89 research outputs found

    Report on the Twelfth United Nations/European Space Agency Workshop on Basic Space Science

    Full text link
    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat.Comment: PDF, 9 page

    The United Nations Basic Space Science Initiative: The TRIPOD concept

    Get PDF
    Since 1990, the United Nations is annually holding a workshop on basic space science for the benefit of the worldwide development of astronomy. Additional to the scientific benefits of the workshops and the strengthening of international cooperation, the workshops lead to the establishment of astronomical telescope facilities through the Official Development Assistance (ODA) of Japan. Teaching material, hands-on astrophysics material, and variable star observing programmes had been developed for the operation of such astronomical telescope facilities in an university environment. This approach to astronomical telescope facility, observing programme, and teaching astronomy has become known as the basic space science TRIPOD concept. Currently, a similar TRIPOD concept is being developed for the International Heliophysical Year 2007, consisting of an instrument array, data taking and analysis, and teaching space science.Comment: 8 pages, LaTe

    On-line Tools for Solar Data Compiled at the Debrecen Observatory and their Extensions with the Greenwich Sunspot Data

    Get PDF
    The primary task of the Debrecen Heliophysical Observatory (DHO) has been the most detailed, reliable, and precise documentation of the solar photospheric activity since 1958. This long-term effort resulted in various solar catalogs based on ground-based and space-borne observations. A series of sunspot databases and on-line tools were compiled at DHO: the Debrecen Photoheliographic Data (DPD, 1974--), the dataset based on the Michelson Doppler Imager (MDI) of the Solar and Heliospheric Observatory (SOHO) called SOHO/MDI--Debrecen Data (SDD, 1996--2010), and the dataset based on the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) called SDO/HMI--Debrecen Data (HMIDD, 2010--). User-friendly web-presentations and on-line tools were developed to visualize and search data. As a last step of compilation, the revised version of Greenwich Photoheliographic Results (GPR, 1874--1976) catalog was converted to DPD format, and a homogeneous sunspot database covering more than 140 years was created. The database of images for the GPR era was completed with the full-disc drawings of the Hungarian historical observatories \'Ogyalla and Kalocsa (1872--1919) and with the polarity drawings of Mount Wilson Observatory. We describe the main characteristics of the available data and on-line tools.Comment: 25 pages, 11 figures, accepted for publication in Solar Physic

    The International Space Weather Initiative (ISWI)

    Get PDF
    The International Heliophysical Year (IHY) provided a successful model for the deployment of arrays of small scientific instruments in new and scientifically interesting geographic locations, and outreach. The new International Space Weather Initiative (ISWI) is designed to build on this momentum to promote the observation, understanding, and prediction space weather phenomena, and to communicate the scientific results to the public

    Distributions of Orbital Elements for Meteoroids on Near-Parabolic Orbits According to Radar Observational Data

    Get PDF
    Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond
    corecore