218,422 research outputs found
Efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with nonuniform current spreading
We demonstrate that the efficiency droop phenomenon in multiple quantum well InGaN/GaN
light-emitting diodes (LEDs) may be connected to the current crowding effect. A numerical
model of internal quantum efficiency calculation is presented that takes into account
nonuniform lateral carrier injection in the active region. Based on this model, we examine the
effect of current crowding on the efficiency droop using comparison of simulated internal
quantum efficiency of InGaN LEDs with low and high uniformity of current spreading. The
results of simulations and measurements show that the devices with low uniformity of current
spreading exhibit higher efficiency droop and lower roll-off current value
Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2
The photoluminescence decay characteristics of silicon nanocrystals in dense ensembles fabricated by ion implantation into silicon dioxide are observed to vary in proportion to the calculated local density of optical states. A comparison of the experimental 1/e photoluminescence decay rates to the expected spontaneous emission rate modification yields values for the internal quantum efficiency and the intrinsic radiative decay rate of silicon nanocrystals. A photoluminescence quantum efficiency as high as 59%±9% is found for nanocrystals emitting at 750 nm at low excitation power. A power dependent nonradiative decay mechanism reduces the quantum efficiency at high pump intensity
Towards a quantum interface between telecommunication and UV wavelengths: design and classical performance
We propose and characterize a quantum interface between telecommunication
wavelengths (1311 nm) and an Yb-dipole transition (369.5 nm) based on a second
order sum frequency process in a PPKTP waveguide. An external (internal)
conversion efficiency above 5% (10%) is shown using classical bright light
Effect of QW growth temperature on the optical properties of blue and green InGaN/GaN QW structures
In this paper we report on the impact that the quantum well growth temperature has on the internal quantum efficiency and carrier recombination dynamics of two sets of InGaN/GaN multiple quantum well samples, designed to emit at 460 and 530 nm, in which the indium content of the quantum wells within each sample set was maintained. Measurements of the internal quantum efficiency of each sample set showed a systematic variation, with quantum wells grown at a higher temperature exhibiting higher internal quantum efficiency and this variation was preserved at all excitation power densities. By investigating the carrier dynamics at both 10 K and 300 K we were able to attribute this change in internal quantum efficiency to a decrease in the non-radiative recombination rate as the QW growth temperature was increased which we attribute to a decrease in incorporation of the point defects.This work was carried out with the financial support of the United Kingdom Engineering and Physical Sciences Research Council under Grant Nos. EP/I012591/1 and EP/H011676/1.This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/pssc.20151018
Microwave Photon Detector in Circuit QED
Quantum optical photodetection has occupied a central role in understanding
radiation-matter interactions. It has also contributed to the development of
atomic physics and quantum optics, including applications to metrology,
spectroscopy, and quantum information processing. The quantum microwave regime,
originally explored using cavities and atoms, is seeing a novel boost with the
generation of nonclassical propagating fields in circuit quantum
electrodynamics (QED). This promising field, involving potential developments
in quantum information with microwave photons, suffers from the absence of
photodetectors. Here, we design a metamaterial composed of discrete
superconducting elements that implements a high-efficiency microwave photon
detector. Our design consists of a microwave guide coupled to an array of
metastable quantum circuits, whose internal states are irreversibly changed due
to the absorption of photons. This proposal can be widely applied to different
physical systems and can be generalized to implement a microwave photon
counter.Comment: accepted in Phys. Rev. Let
- …
