lower performance (larger execution time) shown in
Figure 3 for the 20-thread CUDA case study.

Finally, regarding the rCUDA configuration, it can be
seen in Figure 4 that this scenario requires a much larger
amount of energy than the CUDA configuration. Two
are the reasons for this larger energy demand. On the
one hand, in this case we have considered the energy
required by the two nodes involved in this scenario: the
one executing the CPU part of GROMACS (client side)
and the one executing the GPU part of the simulation
(rCUDA server). On the other hand, as it was shown
in Figure 3, performance in the rCUDA configuration is
lower than in the CUDA case. This translates into a longer
execution time thus causing that energy consumption is
higher. Nevertheless, remember that in this work we aim
at analyzing the benefits of using a multi-tenant virtual
GPU strategy for increasing the throughput of independent
GROMACS simulations. Therefore, although the results
presented in Figure 4 regarding energy consumption for
rCUDA are not promising, we should wait until the GPU is
shared among several GROMACS instances before making
conclusions.

Throughput for Each Case Study
In the previous section, the performance of a single instance
of GROMACS when executed without any concurrency
with other instances has been shown. However, given that
we are interested in overall system throughput when tens
or hundreds of MD simulations are executed (typical VS
workflow used in drug discovery), further experiments
must be conducted in order to find out the performance
of GROMACS simulations when they are concurrently
executed with other MD simulations for each of the scenarios
discussed above. In this section we present those throughput
results. Notice that in this section we do not mix yet different
flavors of the GROMACS simulations. That is, in this section
we consider that all instances of GROMACS use either the
CPU, the GPU with CUDA or the GPU with rCUDA. In next
section we will present throughput results when different
GROMACS flavors are combined.

Figure 6 shows the overall throughput in the CPU-
only scenario. Results in Figure 6 have been gathered
by executing up to 6 concurrent GROMACS instances
in the same node (remember that we have discarded the



Prades et al. 7

0	

20	

40	

60	

80	

100	

120	

140	

3	OMP	Threads	 5	OMP	Threads	 10	OMP	Threads	 20	OMP	Threads	

Pe
rf
or
m
an

ce
	(n

s/
da

y)
	

Sim.	1	 Sim.	2	 Sim.	3	 Sim.	4	 Sim.	5	 Sim.	6	

Figure 6. Throughput of the CPU-only MD simulations when
several instances are concurrently executed in the same node.
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considered.
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Figure 7. Energy per simulated ns required by GROMACS
when several CPU-only instances are concurrently executed in
the same node. Simulator configurations using either 3, 5, 10 or
20 threads are considered.

case study where a simulation spans over several cluster
nodes). In order to run up to 6 GROMACS instances in
the same node, the simulator has been configured to use 3,
5, 10 or 20 threads. Notice that GROMACS configurations
with different amounts of threads have not been mixed.
That is, when 3 threads are considered, all the instances
of GROMACS make use of such an amount of threads.
The same holds for 5 and 10 thread configurations of
GROMACS.

It can be seen in Figure 6 that the best throughput is
achieved when a single GROMACS instance is executed
using all the available cores in the node (20 threads). This
configuration achieves slightly better throughput than the
second best option, which is interestingly composed of six
3-thread instances of GROMACS. It is shown in Figure 6
that aggregated throughput when six 3-thread instances of
GROMACS are concurrently executed in a node is clearly
larger than configurations with 5 or 10 threads, despite
wasting two of the cores of the node (6 instances of 3-thread
simulations require 18 cores instead of 20 cores). Notice that
executions in Figure 6 have been launched by making use of
the numactl command, which attaches processes to cores
for all the execution of the application, so that data stored
in the core caches do have to be migrated during application
execution. In this manner, and given that resource managers
not always make use of this feature, throughput of CPU-only

executions in a real deployment might be slightly lower than
that shown in Figure 6.

Figure 7 presents the energy required by the node
concurrently executing the several instances shown in
Figure 6. It can be seen that the best simulator configuration,
attending to energy consumption, is using 20 threads
(flooding the entire node with a single simulation). This
result is consistent with the energy results previously shown
in Figure 4 and point out that the additional energy required
because of the activation of more cores in the node has
a lower impact on the energy/performance ratio than the
impact generated by the associated reduction in execution
time.

In the case of the CUDA scenario shown in Figure 2(b),
and given that we are not considering yet mixing different
flavors of GROMACS executions, only the case for one
instance of the GPU-based simulator can be analyzed
(mixing different flavors of GROMACS will be analyzed in
next section). In this case, as shown in Figure 3, maximum
performance is attained when GROMACS is configured
to use 10 threads. For this particular execution, Figure 8
displays the GPU memory usage and GPU utilization along
execution time (GROMACS was configured to simulate
200 ns of the movements of the molecules). Data for GPU
memory usage and GPU utilization have been gathered by
polling the GPU in the node once every second. A homemade
program based on the NVML NVIDIA library is used to that
end.

It can be seen in Figure 8 that the GPU memory footprint
of the MD simulation is about 300 MB. This memory
footprint is quite small if compared to the memory available
in the P100 GPU (16 GB). Furthermore, it can be seen in the
figure that GPU utilization remains almost constant despite
the large amount of small kernels executed. In this regard, the
utilization of the GPU is never larger than 60%. This result
is very important because it points out that GPU resources
are clearly underutilized. Actually, it is expected that this
under utilization is exacerbated in newer and more powerful
GPU generations where the gap between the performance
of the CPUs and the performance of the GPUs increases.
The rationale for this statement is the following: for a
simulation as the one depicted in Figure 8, the CPU part
of the application will take approximately the same time to
be executed given that newer processors will not noticeably
improve performance per core but they are expected to be
more power efficient, according to the trend followed during
the last decades. However, the time required for executing
the kernels in the GPU will be reduced in newer GPUs
presenting a larger amount of cores which, additionally,
are more efficient. In this way, given that MD simulations
alternate CPU and GPU periods for their entire execution
time, it is expected that the GPU periods become shorter due
to a reduced execution time whereas execution time of CPU
periods remain almost constant. As a consequence, GPU
utilization will be reduced.

Figure 9 shows the instant power and accumulated energy
along the execution time of the simulation shown in Figure 8.
Instant power is split into GPU power and system power.
System power data was gathered by polling once every
second the PDU present the cluster, as mentioned before. In
order to split power data provided by the PDU into system
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Figure 8. GPU memory and GPU utilization along the execution time of the GROMACS simulator configured to use 10 threads
with the molecules under study. Simulation was configured to last 200 ns of simulated time.
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Figure 9. Instant power and accumulated energy along the execution time of the GROMACS simulator configured to use 10
threads with the molecules under study. Simulation was configured to last 200 ns of simulated time. Instant power is split into GPU
power and system power.

power and GPU power, the homemade program based on
the NVML library was used to collect, every second, the
power required by the GPU. Thus, system power presented
in Figure 9 is the difference between the power measurement
provided by the PDU and the power numbers provided
by the homemade NVML-based program. It can be seen
in Figure 9 that power required by the system is around
200 Watts whereas power required by the P100 GPU is
around 75 Watts. Furthermore, it can be seen that power
required by both the system and the GPU remain almost
constant for all the execution time of the simulation. This
result was expected from the GPU utilization numbers shown
in Figure 8, which also remain almost constant for the
entire execution of GROMACS. On the other hand, given
that consumed energy is proportional to instant power and
execution time, it can be seen in Figure 9 how total energy
requirements for the execution of this simulation increases
with execution time. This increment is linear because instant
power remains constant during execution time.

Overall throughput in the rCUDA scenario is shown in
Figure 10. Remember that this case study, contrary to the
other two case studies, leverages two nodes instead of
only one node. In this way, we can use both nodes to
execute instances of GROMACS that will share the GPU
located in one of the nodes thanks to rCUDA. Figure 10
depicts performance results when the GROMACS instances
are configured to make use of 20, 10, 5 and 3 threads.
In the first scenario, one GROMACS instance is executed
in the node without GPU whereas the other instance is
executed in the node running the rCUDA server (GROMACS
instances flood first the client node and then continue filling
the server node). It can seen in Figure 10 that aggregated
performance when 20 threads are used is not increased when
a second instance is executed in the node with the GPU.
This is due to two different reasons. The first one is that

the rCUDA server requires some CPU cores in the GPU
server to be run and thus it competes with GROMACS in
that node. More precisely, the rCUDA server requires a core
per each application process it serves. In this way, given
that it is serving 2 instances of GROMACS, it requires 2
cores in the GPU node, in addition to the 20 cores already
used by the MD simulator. This oversubscription causes
the reduction in performance shown in Figure 10. The
second, although less important, reason for not increasing
performance when a second 20-thread GROMACS instance
is executed in the GPU server is that computations in all
the 20 threads of a given GROMACS instance must be
completed before the simulation can proceed with the next
time step. Therefore, given that the rCUDA server process
and the GROMACS instance in execution in that node are
bothering each other, some threads get delayed thus causing
that the entire application executes slower. That is, given the
large granularity of the simulations, waiting time becomes
the bottleneck. This can also be observed in the low GPU
utilization reported in this configuration. In a similar way,
although aggregated performance is noticeably increased
when 10 threads are used by each GROMACS instance,
when all the 40 available cores in the system are used by
GROMACS, performance drops. The reason for this is drop
in performance is the same as in the previous case. Notice
that in this case the rCUDA server make use of 4 cores and
therefore oversubscription is larger than in the previous case.

GROMACS performance with configurations using 5 and
3 threads per instance is noticeably better, as shown in
Figure 10. It can be seen that in the case of 3-thread
simulations (the smallest granularity considered in this
study) GPU utilization is almost 100% beyond 6 instances.
Moreover, aggregated performance is almost 600 ns/day
when 8 concurrent GROMACS instances share the GPU.
Notice that this result is achieved with a version of rCUDA
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Figure 11. Energy per simulated ns required by GROMACS when several simulator instances share the GPU in the rCUDA server
by leveraging the rCUDA middleware. Simulator configurations using either 20, 10, 5 or 3 threads are considered.

whose performance is not optimized yet. Throughput results
with an optimized version of rCUDA are expected to be
improved. Actually, with an improved version of rCUDA,
it is expected that 100% GPU utilization is achieved with
a smaller amount of instances (currently 8 instances) thus
allowing to use a larger amount of cores for additional
CPU-only simulations. This would further increase overall
throughput.

Figure 11 shows the energy point of view of the results
shown in Figure 10. As in previous figures, the energy
required for simulating a nanosecond is displayed. The
energy required by both nodes (client and server sides)
is considered in the figure. It can be seen that the more
instances of the simulator are concurrently run, the better
energy results are obtained. This rule is broken when the
server system gets congested either at the GPU or at the
CPU. In this regard, Figure 11 shows an increment in the
energy trend for the second instance when 20 threads are
used, for the fourth instance when GROMACS uses 10
threads, for the seventh instance in the case of using 5
threads per simulation and, finally, in the tenth instance when
GROMACS is run using 3 threads per instance. Furthermore,
as in the previous figures, energy is proportional to execution
time (or performance). Additionally, if the energy per ns
required when running 8 3-thread GROMACS instances with
rCUDA (Figure 11) is compared with the energy per ns
required when running one 10-thread simulator instance with
CUDA (Figure 9), it can be seen that energy is similar in both
cases.

Finally, remember that overall throughput in the CUDA
case was 300 ns/day per node (results in Figure 3 for 10-
thread simulations). Notice, however, that the hardware used
to achieve the performance in the CUDA and in the rCUDA
cases is not the same. Although in both cases only one
GPU is leveraged, in the rCUDA case a second node has
been used. Therefore, more CPU cores were available in the
rCUDA scenario. In order to perform a fair comparison, in
next section we analyze the throughput attained by each of

the system configurations presented in Figure 2 when using
a similar amount of hardware resources.

Overall System Throughput
In the previous sections we have first analyzed the
performance of GROMACS in each of the scenarios depicted
in Figure 2 when a single instance is run without sharing
resources with other instances. Later, we have studied
how performance was improved when several instances
were concurrently run in each of the scenarios (except the
GPU-based one, which does not allow several instances
of GROMACS to share the GPU). However, it is also
possible to mix the different flavors of GROMACS (CPU-
based and GPU-based executions) in order to increase overall
throughput of the system. In this section we perform such an
analysis.

CPU and GPU-based flavors of GROMACS can be mixed
in the CUDA (Figure 2(b)) and rCUDA (Figure 2(c))
scenarios (the CPU-based scenario only allows to run CPU
instances of GROMACS). In these two scenarios, the CPU
cores not devoted to GPU-based simulations can be used to
execute additional instances of GROMACS using only the
CPU cores. By making this kind of mixtures, it is expected
to increase overall throughput. Using the performance data
gathered in previous sections, we can make projections
about overall system throughput in terms of aggregated
ns/day. In order to make such projections, we will use the
performance data shown in Table 1. This table shows that
a single CPU-based simulation using 20 threads achieves
a performance of 121.33 ns/day (this is the value already
shown in Figure 3). Similarly, when only 3 threads are used,
performance is lowered to 22.59 ns/day. If the GPU is used
by a GROMACS simulation configured with 10 threads,
attained performance is 305.46 ns/day. On the other hand, in
the rCUDA scenario, when 8 concurrent 3-thread simulations
share the GPU (using two different cluster nodes to run the
CPU processes) aggregated performance is 542.53 ns/day.
Furthermore, when rCUDA is used in a single node (all the



Table 1. Performance achieved by several GROMACS
configurations

Performance
Configuration Label (ns/day)
CPU 20 threads A 121.33
CPU 3 threads B 22.59
CUDA 10 threads C 305.46
rCUDA 2 nodes:
eight 3-thread instances D 542.53
rCUDA 1 node:
five 3-thread instances E 452.64

GROMACS simulations being run in the node owning the
GPU and running the rCUDA server), 5 concurrent 3-thread
simulations report an aggregated performance of 452.64
ns/day. Notice that in this latter configuration, all the 20 cores
in the node are used because the GROMACS instances are
using 15 cores whereas rCUDA makes use of 5 additional
cores to serve those 5 GROMACS instances.

With the data presented in Table 1 we can make two
different projections in order to mix several GROMACS
flavors. First, we can assume a cluster composed of n nodes
where half of the nodes own a GPU and the other half
do not own a GPU. In this cluster configuration, the non-
GPU nodes would be used to execute CPU-based instances
of GROMACS. For these CPU-based simulations, the best
configuration is using 20 threads per instance as shown in
Figure 3. In addition to the GROMACS executions run in
the non-GPU nodes, each GPU node would execute one
10-thread simulation. This would leave 10 unused cores
in the node, which could be used to run three 3-thread
instances of GROMACS. This cluster configuration would
therefore report an overall throughput equal to 494.56 ns/day
per each couple of nodes (one node with GPU and one
node without GPU). With this very same hardware resources
(one non-GPU node and one GPU node), in the rCUDA
case, it would be possible to execute eight 3-thread GPU
instances of GROMACS with rCUDA and two 3-thread CPU
instances in the spare cores. This would provide a throughput
equal to 587.71 ns/day. This translates into a 1.19x speed-up
when virtual GPUs are used. Notice that the same hardware
resources are leveraged in both cases.

The second projection that can be made with the numbers
in Table 1 is assuming a cluster where every node owns
one GPU. In this scenario, we could use a single node
to execute the rCUDA-based GROMACS simulations. In
this case, that node would be able to run five 3-thread
GROMACS instances, thus using all the 20 cores in the
node and reporting a throughput equal to 452.64 ns/day. In
the case of the CUDA executions, three 3-thread CPU-based
instances of GROMACS could be run in addition to the 10-
thread GPU-based one. That would report a total throughput
equal to 373.23 ns/day. As can be seen, in this cluster
configuration, speed-up of using multi-tenancy with virtual
GPUs would be 1.21x. Again, same hardware resources
would be used in both cases.

The assumptions above can be formalized using the
following equations:
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Figure 12. Aggregated throughput projection for a hybrid
cluster composed of n nodes where half of the nodes own a
GPU whereas the other half of the nodes do not leverage any
accelerator.
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Figure 13. Aggregated throughput projection for a
homogeneous cluster composed of n nodes where all the
nodes own one GPU.

• For the hybrid cluster composed of nodes with one
GPU and nodes without GPU:
Throughput real GPU = (A + 3B + C) * n/2
Throughput virtual GPU = (2B + D) * n/2

• For the homogeneous cluster where all the nodes own
one GPU:
Throughput real GPU = (3B + C) * n
Throughput virtual GPU = E * n

The equations above allow us to make a throughput
estimation depending on the number of nodes in the cluster,
which is referred to as n in the equations. Furthermore, labels
“A”, “B”, “C”, “D” and “E” refer to the values shown in
Table 1. Figures 12 and 13 present such estimations for the
hybrid and homogeneous clusters, respectively. It can be seen
in both figures that applying the multi-tenant virtual GPU
strategy effectively increases the throughput of independent
GROMACS simulations while using the same hardware as in
the real GPU scenario.

Analysis of obtained MD results in terms of
biological validation
Regarding the biological significance and correctness of
obtained results from previously mentioned MD results, As
one can see in Figure 14 the computed Root Mean Square
Deviation (RMSD) for the DNA structure along the MD
trajectory ranges from around 0.3 to 2.2 nm. Although
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Figure 14. RMSD over time for the DNA structure.

Figure 15. Average DNA(center of mass) to DEPHBC distance
over time.

these might seem high RMSD values for such structural
model, this is the logical consequence of performing long
MD simulations without imposing any structural restriction
to the studied DNA fragment. Of course, we may add
end-to-end distance constraints to DNA in order to reduce
these RMSD values. Besides, from Figures 15 and 16 we
can observe that ligand DEPHBC remains stable regarding
non-covalent interactions with DNA system, as Halder et
al. reported experimentally Halder and Purkayastha (2018),
which confirms the validity of our proposal. However, our
main goal was to show how rCUDA helps to increase the
sampling of a bio-model free of any geometrical restriction
to add a full dynamic protocol. It is also worth stressing
that in spite of such measurable variation in the RMSD, the
characteristic double helix architecture is maintained, so that
reliable macroscopic conclusions can be extracted from the
GROMACS output.

Conclusions and Future Work
MD are computational tools that simulate the dynamical
behaviour of atoms and molecules. This simulation process
is of paramount importance for several fields such as drug
discovery, material simulation, etc. However, the number

Figure 16. Superposition of first and last frame of the
DNA-DEPHBC MD simulation.

of simulations and the computational horsepower required
by them, limits the success of MD techniques in real
scenarios and the only solution is to scale to heterogeneous
supercomputers comprised of CPUs and GPUs. This
paper shows that making use of a multi-tenant virtual
GPU strategy is an effective way to enhance the overall
throughput of GROMACS MD simulations. To that end, we
have used the virtualized GPUs provided by the rCUDA
middleware. rCUDA enables remote concurrent usage of
CUDA-compatible GPUs and thus physical GPUs can be
concurrently shared among several applications. This fact
increases GPU occupancy by running several GROMACS
instances at the same time. Furthermore, space cores in
the system are devoted to run CPU-based GROMACS
instances. Our results show that the use of rCUDA allows
a speed-up over 1.21x while using the very same hardware
resources. In addition, we apply our proposal to a system of
biological relevance (DNA-DEPHBC) and validate it against
previously obtained experimental results.

Future work includes widening this analysis with other
data sets in order to verify the stability of the results.
Other execution configurations should also be explored.
For instance, instead of using single node simulations,
spanning the execution of GROMACS to several cluster
nodes should also be taken into account. Additionally,
other GPU generations (such as the NVIDIA V100
GPU featuring more cores and more memory) should
also be addressed in order to assess the feasibility
of our proposal in recent cluster deployments. Finally,
instead of making throughput projections, the actual
performance of mixed GROMACS configurations should
be investigated. Furthermore, according to our experience
with the GROMACS simulations conducted in this study,
energy consumption is probably lower when the multi-tenant
virtual GPU strategy is leveraged. Thus, the exact energy
requirements of such mixed configurations should also be
analyzed. In this regard, if out intuition is confirmed, not
only throughput would be increased but also total energy
required to complete the MD simulations would be reduced.
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by the Generalitat Valenciana under Grant PROMETEO/2017/077.
Authors are also grateful for the generous support provided by
Mellanox Technologies Inc. Prof. Pradipta Purkayastha, from
Department of Chemical Sciences, Indian Institute of Science
Education and Research (IISER) Kolkata, is acknowledged for
kindly providing the initial ligand and DNA structures.

References

Abraham MJ et al. (2015) Gromacs: High performance molecular
simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX 1: 19–25.

Banegas-Luna et al. (2018) Advances in distributed computing with
modern drug discovery. Expert opinion on drug discovery (just-
accepted).

Case DA et al. (2005) The amber biomolecular simulation
programs. Journal of computational chemistry 26(16): 1668–
1688.

Csermely P et al. (2013) Structure and dynamics of molecular net-
works: a novel paradigm of drug discovery: a comprehensive
review. Pharmacology & Therapeutics 138(3).

Franco AA (2013) Multiscale modelling and numerical simulation
of rechargeable lithium ion batteries: concepts, methods and
challenges. RSC Advances 3(32): 13027–13058.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Scalmani G, Barone V, Petersson GA,
Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J,
Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz
JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F,
Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson
T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G,
Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J,
Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven
T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F,
Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov
VN, Keith TA, Kobayashi R, Normand J, Raghavachari K,
Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam
JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin
RL, Morokuma K, Farkas O, Foresman JB and Fox DJ (2016)
Gaussian 16 Revision A.03.

Halder D and Purkayastha P (2018) A flavonol that acts as a
potential dna minor groove binder as also an efficient g-
quadruplex loop binder. Journal of Molecular Liquids 265.

Hess B et al. (2008) Gromacs 4: algorithms for highly efficient,
load-balanced, and scalable molecular simulation. Journal of
chemical theory and computation 4(3).

Hornak V et al. (2006) Comparison of simple potential functions
for simulating liquid water. Proteins 65.

Imbernón B et al. (2017) METADOCK: A Parallel Metaheuristic
schema for Virtual Screening methods. The International
Journal of High Performance Computing Applications .

Iserte S et al. (2016) Increasing the Performance of Data Centers
by Combining Remote GPU Virtualization with Slurm. In:
CCGrid.

Jain AN (2006) Scoring functions for protein-ligand docking.
Current Protein and Peptide Science 7(5): 407–420.

Jorgensen WL et al. (1983) Comparison of simple potential
functions for simulating liquid water. J. of Chem. Physics
79(2).

Kitchen DB, Decornez H, Furr JR and Bajorath J (2004) Docking
and scoring in virtual screening for drug discovery: methods
and applications. Nature Reviews Drug Discovery 3(11).

Lagarde N and othersu (2015) Benchmarking data sets for the
evaluation of virtual ligand screening methods: review and
perspectives. J. of Chemical Inf. and Modeling 55(7).

Noroozi M et al. (1998) Effects of flavonoids and vitamin c on
oxidative dna damage to human lymphocytes. American
Journal of Clinical Nutrition 67.

Patra M et al. (2007) Long-range interactions and parallel
scalability in molecular simulations. Computer physics
communications 176(1): 14–22.

Pezeshgi Modarres H et al. (2015) Understanding and engineering
thermostability in dna ligase from thermococcus sp. 1519.
Biochemistry 54(19): 3076–3085.

Phillips JC et al. (2005) Scalable molecular dynamics with namd.
Journal of computational chemistry 26(16): 1781–1802.

Poghosyan A et al. (2013) Parallel peculiarities and performance
of gromacs package on hpc platforms. Int. J. of Scientific and
Eng. Research 4(12): 1755–1761.

Prades J et al. (2018) Increasing molecular dynamics simulations
throughput by virtualizing remote gpus with rcuda. ICPP ’18.

Pronk S, et al. (2013) Gromacs 4.5: a high-throughput and
highly parallel open source molecular simulation toolkit.
Bioinformatics 29(7): 845–854.

Reaño C and Silla F (2015) A performance comparison of
cuda remote gpu virtualization frameworks. In: 2015 IEEE
International Conference on Cluster Computing.

Reaño C et al. (2015) Local and remote gpus perform similar with
EDR 100G InfiniBand. Middleware ’15. ACM, pp. 4:1–4:7.
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