79,862 research outputs found

    System dependence graphs in sequential Erlang

    Full text link
    The system dependence graph (SDG) is a data structure used in the imperative paradigm for different static analysis, and particularly, for program slicing. Program slicing allows us to determine the part of a program (called slice) that influences a given variable of interest. Thanks to the SDG, we can produce precise slices for interprocedural programs. Unfortunately, the SDG cannot be used in the functional paradigm due to important features that are not considered in this formalism (e.g., pattern matching, higher-order, composite expressions, etc.). In this work we propose the first adaptation of the SDG to a functional language facing these problems. We take Erlang as the host language and we adapt the algorithms used to slice the SDG to produce precise slices of Erlang interprocedural programs. As a proof-of-concept, we have implemented a program slicer for Erlang based on our SDGs.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovaci´on under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROMETEO/2011/052. Salvador Tamarit was partially supported by the Spanish MICINN under FPI grant BES-2009-015019Silva Galiana, JF.; Tamarit Muñoz, S.; Tomás Franco, C. (2012). System dependence graphs in sequential Erlang. En Fundamental Approaches to Software Engineering. Springer Verlag (Germany). 486-500. https://doi.org/10.1007/978-3-642-28872-2_33S486500Agrawal, H., Horgan, J.R.: Dynamic program slicing. In: Programming Language Design and Implementation (PLDI), pp. 246–256 (1990)Brown, C.: Tool Support for Refactoring Haskell Programs. PhD thesis, School of Computing, University of Kent, Canterbury, Kent, UK (2008)Cheda, D., Silva, J., Vidal, G.: Static slicing of rewrite systems. Electron. Notes Theor. Comput. Sci. 177, 123–136 (2007)Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and Its Use in Optimization. ACM Transactions on Programming Languages and Systems 9(3), 319–349 (1987)Field, J., Ramalingam, G., Tip, F.: Parametric program slicing. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1995, pp. 379–392. ACM, New York (1995)Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM Transactions Programming Languages and Systems 12(1), 26–60 (1990)Korel, B., Laski, J.: Dynamic Program Slicing. Information Processing Letters 29(3), 155–163 (1988)Larsen, L., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the 18th International Conference on Software Engineering, ICSE 1996, pp. 495–505. IEEE Computer Society, Washington, DC (1996)Liang, D., Harrold, M.J.: Slicing objects using system dependence graphs. In: Proceedings of the International Conference on Software Maintenance, ICSM 1998, pp. 358–367. IEEE Computer Society, Washington, DC (1998)Lindahl, T., Sagonas, K.F.: Typer: a type annotator of erlang code. In: Sagonas, K.F., Armstrong, J. (eds.) Erlang Workshop, pp. 17–25. ACM (2005)Lindahl, T., Sagonas, K.F.: Practical type inference based on success typings. In: Bossi, A., Maher, M.J. (eds.) PPDP, pp. 167–178. ACM (2006)Ochoa, C., Silva, J., Vidal, G.: Dynamic slicing based on redex trails. In: Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM 2004, pp. 123–134. ACM, New York (2004)Reps, T., Turnidge, T.: Program Specialization via Program Slicing. In: Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS, vol. 1110, pp. 409–429. Springer, Heidelberg (1996)Rodrigues, N.F., Barbosa, L.S.: Component identification through program slicing. In: Proc. of Formal Aspects of Component Software (FACS 2005). Elsevier ENTCS, pp. 291–304. Elsevier (2005)Tip, F.: A survey of program slicing techniques. Journal of Programming Languages 3(3), 121–189 (1995)Tóth, M., Bozó, I., Horváth, Z., Lövei, L., Tejfel, M., Kozsik, T.: Impact Analysis of Erlang Programs Using Behaviour Dependency Graphs. In: Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp. 372–390. Springer, Heidelberg (2010)Walkinshaw, N., Roper, M., Wood, M., Roper, N.W.M.: The java system dependence graph. In: Third IEEE International Workshop on Source Code Analysis and Manipulation, p. 5 (2003)Weiser, M.: Program Slicing. In: Proceedings of the 5th International Conference on Software Engineering, pp. 439–449. IEEE Press (1981)Widera, M.: Flow graphs for testing sequential erlang programs. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Erlang, ERLANG 2004, pp. 48–53. ACM, New York (2004)Widera, M., Informatik, F.: Concurrent erlang flow graphs. In: Proceedings of the Erlang/OTP User Conference (2005)Zhao, J.: Slicing aspect-oriented software. In: Proceedings of the 10th International Workshop on Program Comprehension, IWPC 2002, pp. 251–260. IEEE Computer Society, Washington, DC (2002

    Visualizing an Execution Trace as a Compact Sequence Diagram Using Dominance Algorithms

    Full text link
    Visualizing an execution trace of an object-oriented system as sequence diagrams is effective to understand the behavior of the system. However, sequence diagrams extracted from an execution trace are too large for developers to inspect since a trace involves a large number of objects and method calls. To support developers to understand extracted sequence diagrams, it is necessary to remove the less important details of the diagrams. In this paper, we apply a dominance algorithm to a dynamic call graph among objects in order to detect and remove local objects contributing to internal behavior of dominator objects. The case study shows our approach automatically removed about 40 percent of the objects from execution traces on average.4th International Workshop on Program Comprehension through Dynamic Analysis(PCODA'08)co-located with the 15th International Working Conference on Reverse Engineering (WCRE’08)October 16th, 2008 – Antwerp, BelgiumAndy Zaidman, Abdelwahab Hamou-Lhadj, Orla Greevy, David Röthlisberger(editors)刊行年月日は会議開催日を参考にし

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    The Stores Model of Code Cognition

    Get PDF
    Program comprehension is perhaps one of the oldest topics within the psychology of programming. It addresses a central issue: how programmers work with and manipulate source code to construct effective software systems. Models can play an important role in understanding the challenges developers and engineers contend with. This paper presents a model of program comprehension, or code cognition, which has been derived from literature found within the disciplines of computing and psychology. Drawing on direct experimentation, this paper argues that a model of code cognition should take account of the visual, spatial and linguistic abilities of developers. The strengths and weaknesses of this model are discussed and further research directions presented

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    Search-based amorphous slicing

    Get PDF
    Amorphous slicing is an automated source code extraction technique with applications in many areas of software engineering, including comprehension, reuse, testing and reverse engineering. Algorithms for syntax-preserving slicing are well established, but amorphous slicing is harder because it requires arbitrary transformation; finding good general purpose amorphous slicing algorithms therefore remains as hard as general program transformation. In this paper we show how amorphous slices can be computed using search techniques. The paper presents results from a set of experiments designed to explore the application of genetic algorithms, hill climbing, random search and systematic search to a set of six subject programs. As a benchmark, the results are compared to those from an existing analytical algorithm for amorphous slicing, which was written specifically to perform well with the sorts of program under consideration. The results, while tentative at this stage, do give grounds for optimism. The search techniques proved able to reduce the size of the programs under consideration in all cases, sometimes equaling the performance of the specifically-tailored analytic algorithm. In one case, the search techniques performed better, highlighting a fault in the existing algorith
    corecore