54 research outputs found

    Bioinformatic Analysis for the Validation of Novel Biomarkers for Cancer Diagnosis and Drug Sensitivity

    Get PDF
    Background: The genetic control of tumour progression presents the opportunity for bioinformatics and gene expression data to be used as a basis for tumour grading. The development of a genetic signature based on microarray data allows for the development of personalised chemotherapeutic regimes. Method: ONCOMINE was utilised to create a genetic signature for ovarian serous adenocarcinoma and to compare the expression of genes between normal ovarian and cancerous cells. Ingenuity Pathways Analysis was also utilised to develop molecular pathways and observe interactions with exogenous molecules. Results: The gene signature demonstrated 98.6% predictive capability for the differentiation between borderline ovarian serous neoplasm and ovarian serous adenocarcinoma. The data demonstrated that many genes were related to angiogenesis. Thymidylate synthase, GLUT-3 and HSP90AA1 were related to tanespimycin sensitivity (p=0.005). Conclusions: Genetic profiling with the gene signature demonstrated potential for clinical use. The use of tanespimycin alongside overexpression of thymidylate synthase, GLUT-3 and HSP90AA1 is a novel consideration for ovarian cancer treatment

    Corpus based learning of stochastic, context-free grammars combined with Hidden Markov Models for tRNA modelling

    Full text link
    [EN] In this paper, a new method for modelling tRNA secondary structures is presented. This method is based on the combination of stochastic context-free grammars (SCFG) and Hidden Markov Models (HMM). HMM are used to capture the local relations in the loops of the molecule (nonstructured regions) and SCFG are used to capture the long term relations between nucleotides of the arms (structured regions). Given annotated public databases, the HMM and SCFG models are learned by means of automatic inductive learning methods. Two SCFG learning methods have been explored. Both of them take advantage of the structural information associated with the training sequences: one of them is based on a stochastic version of the Sakakibara algorithm and the other one is based on a Corpus based algorithm. A final model is then obtained by merging of the HMM of the nonstructured regions and the SCFG of the structured regions. Finally, the performed experiments on the tRNA sequence corpus and the non-tRNA sequence corpus give significant results. Comparative experiments with another published method are also presented.We would like to thank Diego Linares and Joan Andreu Sanchez for answering all our questions about SCFG, as well as Satoshi Sekine for his evaluation software. We would also like to thank the Ministerio de Sanidad y Consumo of Spain for the grants to the INBIOMED consortium.García Gómez, JM.; Benedí Ruiz, JM.; Vicente Robledo, J.; Robles Viejo, M. (2005). Corpus based learning of stochastic, context-free grammars combined with Hidden Markov Models for tRNA modelling. International Journal of Bioinformatics Research and Applications. 1(3):305-318. doi:10.1504/IJBRA.2005.007908S3053181

    Analysis of Attribute Selection and Classification Algorithm Applied to Hepatitis Patients

    Get PDF
    Data mining techniques are widely used in classification, attribute selection and prediction in the field of bioinformatics because it helps to discover meaningful new correlations, patterns and trends by sifting through large volume of data, using pattern recognition technologies as well as statistical and mathematical techniques. Hepatitis is one of the most important health problem in the world. Many studies have been performed in the diagnosis of hepatitis disease but medical diagnosis is quite difficult and visual task which is mostly done by doctors. Therefore, this research is conducted to analyse the attribute selection and classification algorithm that applied to hepatitis patients. In order to achieve goals, WEKA tool is used to conduct the experiment with different attribute selector and classification algorithm . Hepatitis dataset that are used is taken from UC Irvine repository. This research deals with various attribute selector namely CfsSubsetEval, WrapperSubsetEval, GainRatioSubsetEval and CorrelationAttributeEval. The classification algorithm that used in this research are NaiveBayesUpdatable, SMO, KStar, RandomTree and SimpleLogistic. The results of the classification model are time and accuracy. Finally, it concludes that the best attribute selector is CfsSubsetEval while the best classifier is given to SMO because SMO performance is better than other classification techniques for hepatitis patients

    Biclustering Performance Evaluation of Cheng and Church Algorithm and Iterative Signature Algorithm

    Get PDF
    Biclustering has been widely applied in recent years. Various algorithms have been developed to perform biclustering applied to various cases. However, only a few studies have evaluated the performance of bicluster algorithms. Therefore, this study evaluates the performance of biclustering algorithms, namely the Cheng and Church algorithm (CC algorithm) and the Iterative Signature Algorithm (ISA). Evaluation of the performance of the biclustering algorithm is carried out in the form of a comparative study of biclustering results in terms of membership, characteristics, distribution of biclustering results, and performance evaluation. The performance evaluation uses two evaluation functions: the intra-bicluster and the inter-bicluster. The results show that, from an intra-bicluster evaluation perspective, the optimal bicluster group of the CC algorithm produces bicluster quality which tends to be better than the ISA. The biclustering results between the two algorithms in inter-bicluster evaluation produce a deficient level of similarity (20-31 percent). This is indicated by the differences in the results of regional membership and the characteristics of the identifying variables. The biclustering results of the CC algorithm tend to be homogeneous and have local characteristics. Meanwhile, the results of biclustering ISA tend to be heterogeneous and have global characteristics. In addition, the results of biclustering ISA are also robust

    Techniques for automated parameter estimation in computational models of probabilistic systems

    Get PDF
    The main contribution of this dissertation is the design of two new algorithms for automatically synthesizing values of numerical parameters of computational models of complex stochastic systems such that the resultant model meets user-specified behavioral specifications. These algorithms are designed to operate on probabilistic systems – systems that, in general, behave differently under identical conditions. The algorithms work using an approach that combines formal verification and mathematical optimization to explore a model\u27s parameter space. The problem of determining whether a model instantiated with a given set of parameter values satisfies the desired specification is first defined using formal verification terminology, and then reformulated in terms of statistical hypothesis testing. Parameter space exploration involves determining the outcome of the hypothesis testing query for each parameter point and is guided using simulated annealing. The first algorithm uses the sequential probability ratio test (SPRT) to solve the hypothesis testing problems, whereas the second algorithm uses an approach based on Bayesian statistical model checking (BSMC). The SPRT-based parameter synthesis algorithm was used to validate that a given model of glucose-insulin metabolism has the capability of representing diabetic behavior by synthesizing values of three parameters that ensure that the glucose-insulin subsystem spends at least 20 minutes in a diabetic scenario. The BSMC-based algorithm was used to discover the values of parameters in a physiological model of the acute inflammatory response that guarantee a set of desired clinical outcomes. These two applications demonstrate how our algorithms use formal verification, statistical hypothesis testing and mathematical optimization to automatically synthesize parameters of complex probabilistic models in order to meet user-specified behavioral propertie
    corecore