5 research outputs found

    ENHANCEMENT OF MARKOV RANDOM FIELD MECHANISM TO ACHIEVE FAULT-TOLERANCE IN NANOSCALE CIRCUIT DESIGN

    Get PDF
    As the MOSFET dimensions scale down towards nanoscale level, the reliability of circuits based on these devices decreases. Hence, designing reliable systems using these nano-devices is becoming challenging. Therefore, a mechanism has to be devised that can make the nanoscale systems perform reliably using unreliable circuit components. The solution is fault-tolerant circuit design. Markov Random Field (MRF) is an effective approach that achieves fault-tolerance in integrated circuit design. The previous research on this technique suffers from limitations at the design, simulation and implementation levels. As improvements, the MRF fault-tolerance rules have been validated for a practical circuit example. The simulation framework is extended from thermal to a combination of thermal and random telegraph signal (RTS) noise sources to provide a more rigorous noise environment for the simulation of circuits build on nanoscale technologies. Moreover, an architecture-level improvement has been proposed in the design of previous MRF gates. The redesigned MRF is termed as Improved-MRF. The CMOS, MRF and Improved-MRF designs were simulated under application of highly noisy inputs. On the basis of simulations conducted for several test circuits, it is found that Improved-MRF circuits are 400 whereas MRF circuits are only 10 times more noise-tolerant than the CMOS alternatives. The number of transistors, on the other hand increased from a factor of 9 to 15 from MRF to Improved-MRF respectively (as compared to the CMOS). Therefore, in order to provide a trade-off between reliability and the area overhead required for obtaining a fault-tolerant circuit, a novel parameter called as ‘Reliable Area Index’ (RAI) is introduced in this research work. The value of RAI exceeds around 1.3 and 40 times for MRF and Improved-MRF respectively as compared to CMOS design which makes Improved- MRF to be still 30 times more efficient circuit design than MRF in terms of maintaining a suitable trade-off between reliability and area-consumption of the circuit

    ENHANCEMENT OF MARKOV RANDOM FIELD MECHANISM TO ACHIEVE FAULT-TOLERANCE IN NANOSCALE CIRCUIT DESIGN

    Get PDF
    As the MOSFET dimensions scale down towards nanoscale level, the reliability of circuits based on these devices decreases. Hence, designing reliable systems using these nano-devices is becoming challenging. Therefore, a mechanism has to be devised that can make the nanoscale systems perform reliably using unreliable circuit components. The solution is fault-tolerant circuit design. Markov Random Field (MRF) is an effective approach that achieves fault-tolerance in integrated circuit design. The previous research on this technique suffers from limitations at the design, simulation and implementation levels. As improvements, the MRF fault-tolerance rules have been validated for a practical circuit example. The simulation framework is extended from thermal to a combination of thermal and random telegraph signal (RTS) noise sources to provide a more rigorous noise environment for the simulation of circuits build on nanoscale technologies. Moreover, an architecture-level improvement has been proposed in the design of previous MRF gates. The redesigned MRF is termed as Improved-MRF. The CMOS, MRF and Improved-MRF designs were simulated under application of highly noisy inputs. On the basis of simulations conducted for several test circuits, it is found that Improved-MRF circuits are 400 whereas MRF circuits are only 10 times more noise-tolerant than the CMOS alternatives. The number of transistors, on the other hand increased from a factor of 9 to 15 from MRF to Improved-MRF respectively (as compared to the CMOS). Therefore, in order to provide a trade-off between reliability and the area overhead required for obtaining a fault-tolerant circuit, a novel parameter called as ‘Reliable Area Index’ (RAI) is introduced in this research work. The value of RAI exceeds around 1.3 and 40 times for MRF and Improved-MRF respectively as compared to CMOS design which makes Improved- MRF to be still 30 times more efficient circuit design than MRF in terms of maintaining a suitable trade-off between reliability and area-consumption of the circuit

    Developing Variation Aware Simulation Tools, Models, and Designs for STT-RAM

    Get PDF
    DEVELOPING VARIATION AWARE SIMULATION TOOLS, MODELS, AND DESIGNS FOR STT-RAM Enes Eken, PhD University of Pittsburgh, 2017 In recent years, we have been witnessing the rise of spin-transfer torque random access memory (STT-RAM) technology. There are a couple of reasons which explain why STT-RAM has attracted a great deal of attention. Although conventional memory technologies like SRAM, DRAM and Flash memories are commonly used in the modern computer industry, they have major shortcomings, such as high leakage current, high power consumption and volatility. Although these drawbacks could have been overlooked in the past, they have become major concerns. Its characteristics, including low-power consumption, fast read-write access time and non-volatility make STT-RAM a promising candidate to solve the problems of other memory technologies. However, like all other memory technologies, STT-RAM has some problems such as long switching time and large programming energy of Magnetic Tunneling Junction (MTJ) which are waiting to be solved. In order to solve these long switching time and large programming energy problems, Spin-Hall Effect (SHE) assisted STT-RAM structure (SHE-RAM) has been recently invented. In this work, I propose two possible SHE-RAM designs from the aspects of two different write access operations, namely, High Density SHE-RAM and Disturbance Free SHE-RAM, respectively. In addition to the SHE-RAM designs, I will also propose a simulation tool for STT-RAMs. As an early-stage modeling tool, NVSim has been widely adopted for simulations of emerging nonvolatile memory technologies in computer architecture research, including STT-RAM, ReRAM, PCM, etc. I will introduce a new member of NVSim family – NVSim-VXs, which enables statistical simulation of STT-RAM for write performance, errors, and energy consumption

    Optimizing the integration and energy efficiency of through silicon via-based 3D interconnects

    Get PDF
    The aggressive scaling of CMOS process technology has been driving the rapid growth of the semiconductor industry for more than three decades. In recent years, the performance gains enabled by CMOS scaling have been increasingly challenged by highlyparasitic on-chip interconnects as wire parasitics do not scale at the same pace. Emerging 3D integration technologies based on vertical through-silicon vias (TSVs) promise a solution to the interconnect performance bottleneck, along with reduced fabrication cost and heterogeneous integration. As TSVs are a relatively recent interconnect technology, innovative test structures are required to evaluate and optimise the process, as well as extract parameters for the generation of design rules and models. From the circuit designer’s perspective, critical TSV characteristics are its parasitic capacitance, and thermomechanical stress distribution. This work proposes new test structures for extracting these characteristics. The structures were fabricated on a 65nm 3D process and used for the evaluation of that technology. Furthermore, as TSVs are implemented in large, densely interconnected 3D-system-on-chips (SoCs), the TSV parasitic capacitance may become an important source of energy dissipation. Typical low-power techniques based on voltage scaling can be used, though this represents a technical challenge in modern technology nodes. In this work, a novel TSV interconnection scheme is proposed based on reversible computing, which shows frequencydependent energy dissipation. The scheme is analysed using theoretical modelling, while a demonstrator IC was designed based on the developed theory and fabricated on a 130nm 3D process.EThOS - Electronic Theses Online ServiceEngineering and Physical Science Research Council (EPSRC)GBUnited Kingdo
    corecore