119,671 research outputs found

    Distributed intelligent robotics : research & development in fault-tolerant control and size/position identification : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Computer Systems Engineering at Massey University

    Get PDF
    This thesis presents research conducted on aspects of intelligent robotic systems. In the past two decades, robotics has become one of the most rapidly expanding and developing fields of science. Robotics can be considered as the science of using artificial intelligence in the physical world. Many areas of study exist in robotics. Among these, two fields that are of paramount importance in real world applications are fault tolerance, and sensory systems. Fault tolerance is necessary since a robot in the real world could encounter internal faults, and may also have to continue functioning under adverse conditions. Sensory mechanisms are essential since a robot will possess little intelligence if it does not have methods of acquiring information about its environment. Both these fields are researched in this thesis. In particular, emphasis is placed on distributed intelligent autonomous systems. Experiments and simulations have been conducted to investigate design for fault tolerance. A suitable platform was also chosen for an implementation of a visual system, as an example of a working sensory mechanism

    RACE pulls for shared control

    Get PDF
    Maintaining and supporting an aircraft fleet, in a climate of reduced manpower and financial resources, dictates effective utilization of robotics and automation technologies. To help develop a winning robotics and automation program the Air Force Logistics Command created the Robotics and Automation Center of Excellence (RACE). RACE is a command wide focal point. Race is an organic source of expertise to assist the Air Logistic Center (ALC) product directorates in improving process productivity through the judicious insertion of robotics and automation technologies. RACE is a champion for pulling emerging technologies into the aircraft logistic centers. One of those technology pulls is shared control. Small batch sizes, feature uncertainty, and varying work load conspire to make classic industrial robotic solutions impractical. One can view ALC process problems in the context of space robotics without the time delay. The ALC's will benefit greatly from the implementation of a common architecture that supports a range of control actions from fully autonomous to teleoperated. Working with national laboratories and private industry, we hope to transition shared control technology to the depot floor. This paper provides an overview of the RACE internal initiatives and customer support, with particular emphasis on production processes that will benefit from shared control technology

    Swarm potential fields with internal agent states and collective behaviour

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multi-agent robotic systems. In this paper we use a model for a system of self-propelled agents interacting via pairwise attractive and repulsive potentials. We develop a new potential field method using dynamic agent internal states, allowing the swarm agents' internal states to manipulate the potential field. This new method successfully solves a reactive path planning problem that cannot be solved using static potential fields due to local minima formation. Simulation results demonstrate the ability of a swarm of agents that use the model to perform reactive problem solving effectively using the collective behaviour of the entire swarm in a way that matches studies based on real animal group behaviour

    Developmental learning of internal models for robotics

    No full text
    Abstract: Robots that operate in human environments can learn motor skills asocially, from selfexploration, or socially, from imitating their peers. A robot capable of doing both can be more ~daptiveand autonomous. Learning by imitation, however, requires the ability to understand the actions ofothers in terms ofyour own motor system: this information can come from a robot's own exploration. This thesis investigates the minimal requirements for a robotic system than learns from both self-exploration and imitation of others. .Through self.exploration and computer vision techniques, a robot can develop forward 'models: internal mo'dels of its own motor system that enable it to predict the consequences of its actions. Multiple forward models are learnt that give the robot a distributed, causal representation of its motor system. It is demon~trated how a controlled increase in the complexity of these forward models speeds up the robot's learning. The robot can determine the uncertainty of its forward models, enabling it to explore so as to improve the accuracy of its???????predictions. Paying attention fO the forward models according to how their uncertainty is changing leads to a development in the robot's exploration: its interventions focus on increasingly difficult situations, adapting to the complexity of its motor system. A robot can invert forward models, creating inverse models, in order to estimate the actions that will achieve a desired goal. Switching to socialleaming. the robot uses these inverse model~ to imitate both a demonstrator's gestures and the underlying goals of their movement.Imperial Users onl

    Swarm robot social potential fields with internal agent dynamics

    Get PDF
    Swarm robotics is a new and promising approach to the design and control of multiagent robotic systems. In this paper we use a model for a second order non-linear system of self-propelled agents interacting via pair-wise attractive and repulsive potentials. We propose a new potential field method using dynamic agent internal states to successfully solve a reactive path-planning problem. The path planning problem cannot be solved using static potential fields due to local minima formation, but can be solved by allowing the agent internal states to manipulate the potential field. Simulation results demonstrate the ability of a single agent to perform reactive problem solving effectively, as well as the ability of a swarm of agents to perform problem solving using the collective behaviour of the entire swarm

    Output Regulation for Systems on Matrix Lie-group

    Full text link
    This paper deals with the problem of output regulation for systems defined on matrix Lie-Groups. Reference trajectories to be tracked are supposed to be generated by an exosystem, defined on the same Lie-Group of the controlled system, and only partial relative error measurements are supposed to be available. These measurements are assumed to be invariant and associated to a group action on a homogeneous space of the state space. In the spirit of the internal model principle the proposed control structure embeds a copy of the exosystem kinematic. This control problem is motivated by many real applications fields in aerospace, robotics, projective geometry, to name a few, in which systems are defined on matrix Lie-groups and references in the associated homogenous spaces

    Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics

    Full text link
    In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane external loads, but also inherits the geometrical and mechanical properties of the continuous Cosserat model, making it the natural soft robotics counterpart of the traditional rigid robotics dynamics model. The soundness of the model is demonstrated through extensive simulation and experimental results for both plane and out-of-plane motions.Comment: 13 pages, 9 figure
    • …
    corecore