113 research outputs found

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    Enhanced device-based 3D object manipulation technique for handheld mobile augmented reality

    Get PDF
    3D object manipulation is one of the most important tasks for handheld mobile Augmented Reality (AR) towards its practical potential, especially for realworld assembly support. In this context, techniques used to manipulate 3D object is an important research area. Therefore, this study developed an improved device based interaction technique within handheld mobile AR interfaces to solve the large range 3D object rotation problem as well as issues related to 3D object position and orientation deviations in manipulating 3D object. The research firstly enhanced the existing device-based 3D object rotation technique with an innovative control structure that utilizes the handheld mobile device tilting and skewing amplitudes to determine the rotation axes and directions of the 3D object. Whenever the device is tilted or skewed exceeding the threshold values of the amplitudes, the 3D object rotation will start continuously with a pre-defined angular speed per second to prevent over-rotation of the handheld mobile device. This over-rotation is a common occurrence when using the existing technique to perform large-range 3D object rotations. The problem of over-rotation of the handheld mobile device needs to be solved since it causes a 3D object registration error and a 3D object display issue where the 3D object does not appear consistent within the user’s range of view. Secondly, restructuring the existing device-based 3D object manipulation technique was done by separating the degrees of freedom (DOF) of the 3D object translation and rotation to prevent the 3D object position and orientation deviations caused by the DOF integration that utilizes the same control structure for both tasks. Next, an improved device-based interaction technique, with better performance on task completion time for 3D object rotation unilaterally and 3D object manipulation comprehensively within handheld mobile AR interfaces was developed. A pilot test was carried out before other main tests to determine several pre-defined values designed in the control structure of the proposed 3D object rotation technique. A series of 3D object rotation and manipulation tasks was designed and developed as separate experimental tasks to benchmark both the proposed 3D object rotation and manipulation techniques with existing ones on task completion time (s). Two different groups of participants aged 19-24 years old were selected for both experiments, with each group consisting sixteen participants. Each participant had to complete twelve trials, which came to a total 192 trials per experiment for all the participants. Repeated measure analysis was used to analyze the data. The results obtained have statistically proven that the developed 3D object rotation technique markedly outpaced existing technique with significant shorter task completion times of 2.04s shorter on easy tasks and 3.09s shorter on hard tasks after comparing the mean times upon all successful trials. On the other hand, for the failed trials, the 3D object rotation technique was 4.99% more accurate on easy tasks and 1.78% more accurate on hard tasks in comparison to the existing technique. Similar results were also extended to 3D object manipulation tasks with an overall 9.529s significant shorter task completion time of the proposed manipulation technique as compared to the existing technique. Based on the findings, an improved device-based interaction technique has been successfully developed to address the insufficient functionalities of the current technique

    Educational Technology and Related Education Conferences for January to June 2011 - November 11, 2010

    Get PDF
    If you attend the same conferences each year, you don’t need to scan this list. This list is your opportunity to “push the envelope” by trying something new. There are hundreds of professional development events that may give you a different perspective or help you learn a new skill. Rather than attend the same event you always do, scan this list and investigate conferences, symposiums, or workshops you have never attended. The list below covers selected events focused primarily on the use of technology in educational settings and on teaching, learning, and educational administration. Only listings until June 2011 are complete as dates, locations, or URLs are not available for a number of events held after June 2011. A Word 2003 format is used to enable people who do not have access to Word 2007 or higher version and those with limited or high-cost Internet access to find a conference that is congruent with their interests or obtain conference proceedings. (If you are seeking a more interactive listing, refer to online conference sites.) Consider using the “Find” tool under Microsoft Word’s “Edit” tab or similar tab in OpenOffice to locate the name of a particular conference, association, city, or country. If you enter the country “United Kingdom” in the “Find” tool, all conferences that occur in the United Kingdom will be highlighted. Then, “cut and paste” a list of suitable events for yourself and your colleagues. Please note that events, dates, titles, and locations may change; thus, CHECK the specific conference website. Note also that some events will be cancelled at a later date. All Internet addresses were verified at the time of publication. No liability is assumed for any errors that may have been introduced inadvertently during the assembly of this conference list. If possible, please do not remove the contact information when you re-distribute the list as that is how I receive updates and corrections. If you publish the list on the web, please note its source

    THE REALISM OF ALGORITHMIC HUMAN FIGURES A Study of Selected Examples 1964 to 2001

    Get PDF
    It is more than forty years since the first wireframe images of the Boeing Man revealed a stylized hu-man pilot in a simulated pilot's cabin. Since then, it has almost become standard to include scenes in Hollywood movies which incorporate virtual human actors. A trait particularly recognizable in the games industry world-wide is the eagerness to render athletic muscular young men, and young women with hour-glass body-shapes, to traverse dangerous cyberworlds as invincible heroic figures. Tremendous efforts in algorithmic modeling, animation and rendering are spent to produce a realistic and believable appearance of these algorithmic humans. This thesis develops two main strands of research by the interpreting a selection of examples. Firstly, in the computer graphics context, over the forty years, it documents the development of the creation of the naturalistic appearance of images (usually called photorealism ). In particular, it de-scribes and reviews the impact of key algorithms in the course of the journey of the algorithmic human figures towards realism . Secondly, taking a historical perspective, this work provides an analysis of computer graphics in relation to the concept of realism. A comparison of realistic images of human figures throughout history with their algorithmically-generated counterparts allows us to see that computer graphics has both learned from previous and contemporary art movements such as photorealism but also taken out-of-context elements, symbols and properties from these art movements with a questionable naivety. Therefore, this work also offers a critique of the justification of the use of their typical conceptualization in computer graphics. Although the astounding technical achievements in the field of algorithmically-generated human figures are paralleled by an equally astounding disregard for the history of visual culture, from the beginning 1964 till the breakthrough 2001, in the period of the digital information processing machine, a new approach has emerged to meet the apparently incessant desire of humans to create artificial counterparts of themselves. Conversely, the theories of traditional realism have to be extended to include new problems that those active algorithmic human figures present

    Languages of games and play: A systematic mapping study

    Get PDF
    Digital games are a powerful means for creating enticing, beautiful, educational, and often highly addictive interactive experiences that impact the lives of billions of players worldwide. We explore what informs the design and construction of good games to learn how to speed-up game development. In particular, we study to what extent languages, notations, patterns, and tools, can offer experts theoretical foundations, systematic techniques, and practical solutions they need to raise their productivity and improve the quality of games and play. Despite the growing number of publications on this topic there is currently no overview describing the state-of-the-art that relates research areas, goals, and applications. As a result, efforts and successes are often one-off, lessons learned go overlooked, language reuse remains minimal, and opportunities for collaboration and synergy are lost. We present a systematic map that identifies relevant publications and gives an overview of research areas and publication venues. In addition, we categorize research perspectives along common objectives, techniques, and approaches, illustrated by summaries of selected languages. Finally, we distill challenges and opportunities for future research and development

    Exploring the potential of physical visualizations

    Get PDF
    The goal of an external representation of abstract data is to provide insights and convey information about the structure of the underlying data, therefore helping people execute tasks and solve problems more effectively. Apart from the popular and well-studied digital visualization of abstract data there are other scarcely studied perceptual channels to represent data such as taste, sound or haptic. My thesis focuses on the latter and explores in which ways human knowledge and ability to sense and interact with the physical non-digital world can be used to enhance the way in which people analyze and explore abstract data. Emerging technological progress in digital fabrication allow an easy, fast and inexpensive production of physical objects. Machines such as laser cutters and 3D printers enable an accurate fabrication of physical visualizations with different form factors as well as materials. This creates, for the first time, the opportunity to study the potential of physical visualizations in a broad range. The thesis starts with the description of six prototypes of physical visualizations from static examples to digitally augmented variations to interactive artifacts. Based on these explorations, three promising areas of potential for physical visualizations were identified and investigated in more detail: perception & memorability, communication & collaboration, and motivation & self-reflection. The results of two studies in the area of information recall showed that participants who used a physical bar chart retained more information compared to the digital counterpart. Particularly facts about maximum and minimum values were be remembered more efficiently, when they were perceived from a physical visualization. Two explorative studies dealt with the potential of physical visualizations regarding communication and collaboration. The observations revealed the importance on the design and aesthetic of physical visualizations and indicated a great potential for their utilization by audiences with less interest in technology. The results also exposed the current limitations of physical visualizations, especially in contrast to their well-researched digital counterparts. In the area of motivation we present the design and evaluation of the Activity Sculptures project. We conducted a field study, in which we investigated physical visualizations of personal running activity. It was discovered that these sculptures generated curiosity and experimentation regarding the personal running behavior as well as evoked social dynamics such as discussions and competition. Based on the findings of the aforementioned studies this thesis concludes with two theoretical contributions on the design and potential of physical visualizations. On the one hand, it proposes a conceptual framework for material representations of personal data by describing a production and consumption lens. The goal is to encourage artists and designers working in the field of personal informatics to harness the interactive capabilities afforded by digital fabrication and the potential of material representations. On the other hand we give a first classification and performance rating of physical variables including 14 dimensions grouped into four categories. This complements the undertaking of providing researchers and designers with guidance and inspiration to uncover alternative strategies for representing data physically and building effective physical visualizations.Um aus abstrakten Daten konkrete Aussagen, komplexe ZusammenhĂ€nge oder überraschende Einsichten gewinnen zu können, müssen diese oftmals in eine, für den Menschen, anschauliche Form gebracht werden. Eine weitverbreitete und gut erforschte Möglichkeiten ist die Darstellung von Daten in visueller Form. Weniger erforschte Varianten sind das Verkörpern von Daten durch GerĂ€usche, Gerüche oder physisch ertastbare Objekte und Formen. Diese Arbeit konzentriert sich auf die letztgenannte Variante und untersucht wie die menschlichen FĂ€higkeiten mit der physischenWelt zu interagieren dafür genutzt werden können, das Analysieren und Explorieren von Daten zu unterstützen. Der technische Fortschritt in der digitalen Fertigung vereinfacht und beschleunigt die Produktion von physischen Objekten und reduziert dabei deren Kosten. Lasercutter und 3D Drucker ermöglichen beispielsweise eine maßgerechte Fertigung physischer Visualisierungen verschiedenster AusprĂ€gungen hinsichtlich GrĂ¶ĂŸe und Material. Dadurch ergibt sich zum ersten Mal die Gelegenheit, das Potenzial von physischen Visualisierungen in grĂ¶ĂŸerem Umfang zu erforschen. Der erste Teil der Arbeit skizziert insgesamt sechs Prototypen physischer Visualisierungen, wobei sowohl statische Beispiele beschrieben werden, als auch Exemplare die durch digital Inhalte erweitert werden oder dynamisch auf Interaktionen reagieren können. Basierend auf den Untersuchungen dieser Prototypen wurden drei vielversprechende Bereiche für das Potenzial physischer Visualisierungen ermittelt und genauer untersucht: Wahrnehmung & EinprĂ€gsamkeit, Kommunikation & Zusammenarbeit sowie Motivation & Selbstreflexion. Die Ergebnisse zweier Studien zur Wahrnehmung und EinprĂ€gsamkeit von Informationen zeigten, dass sich Teilnehmer mit einem physischen Balkendiagramm an deutlich mehr Informationen erinnern konnten, als Teilnehmer, die eine digitale Visualisierung nutzten. Insbesondere Fakten über Maximal- und Minimalwerte konnten besser im GedĂ€chtnis behalten werden, wenn diese mit Hilfe einer physischen Visualisierung wahrgenommen wurden. Zwei explorative Studien untersuchten das Potenzial von physischen Visualisierungen im Bereich der Kommunikation mit Informationen sowie der Zusammenarbeit. Die Ergebnisse legten einerseits offen wie wichtig ein ausgereiftes Design und die Ästhetik von physischen Visualisierungen ist, deuteten anderseits aber auch darauf hin, dass Menschen mit geringem Interesse an neuen Technologien eine interessante Zielgruppe darstellen. Die Studien offenbarten allerdings auch die derzeitigen Grenzen von physischen Visualisierungen, insbesondere im Vergleich zu ihren gut erforschten digitalen Pendants. Im Bereich der Motivation und Selbstreflexion prĂ€sentieren wir die Entwicklung und Auswertung des Projekts Activity Sculptures. In einer Feldstudie über drei Wochen erforschten wir physische Visualisierungen, die persönliche Laufdaten reprĂ€sentieren. Unsere Beobachtungen und die Aussagen der Teilnehmer ließen darauf schließen, dass die Skulpturen Neugierde weckten und zum Experimentieren mit dem eigenen Laufverhalten einluden. Zudem konnten soziale Dynamiken entdeckt werden, die beispielsweise durch Diskussion aber auch Wettbewerbsgedanken zum Ausdruck kamen. Basierend auf den gewonnen Erkenntnissen durch die erwĂ€hnten Studien schließt diese Arbeit mit zwei theoretischen BeitrĂ€gen, hinsichtlich des Designs und des Potenzials von physischen Visualisierungen, ab. Zuerst wird ein konzeptionelles Framework vorgestellt, welches die Möglichkeiten und den Nutzen physischer Visualisierungen von persönlichen Daten veranschaulicht. Für Designer und Künstler kann dies zudem als Inspirationsquelle dienen, wie das Potenzial neuer Technologien, wie der digitalen Fabrikation, zur Darstellung persönlicher Daten in physischer Form genutzt werden kann. Des Weiteren wird eine initiale Klassifizierung von physischen Variablen vorgeschlagen mit insgesamt 14 Dimensionen, welche in vier Kategorien gruppiert sind. Damit vervollstĂ€ndigen wir unser Ziel, Forschern und Designern Inspiration und Orientierung zu bieten, um neuartige und effektvolle physische Visualisierungen zu erschaffen
    • 

    corecore