103,424 research outputs found

    Formal Development of Rough Inclusion Functions

    Get PDF
    Rough sets, developed by Pawlak [15], are important tool to describe situation of incomplete or partially unknown information. In this article, continuing the formalization of rough sets [12], we give the formal characterization of three rough inclusion functions (RIFs). We start with the standard one, ÎșÂŁ, connected with Ɓukasiewicz [14], and extend this research for two additional RIFs: Îș 1, and Îș 2, following a paper by GomoliƄska [4], [3]. We also define q-RIFs and weak q-RIFs [2]. The paper establishes a formal counterpart of [7] and makes a preliminary step towards rough mereology [16], [17] in Mizar [13].Institute of Informatics, University of BiaƂystok, PolandAnna Gomolinska. A comparative study of some generalized rough approximations. Fundamenta Informaticae, 51:103–119, 2002.Anna Gomolinska. Rough approximation based on weak q-RIFs. In James F. Peters, Andrzej Skowron, Marcin Wolski, Mihir K. Chakraborty, and Wei-Zhi Wu, editors, Transactions on Rough Sets X, volume 5656 of Lecture Notes in Computer Science, pages 117–135, Berlin, Heidelberg, 2009. Springer. ISBN 978-3-642-03281-3. doi:10.1007/978-3-642-03281-3_4.Anna Gomolinska. On three closely related rough inclusion functions. In Marzena Kryszkiewicz, James F. Peters, Henryk Rybinski, and Andrzej Skowron, editors, Rough Sets and Intelligent Systems Paradigms, volume 4585 of Lecture Notes in Computer Science, pages 142–151, Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-73451-2_16.Anna Gomolinska. On certain rough inclusion functions. In James F. Peters, Andrzej Skowron, and Henryk Rybinski, editors, Transactions on Rough Sets IX, volume 5390 of Lecture Notes in Computer Science, pages 35–55. Springer Berlin Heidelberg, 2008. doi:10.1007/978-3-540-89876-4_3.Adam Grabowski. On the computer-assisted reasoning about rough sets. In B. Dunin-Kęplicz, A. Jankowski, A. Skowron, and M. Szczuka, editors, International Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems Location, volume 28 of Advances in Soft Computing, pages 215–226, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/3-540-32370-8_15.Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi:10.3233/FI-2014-1129.Adam Grabowski. Building a framework of rough inclusion functions by means of computerized proof assistant. In TamĂĄs MihĂĄlydeĂĄk, Fan Min, Guoyin Wang, Mohua Banerjee, Ivo DĂŒntsch, Zbigniew Suraj, and Davide Ciucci, editors, Rough Sets, volume 11499 of Lecture Notes in Computer Science, pages 225–238, Cham, 2019. Springer International Publishing. ISBN 978-3-030-22815-6. doi:10.1007/978-3-030-22815-6_18.Adam Grabowski. Lattice theory for rough sets – a case study with Mizar. Fundamenta Informaticae, 147(2–3):223–240, 2016. doi:10.3233/FI-2016-1406.Adam Grabowski. Relational formal characterization of rough sets. Formalized Mathematics, 21(1):55–64, 2013. doi:10.2478/forma-2013-0006.Adam Grabowski. Binary relations-based rough sets – an automated approach. Formalized Mathematics, 24(2):143–155, 2016. doi:10.1515/forma-2016-0011.Adam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.Adam Grabowski and MichaƂ Sielwiesiuk. Formalizing two generalized approximation operators. Formalized Mathematics, 26(2):183–191, 2018. doi:10.2478/forma-2018-0016.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.Jan Ɓukasiewicz. Die logischen Grundlagen der Wahrscheinlichkeitsrechnung. In L. Borkowski, editor, Jan Ɓukasiewicz – Selected Works, pages 16–63. North Holland, Polish Scientific Publ., Amsterdam London Warsaw, 1970. First published in KrakĂłw, 1913.ZdzisƂaw Pawlak. Rough sets. International Journal of Parallel Programming, 11:341–356, 1982. doi:10.1007/BF01001956.Lech Polkowski. Rough mereology. In Approximate Reasoning by Parts, volume 20 of Intelligent Systems Reference Library, pages 229–257, Berlin, Heidelberg, 2011. Springer. ISBN 978-3-642-22279-5. doi:10.1007/978-3-642-22279-5_6.Lech Polkowski and Andrzej Skowron. Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning, 15(4):333–365, 1996. doi:10.1016/S0888-613X(96)00072-2.Andrzej Skowron and JarosƂaw Stepaniuk. Tolerance approximation spaces. Fundamenta Informaticae, 27(2/3):245–253, 1996. doi:10.3233/FI-1996-272311.William Zhu. Generalized rough sets based on relations. Information Sciences, 177: 4997–5011, 2007.27433734

    On fuzzy reasoning schemes

    Get PDF
    In this work we provide a short survey of the most frequently used fuzzy reasoning schemes. The paper is organized as follows: in the first section we introduce the basic notations and definitions needed for fuzzy inference systems; in the second section we explain how the GMP works under Mamdani, Larsen and G¹odel implications, furthermore we discuss the properties of compositional rule of inference with several fuzzy implications; and in the third section we describe Tsukamoto’s, Sugeno’s and the simplified fuzzy inference mechanisms in multi-input-single-output fuzzy systems

    Complementary Lipschitz continuity results for the distribution of intersections or unions of independent random sets in finite discrete spaces

    Get PDF
    We prove that intersections and unions of independent random sets in finite spaces achieve a form of Lipschitz continuity. More precisely, given the distribution of a random set Ξ\Xi, the function mapping any random set distribution to the distribution of its intersection (under independence assumption) with Ξ\Xi is Lipschitz continuous with unit Lipschitz constant if the space of random set distributions is endowed with a metric defined as the LkL_k norm distance between inclusion functionals also known as commonalities. Moreover, the function mapping any random set distribution to the distribution of its union (under independence assumption) with Ξ\Xi is Lipschitz continuous with unit Lipschitz constant if the space of random set distributions is endowed with a metric defined as the LkL_k norm distance between hitting functionals also known as plausibilities. Using the epistemic random set interpretation of belief functions, we also discuss the ability of these distances to yield conflict measures. All the proofs in this paper are derived in the framework of Dempster-Shafer belief functions. Let alone the discussion on conflict measures, it is straightforward to transcribe the proofs into the general (non necessarily epistemic) random set terminology

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Decision-Making with Belief Functions: a Review

    Get PDF
    Approaches to decision-making under uncertainty in the belief function framework are reviewed. Most methods are shown to blend criteria for decision under ignorance with the maximum expected utility principle of Bayesian decision theory. A distinction is made between methods that construct a complete preference relation among acts, and those that allow incomparability of some acts due to lack of information. Methods developed in the imprecise probability framework are applicable in the Dempster-Shafer context and are also reviewed. Shafer's constructive decision theory, which substitutes the notion of goal for that of utility, is described and contrasted with other approaches. The paper ends by pointing out the need to carry out deeper investigation of fundamental issues related to decision-making with belief functions and to assess the descriptive, normative and prescriptive values of the different approaches

    A Tutorial on Bayesian Nonparametric Models

    Full text link
    A key problem in statistical modeling is model selection, how to choose a model at an appropriate level of complexity. This problem appears in many settings, most prominently in choosing the number ofclusters in mixture models or the number of factors in factor analysis. In this tutorial we describe Bayesian nonparametric methods, a class of methods that side-steps this issue by allowing the data to determine the complexity of the model. This tutorial is a high-level introduction to Bayesian nonparametric methods and contains several examples of their application.Comment: 28 pages, 8 figure

    Developmental changes in the association between approximate number representations and addition skills in elementary school children

    Get PDF
    The approximate number system (ANS) is assumingly related to mathematical learning but evidence supporting this assumption is mixed. The inconsistent findings might be attributed to the fact that different measures have been used to assess the ANS and mathematical skills. Moreover, associations between the performance on a measure of the ANS and mathematical skills may be discontinuous, i.e., stronger for children with lower math scores than for children with higher math scores, and may change with age. The aim of the present study was to examine the development of the ANS and arithmetic skills in elementary school children and to investigate how the relationship between the ANS and arithmetic skills develops. Individual markers of children's ANS (internal Weber fractions and mean reaction times in a non-symbolic numerical comparison task) and addition skills were assessed in their first year of school and 1 year later. Children showed improvements in addition performance and in the internal Weber fractions, whereas mean reaction times in the non-symbolic numerical comparison task did not change significantly. While children's addition performance was associated with the internal Weber fractions in the first year, it was associated with mean reaction times in the non-symbolic numerical comparison task in the second year. These associations were not found to be discontinuous and could not be explained by individual differences in reasoning, processing speed, or inhibitory control. The present study extends previous findings by demonstrating that addition performance is associated with different markers of the ANS in the course of development
    • 

    corecore