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DEVELOPING VARIATION AWARE SIMULATION TOOLS, MODELS, AND DESIGNS

FOR STT-RAM

Enes Eken, PhD

University of Pittsburgh, 2017

Technology scaling imposes many challenges on design and manufacturing of conventional mem-

ories, such as high leakage and reliability issues of SRAM, DRAM, and NAND flash. Extensive

research has been performed to develop new memory technologies that can overcome these chal-

lenges, including phase-change memory (PCM), resistive memory (ReRAM), spin-transfer torque

random access memory (STT-RAM), etc. Among all these technologies, STT-RAM is particularly

identified as a potential replacement of DRAM in future main memory application because of its

many attractive features like zero standby power, excellent CMOS-compatibility, etc.

However, like all other memory technologies, STT-RAM has some problems, such as long

switching time and large programming energy, being lack of a variation aware simulation tool

which are waiting to be solved. In order to solve long switching time and large programming

energy problems, Spin-Hall Effect (SHE) assisted STT-RAM structure (SHE-RAM) has been re-

cently invented. In this work, I propose two possible SHE-RAM designs from the aspects of two

different write access operations, namely, High Density SHE-RAM and Disturbance Free SHE-

RAM, respectively.

In addition to the SHE-RAM designs, I will also propose a simulation tool for STT-RAMs. As

an early-stage modeling tool, NVSim has been widely adopted for simulations of emerging non-

volatile memory technologies in computer architecture research, including STT-RAM, ReRAM,

PCM, etc. I will introduce a new member of NVSim family – NVSim-VXs, which enables statisti-

cal simulation of STT-RAM for write performance, errors, and energy consumption. In this work,

I also developed a dynamic macromagnetic model for biaxial MTJ for MLC-STT circuit designs.
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Besides simulating the relations between the switching current and the switching time of each MTJ

resistance state, this model is also capable to capture the switching transience that can be used to

calculate the write error rate of the MLC-STT cell. Write performance and energy consumption

of the MLC-STT cell can also be derived and optimized based on the model for different design

configurations. Finally, this model allows designers to perform a comprehensive reliability analy-

sis of the MLC-STT cell by taking into account the device parametric variations and the ambient

temperature during write operations.
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1.0 INTRODUCTION

Spin-transfer torque random access memory (STT-RAM) recently received significant attentions

for its promising characteristics in cache and memory applications. As an early-stage modeling

tool, NVSim has been widely adopted for simulations of emerging nonvolatile memory technolo-

gies in computer architecture research, including STT-RAM, ReRAM, PCM, etc. In this work,

I propose a new member of NVSim family – NVSim-VXs, which enables statistical simulation

of STT-RAM for write performance, errors, and energy consumption. This enhanced model takes

into account the impacts of parametric variabilities of CMOS and MTJ devices and the chip operat-

ing temperature. It is also calibrated with Monte-Carlo Simulations based on macro-magnetic and

SPICE models, covering five technology nodes between 22nm and 90nm. NVSim-VXs strongly

supports the fast-growing needs of STT-RAM research on reliability analysis and enhancement,

announcing the next important stage of NVSim development.

Long switching time and large programming energy of Magnetic Tunneling Junction (MTJ)

continue being major challenges in STT-RAM designs. In order to overcome this problem, a

Spin-Hall Effect (SHE) assisted STT-RAM structure (SHE-RAM) has been recently invented. In

addition to NVSim-VXs, I will also propose two possible SHE-RAM designs from the aspects

of two different write access operations, namely, High Density SHE-RAM and Disturbance Free

SHE-RAM, respectively. In High Density SHE-RAM, SHE current is shared by the entire bit

line. Such a structure removes the SHE control transistor from each SHE-RAM cell and hence,

substantially reduces the memory cell area. In Disturbance Free SHE-RAM, one memory cell

contains two transistors to remove the disturbance to the unselected bits and eliminate the possible

erroneous flipping of the bits.
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2.0 NVSIM-VXS: AN IMPROVED NVSIM FOR VARIATION AWARE STT-RAM

SIMULATION

2.1 INTRODUCTION

“Post-silicon” devices have received increasing attentions in solid-state device and circuit society

due to the concerns on continuous scaling of conventional CMOS technology. The high leakage

power and significantly degraded reliability of mainstream memory technologies [30] inspired the

popular research on emerging memory technologies: spin-transfer torque random access memory

(STT-RAM), resistive memory (ReRAM), phase-change memory (PCM) [5], etc. In particular,

STT-RAM demonstrates many characteristics that are of importance to on-chip cache and memory

applications, such as high integration density, zero standby power, nanosecond access time, and

excellent CMOS-compatibility [16].

It is known that write error is the major reliability issue in STT-RAM operations. Compared

with conventional memory technologies, simulating a STT-RAM cell is very challenging because

it requires understandings of both CMOS and magnetic devices. In [4], Chen et al. proposed the

first combined magnetic and SPICE simulation framework to evaluate the write performance and

energy of STT-RAM cells by considering the interaction between transistor and magnetic tunnel-

ing junction (MTJ) devices. Besides parametric variabilities that exist in conventional memory

cells, thermal-induced switching randomness also significantly affects write operations of STT-

RAM cells. Performing statistical analysis on the write reliability, hence, requires very costly and

entangled Monte-Carlo simulations on both types of devices.

Block-level STT-RAM models have been also developed to fulfill the need in architectural

analysis. Arcaro et al. integrated a STT-RAM model into CACTI [1] – a tool was originally used

for conventional memory modeling and design [19].

2



Wu et al. presented an architecture-level simulation framework of the advanced perpendicular

STT-RAM in [29]. Dong et al. released the most widely used STT-RAM block-level model,

namely, NVSim [6], which can support the design parameter extraction of not only STT-RAM but

also ReRAM and PCM. However, none of the above models are able to simulate the impacts of

CMOS or MTJ variations and consequently, the write errors of STT-RAM.

In this work, we introduce a new member of NVSim family – NVSim-VXs, which enables

statistical simulation of STT-RAM for write performance, errors, and energy consumption. Besides

the parametric variabilities of both CMOS and MTJ devices, this enhanced model also takes into

account chip operating temperature, which significantly affects the write reliability of STT-RAM.

As the first systematic model to simulate the entangled relationships between different design

parameters and metrics of STT-RAM at block-level, the major novelty we introduce to STT-RAM

research can be summarized as follows:

• We derive statistical approximations of STT-RAM design metrics, e.g., switching time and en-

ergy consumption, and generate the corresponding compact models for fast statistical analysis;

• We implement the STT-RAM model based on the switching pattern of input bits, which have

been proved as the major factor affecting the statistical STT-RAM design metrics;

• We develop the models of both perpendicular and in-plane STT-RAMs to support the scaling

of STT-RAM technologies.

The first release of NVSim-VXs supports 5 technology nodes {22, 32, 45, 65, 90}nm, and

driving NMOS transistor size between 2-5× the minimum feature size. It also supports operating

temperature between 300K to 375K. The model has been thoroughly calibrated with the Monte-

Carlo simulations based on macro-magnetic and SPICE models to ensure the accuracy.

The rest of this proposal is organized as follows: Section 4.2 presents the basics of STT-RAM

and NVSim; Section 2.3 introduces the statistical compact models that are developed for NVSim-

VXs; Section 2.4 concludes our work.

3
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Figure 2.1: STT-RAM basics. (a) In-plane MTJ. (b) Perpendicular MTJ. (c) 1T1J cell structure.

2.2 PRELIMINARY

2.2.1 Basics of STT-RAM and NVSim

In a STT-RAM cell, the data is stored as the resistance of a MTJ device, as shown in Fig. 2.1.

The MTJ resistance is determined by the magnetization directions of the two ferromagnetic layers,

i.e., in parallel (low-resistance) or anti-parallel (high-resistance). The magnetization of one of the

ferromagnetic layers (reference layer) is fixed while that of the other ferromagnetic layer (free

layer) can be switched by applying a write current with proper polarization. The magnetization

of the ferromagnetic layers can be either in parallel or perpendicular to the surface of the MTJ,

namely, in-plane or perpendicular MTJ, as shown in Fig. 2.1(a) and (b), respectively. Fig. 2.1(c)

shows a popular “1T1J” STT-RAM cell design where a NMOS transistor supplies the write and

read current to the MTJ. The switching process of the MTJ is greatly affected by the amplitude of

the current passing through it, which varies with the parametric variations of the MTJ and transistor.

It is also affected by the thermal-induced fluctuations of magnetization precession. As pointed out

by the prior art [32], this asymmetric structure results in a very unreliable ‘0(low)→‘1(high)’

switching, i.e., with much longer switching time and wider distribution than the other switching

direction.
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The magnetization switching of the MTJ under a write current can be modeled by Landau-

Lifshitz-Gilbert (LLG) equation as [26]:

dmf

dt
+ α(mf ×

dmf

dt
) =

1

2
γHkΣ

4
i=1(

Γi
ltK

). (2.1)

Here, Ms is free layer magnetization saturation and mf represents the unit vector of the free layer.

α is the Gilbert damping constant; γ is the gyromagnetic ratio; Hk is the Stoner-Wohlfarth switch-

ing field; lt is the free layer thickness. The four torque (Γ) terms represent the factors that affect-

ing the mf dynamics – the uniaxial anisotropy, the easy-plane anisotropy, the Langevin random

thermal field, and the spin torque term from the applied current. The parameters adopted in our

macro-magnetic simulations are summarized in TABLE 4.1 [10].

2.2.2 Basics of NVSim

NVSim is a widely used open source simulation framework for circuit-level modeling of emerging

nonvolatile memories like STT-RAM, ReRAM, PCM, etc [6]. It is developed to enable early-stage

design space exploration before the memory is designed or fabricated. NVSim can extract the

memory design metrics, i.e., read/write latency, read/write energy consumption, area, etc. under

the given design constraints, or optimize the design parameters. NVSim also allows the users with

only device knowledge to obtain block-level design specs via a user-friendly interface.

To simulate an STT-RAM design in NVSim, users are expected to specify the write current

value and switching time for both SET and RESET operations. However, obtaining correct values

of these parameters requires running macro-magnetic models, which is not supported in the current

version of NVSim based on pure circuit-level simulation. Moreover, the current version of NVSim

supports neither the statistical analysis of STT-RAM, e.g., the variations of write performance

(errors) and energy consumptio, nor the impact of operating temperature.

2.3 NVSIM-VXS FRAMEWORK

Fig. 2.2 presents the framework of our proposed NVSim-VXs, which includes three important new

features that are not supported by the existing deterministic STT-RAM simulators: the temperature-

5



Table 2.1: Device and Circuit Simulation parameters

D
ev

ic
e

L
ev

el
Parameter Symbol Value Unit

Mag. Saturation Ms 230 kA/m

Uniaxial Anisotropy Hk 200 Oe

Gilbert Constant α 0.01

Free Later Thickness lt 1 nm

C
ir

cu
it

L
ev

el

Parameter Mean Std. Dev

Channel length L = 22∼90nm σL = 0.05L

Channel width W = 2L∼5L σW = 0.05L

Free layer volume V = L× 2L× 1nm3 σV = 0.05V

Resistance low RL = 1000Ω σRL = 0.05RL

Resistance high RH = 2000Ω σRH = 0.05RH

aware statistical switching time model, the statistical energy consumption model, and the write

error rate model. Compared to the current version of NVSIM, NVSim-VXs possesses a more flex-

ible and user-friendly interface to facilitate its probabilistic design philosophy, i.e. allowing users

to set circuit and architecture parameters as the inputs and obtain cell/block level statistical design

metrics from the outputs. Furthermore, the important switching pattern (i.e. number of ‘0’→‘1’

or ‘1’→‘0’ flipping’s in write) dependent energy and reliability analysis is also enabled at block

level.

2.3.1 Temperature-Aware Statistical STT-RAM Switching Time Model

The MTJ switching time variation is mainly generated from the following two torque terms: the

Langevin random field and the spin torque, as suggested by Eq. (4.3). In specific, the randomness

sources of the Langevin random field are the variations of MTJ surface area and the thickness of

free layer while the spin torque is generated by the driving current, which is affected by process

variations of both NMOS transistor and MTJ device [33].
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Figure 2.2: Framework of the NVSim-VXs.
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Figure 2.3: Detailed flow for circuit-level and cell-level simulations in NVSim-VXs.

Note that the above two terms are also significantly affected by the fluctuation of operating

temperature.To minimize the costly hybrid CMOS-Magnetic simulations required to capture all

the parametric variabilities, our temperature-aware statistical STT-RAM switching time model is

derived and simplified from extensive LLG model-based Monte-Carlo simulations, which cover

2 MTJ resistance switching directions, 5 technology nodes, 7 different transistor widths, and 16

different temperature points, as illustrated in Fig. 2.3. In the first step, sensitivity analysis is con-

ducted at different temperatures to characterize the driving current distributions [27]. Variations

of the transistor channel length, the transistor width, and the MTJ resistance are also taken into

considerations. Simultaneously considering all variability parameters can reduce the computation

complexity from O(Nk) to O(N), where K is the number of variability parameters and N is the

number of samples for each parameter. In the second step, we integrate both driving current distri-

butions and the Langevin random field into LLG equation under different temperatures to obtain

the temperature-aware switching time distributions. Finally, a fast and compact timing model that

directly links the switching time variation (i.e., mean and standard deviation) to temperature and

driving current can be achieved. Based on the device parameters and simulation setup summarized

in TABLE 4.1.
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(a) (b)

(c) (d)

Figure 2.4: Simulated switching time distribution v.s. Log-normal distribution (45nm technology

node, 90nm transistor width, 4 different temperatures): a) 300K b) 325K c) 350K d) 375K.

We performed Monte-Carlo simulations to obtain switching time distributions of ‘0’→‘1’

switching at 4 different temperatures for an STT-RAM cell with a w = 2L NMOS transistor

width at technology node L = 45nm, as depicted in Fig. 2.4. All the simulated switching time

results are in excellent agreement with the Log-normal distributions at the concerned temperatures.

As the temperature increases from 300K to 375K, the distribution of the MTJ switching time be-

comes broader, indicating the increased impact of temperature on MTJ switching and hence the

STT-RAM cell write reliability. As we shall show next, the corresponding mean (µ) and standard

deviation (σ) of the Log-normal MTJ switching time distribution can be directly linked with the

driving current and temperature using our model. Our further investigation suggests a linear ap-

proximation of the relationship between the µ/σ and temperature. This linear approximation of the

temperature dependency of µ and σ of the MTJ switching time can be expressed by:

σ(w) = mσ(w) ∗ Tn + σ0(w),

µ(w) = mµ(w) ∗ Tn + µ0(w).
(2.2)

9



Monte

Model

Width2L 2.5L 3L 3.5L 4L 4.5L5L
Carlo

Figure 2.5: The standard deviation of switching time distributions for 7 transistor widths at 45nm

technology node.

Here mσ(w) and mµ(w) are the coefficient representing the temperature dependency of µ and σ

at transistor width w. Tn is the normalized temperature. σ0(w) and µ0(w) are the initial values of

σ(w) and µ(w), respectively, at Tn = 0.

Fig. 2.5 and 2.6 show the results of the linear approximation of σ and µ for 7 different transistor

widths (2L ∼ 5L, L = 45nm) at different temperatures (300K ∼ 375K), respectively. For com-

parison purpose, the results of Monte-Carlo simulations are also presented. It can be observed that

our linear model provides very accurate approximation of the Monte-Carlo simulation results at the

whole covered ranges of transistor widths and temperatures. As transistor width increases, both

the temperature dependency and the initial values of σ and µ monotonically decreases, implying a

less sensitivity to the temperature change and improved thermal robustness.

For a specific transistor width w, the temperature dependency and the initial values of σ and µ

– (mσ(w), mµ(w)) and (σ0(w), µ0(w)), are the functions of the MTJ driving current I as:

mσ(w) = amσ ∗ ebmσI ,

mµ(w) = amµ ∗ ebmµI .
(2.3)
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Figure 2.6: The mean of switching time distributions for 7 transistor widths at 45nm technology

node.

and

σ0(w) = acσ ∗ ebcσI + ccσ ∗ edcσI ,

µ0(w) = acµ ∗ ebcµI + ccµ ∗ edcµI .
(2.4)

Here, the driving current I is determined by the NMOS transistor width w at different technology

node. ai, bi, cj and dj are technology-dependent fitting parameters where i = mσ,mµ, cσ, cµ,

j = cσ, cµ. Fig. 2.7 depicts the simulated relationship between mσ(w), mµ(w), σ0(w), µ0(w) v.s.

I based on our model in Eq. (2.3) and (2.4). The results includes the data at 7 different transistor

widths (i.e., 2L ∼ 5L, L = 45nm). To validate our model, the Monte-Carlo simulation results are

also included. The results show that our model matches the Monte-Carlo simulations very well in

all the simulated cases.

By substituting Eq. (2.3) and (2.4) into Eq. (2.2), the MTJ switching time distributions can be

expressed by:

σ(w) = (amσ ∗ ebmσI) ∗ Tn + (acσ ∗ ebcσI + ccσ ∗ edcσI),

µ(w) = (amµ ∗ ebmµI) ∗ Tn + (acµ ∗ ebcµI + ccµ ∗ edcµI).
(2.5)
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Figure 2.8: Overview of the statistical energy consumption characterization flow.

Although the above illustrated examples are based on 45nm technology, our developed tem-

perature aware statistical STT-RAM switching time model is capable to capture the switching time

variaions for different transistor sizes (2L ∼ 5L), different temperatures (300K ∼ 375K) at differ-

ent technology nodes (22 ∼ 90nm), showing its adaptivity and scalability in advanced technology

nodes.

2.3.2 STT-RAM Statistical Energy Modeling

In current version of NVSim, the write energy of STT-RAM is deterministically modeled without

considering any fluctuations in write operations. The cell-level write energy is directly extracted

from the given SET/RESET current, applied voltage, and write time. However, as previously dis-

cussed, the switching time of the MTJ in each STT-RAM cell varies with the parametric variations

of the MTJ and the NMOS transistor, and is influenced by thermal fluctuations. The MTJ resis-

tance states, which affect the write current through the device, also follows some distributions.

Hence, in NVSim-VXs, we characterize the statistical STT-RAM write energy consumption.
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Model Write Energy Dist. ‘0’->’1’
Monte Carlo Write Energy Dist. ‘0’-’>’1’
Model Write Energy Dist. ‘1’->’0’
Monte Carlo Write Energy Dist. ‘1’-’>’0’

Figure 2.9: The write energy consumption distribution comparison of our model v.s. Monte-Carlo

at 45nm technology node, 90nm transistor width, 60ns write pulse width.

The energy consumption of an STT-RAM cell during a write operation, i.e., ‘0’→‘1’ switching,

can be calculated using Joule’s first law as:

E = (IH ∗ τsw + IL ∗ (τwt − τsw)) ∗ V. (2.6)

Here IH is the initial high driving current at low resistance (RL) state and IL is the low post-

switching current after the resistance state switches to high resistance (RH). τsw is the actual MTJ

switching time and τwt is the writing period (write time) for which the programming voltage (V )

is applied. Note that we ignore the oscillation of the driving current generated by the magnetic

precession. Also, both IH and τsw are correlated, and subjected to the variations from CMOS/MTJ

device and thermal fluctuations.

Fig. 2.8 depicts the overview of our proposed STT-RAM statistical write energy model, in-

cluding the following five steps:

1. Derive current information: Obtain the driving current statistical information by conducting

sensitivity analysis, as is discussed in statistical STT-RAM switching time model;

2. Generate current sample: Generate the driving current samples over the dual exponential

current distribution and the statistical information [27];
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3. Obtain switching time distribution: Send the driving current samples and the temperature to

the temperature-aware statistical switching time model developed in Section 2.3.1 and generate

different switching time distributions for each sample;

4. Calculate statistical energy: Calculate the energy by doing integral over user-specified write

time at each driving current sample and switching time distribution pair as below:

Ei =

τwt∫
0

(IHi ∗ t+ IL ∗ (τwt − t)) ∗ V ∗ fi(t) ∗ dt. (2.7)

Here IHi denotes the ith sample of the IH obtained from dual exponential model, fi(t) is the

probability density function of corresponding switching time distribution of the current sample.

IL is the low post-switching current.

5. Dump energy distribution: Calculate the mean (µE) and standard deviation (σE) of the write

energy consumption as:

µE =

n∑
i=1

Ei ∗ fi
n∑
i=1

fi

and σE =

√√√√√√√
n∑
i=1

(Ei−µE)2 ∗ fi
n∑
i=1

fi

. (2.8)

Here fi is the number of occurrences of energy value Ei for the i current sample.

Our simulations show that the write energy consumption roughly follows a Gaussian distribu-

tion whose mean and standard deviation can be obtained from step 5. Fig. 2.9 shows the write

energy distributions of both MTJ switching directions obtained by our model and Monte-Carlo

simulations at τwt = 60ns. The temperature is 350K and the transistor widthW = 2L, L = 45nm.

The results show that our model approximates the Monte-Carlo simulations very closely. Fig 2.10

compares the mean value of the write energy consumption of STT-RAM cell designs with vari-

ous transistor widths (2L ∼ 5L, L = 45nm) under different temperatures at ‘1’→‘0’ switching.

Again, our model can always provide the results very close to that of the Monte-Carlo simulations

with the simulated transistor sizes. As the temperature increases, energy consumption reduces al-

most linearly at large transistor widths (i.e. 3.5L ∼ 5L) because of the narrow distribution of the

MTJ switching time (τsw).

15



Monte

Model

Width2L 2.5L 3L 3.5L4L 4.5L5L
Carlo

Figure 2.10: The mean of the energy consumption at 10ns write pulse width for 7 different tran-

sistor widths at 45nm technology node.

On the contrary, the changing rate of the energy consumption with temperature becomes non-

linear when the transistor width is small, indicating a high sensitivity to temperature change. It

again proves that a large access transistor can help reducing the thermal-induced performance

variations of STT-RAM. Fig. 2.11 shows the energy consumption of W = 2.5L at three different

τwt. Reducing the τwt slightly degrades the linearity of the temperature dependency of the energy

consumption.

2.3.3 STT-RAM Write Error Rate

An STT-RAM write failure happens if the MTJ switching cannot complete within the applied write

pulse width (or the write time τwt). Following technology scaling, write reliability emerges as one

of the main challenges in STT-RAM designs. An accurate and fast prediction of STT-RAM write

error rate become essential but cannot be obtained by performing conventional deterministic circuit

simulations.

Traditionally, calibrating the write error rate of an STT-RAM cell requires two runs of Monte-

Carlo simulations and one sample/distribution processing: Firstly, circuit-level simulations are

conducted to get the STT-RAM switching current distribution by considering all parametric vari-
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Figure 2.11: The mean of energy consumption at different write pulse widths for w = 2.5L tran-

sistor width (L = 45nm).
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Figure 2.12: Simulated write error rate v.s. temperature from our model and Monte-Carlo for

22nm perpendicular MTJ and 45nm in-plane MTJ (10ns write pulse width, ‘0’→‘1’ switching).
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Figure 2.13: Simulated write error rate v.s. temperature from our model and Monte-Carlo at

different write time (transistor width w = 2.5L,‘0’→‘1’ switching).

abilities; Secondly, the current distribution is sent to a macro-magnetic model and the second-round

Monte-Carlo simulations are performed to obtain the STT-RAM switching time distribution; Fi-

nally, the generated switching time samples or distribution must be compared with the given write

time to calculate the write failure.

In NVSim-VXs, the samples of the STT-RAM switching time can be obtained from the embe-

ded temperature-aware statistical switching timing model without running the two costly Monte-

Carlo simulations. However, the normal write error rate of a STT-RAM cell is so low that a large

number of samples of the STT-RAM switching time still need to be generated to calculate the error

rate. In our work, we introduce the mixture importance sampling technique in NVSim-VXs to

reduce the write error rate calculation cost as [13, 14]:

Ep(x)[θ] = Eg(x)[θ ∗
p(x)

g(x)
]. (2.9)

Here p(x) denotes the switching time probability density function and g(x) is the distorted sam-

pling function defined as;

gλ(x) = λ1p(x) + λ2U(x) + (1− λ1 − λ2)p(x− µs), (2.10)

where 0 ≤ λ1 +λ1 < 1. U(x) is the uniform pdf; µs is the shifted center and is chosen experimen-

tally.
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Fig. 2.12 compares the results of write error rate of an STT-RAM obtained from NVSim-VXs

and Monte-Carlo simulations, respectively, for a 22nm perpendicular MTJ and an 45nm in-plane

MTJ at ‘0’→‘1’ switching. Our model can achieve good accuracy at the 4 simulated transistor

widths and precisely describe the changing trend of the write error rate with the temperature.

Interestingly, Fig. 2.12 shows that the write error rate of the 22nm perpendicular MTJ always

outperforms the one of 45nm in-plane MTJ at the similar relative transistor sizes (2L ∼ 3.5L) and

the same temperature. This result validates the conclusion that perpendicular STT-RAM is more

promising at scaled technology node, i.e., below 45nm.

Fig. 2.13 shows the simulated write error rate over different temperatures for the 45nm in-

plane MTJ with different write pulse widths. Increasing the write time can greatly reduce the write

error rate at low temperatures; However, limited improvement is observed at higher temperatures.

2.3.4 Block Level Extension for NVSim-VXs

In NVSim, memory is usually organized as three different hierarchies: bank, mat and subarray.

Bank is at the top of the hierarchy and it contains multiple mats that can be operated simultaneously.

A mat is further composed of multiple subarrays, which are the elementary structure of the NVSim.

To make the NVSim-VXs suitable for architecture-level simulation, we extended our cell level

model to block level. NVSim-VXs is capable to calculate the block level write energy or error rate

more precisely by taking the switching pattern into consideration. To the best of our knowledge,

this is the first time that such an important feature is integrated into nonvolatile memory simulators.

2.3.5 Block Level Energy Consumption

Write energy consumption of an STT-RAM cell is distinctive at two switching directions. The

block-level energy estimation will be more accurate if the users can provide the switching patterns

of the accessed block by considering the difference between the incoming data and the stored

data. There are four possibilities of the bit switching: ‘0’→‘1’, ‘1’→‘0’, ‘0’→‘0’, and ‘1’→‘1’.

For a switching of ‘i’→‘j’, i, j = 0 or 1, the mean and the standard deviation of total energy

consumption spent on ‘i’→‘j’ switching’s in a memory write can be expressed as:

µeT,ij = NF,ij ∗ µe,ij and σeT,ij = NF,ij ∗ σe,ij. (2.11)
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Figure 2.14: The mean and standard deviation of block-level energy consumption for 3 different

flipping combinations at 10ns write time and w = 3L transistor width, L = 45nm.

Here, µe,ij and σe,ij are the mean and the standard deviation of the write energy of the STT-RAM

cell, respectively, at ‘i’→‘j’ switching.

The distribution of the write energy consumption can be then described by:

µeT =
∑
ij

µeT,ij and σeT =

√∑
ij

σeT,ij2. (2.12)

When i = j, the stored data is actually overwritten by the same value. The write energy can be

zeroed by applying a “read-before-write” technique to eliminate this redundant operation. “Read-

before-write” is the default mode of NVSim-VXs and the energy of one read operation is automat-

ically included in the write energy calculation.

Fig. 2.14 shows an example of NVSim-VXs results of the nominal write energy consumptions

and their standard deviations of a 512-bit block with three different switching patterns.
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Figure 2.15: The block level write error rate for 3 different flipping combinations at 10ns write

time and w = 3L transistor width, L = 45nm.

2.3.6 Block Level Write Error Rate

Due to the asymmetry of the write error rates at both switching directions of STT-RAM cells, the

block level write error rate is also highly related to the switching patterns of the array. The array-

level write error rate can be easily extracted from the cell level results for a given array size as:

P = 1−
1∏
i=0

(1−WERi)
NFi (2.13)

Here, we assume the location information of bit switchings is known during programming. NFi and

WERi denote the number of flipping bits and the bit write error rate, respectively for the switching

of ‘i’→‘̄i’. Fig. 2.15 shows an application example of NVSim-VXs in simulating the write error

rate of a 512-bit block with different switching patterns.

2.4 CONCLUSIONS

The existing deterministic nonvolatile memory simulators are incapable to capture the probabilis-

tic behaviors of STT-RAM incurred by process variations and thermal fluctuations. In this work,

we introduce NVSim-VXs, an enhanced version of NVSim, to facility the need of statistical STT-
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RAM modeling for write performance, errors and energy consumption. The example simulation

results show that increasing temperature dramatically degrades the STT-RAM’s performance and

reliability. Moreover, NVSim-VXs simulations quantitatively validate the advantages of perpen-

dicular STT-RAM over in-plane STT-RAM, showing its promising capability to predict the scaling

trend of STT-RAM. We plan to release NVSim-VXs as the new member of NVMSim family in the

near future and continue developing the statistical versions of NVSim for other types of emerging

memories with more enhanced features.
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3.0 SPIN-HALL ASSISTED STT-RAM DESIGN AND DISCUSSION

3.1 INTRODUCTION

Conventional memory technologies like SRAM, DRAM and Flash memory have been widely

utilized in modern computer systems. However, as technology node continues to scale down,

these electrical charge-based memory technologies suffer from high leakage power and large pro-

cess variations that cause severe reliability issues. In order to overcome these problems, many

new memory technologies, including Spin-Transfer Torque Random Access Memory (STT-RAM),

have been studied. Although STT-RAM features many attractive characteristics like non-volatility,

low standby power, and high cell density [20, 31, 36], it also has many drawbacks such as long

programming latency and high programming energy etc.

Spin-Hall Effect (SHE) assisted STT-RAM (or SHE-RAM) was recently proposed to solve the

challenges in conventional STT-RAM designs [24]. By eliminating incubation delay, program-

ming time and/or energy of SHE-RAM cells can be substantially reduced, compared to conven-

tional STT-RAM.

Several access schemes of SHE-RAM were also discussed in [12]. However, these schemes

require either very sharp writing pulse or external magnetic field which introduces additional fab-

rication process/cost. In another design in [15], a single bit is represented by two MTJs and four

transistors. This design reduces storage density and also increases access power consumption.

Nonetheless, a design that can maximize the benefits of SHE effects is still highly desired.

In this work, we proposed two SHE-RAM designs aiming at different applications. The first

one is named as “High Density SHE-RAM”, which targets off-chip memory application requiring

high cell density. The high cell density of High Density SHE-RAM is ensured by deploying a

source line shared by all memory bits to supply the SHE current.
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Only one transistor is needed to control the whole shared source line. The second one is named

as “Disturbance Free SHE-RAM”, which targets applications where reliability is the major con-

cern. The potential disturbance to the unselected bits in the High Density SHE-RAM is eliminated

in the Disturbance Free SHE-RAM by inserting isolating transistor between the cells and sharing

the SHE current among the bits on the same word line.

The remain of this proposal is organized as follows: Section 3.2 presents the basics of SHE-

RAM and the model of spin-hall assist; Section 3.3 introduces the designs of High Density SHE-

RAM and Disturbance Free SHE-RAM; Section 3.4 concludes our work.

3.2 BASICS OF SHE-RAM

In conventional STT-RAM, data is stored as the resistance state of a Magnetic Tunneling Junction

(MTJ) device, which consists of two ferromagnetic layers, namely, reference layer and free layer,

and a tunneling oxide layer, as shown in Fig. 3.1(a). The relative magnetization orientations of

these two ferromagnetic layers determine the resistance of the MTJ. That is being said, when their

magnetization orientations are in parallel (anti-parallel), the MTJ is in its low (high) resistance

state. When a current is injected to the MTJ, the current is spin polarized after passing through the

RL, and exerts a torque to the FL and change its orientation.

At the beginning of the switching process of the MTJ, the angle between the magnetization

vectors of the free layer and the reference layer will be either 0◦ or 180◦. In both cases, the

torque exerted by the spin polarized current will be zero because the cross product of two vectors

with the same direction is zero. In conventional STT-RAM design, this initial angle may be dis-

turbed by thermal fluctuations [24]. The time needed to disturb the free layer magnetization from

the “perfect” alignment with the reference layer, called “incubation delay”, may be up to several

nanoseconds.

Different from conventional STT-RAM, SHE-RAM contains an electrode underneath the per-

pendicular MTJs. Here the magnetization orientation of the two ferromagnetic layers of the MTJ

are along the axis ẑ. When an assist SHE current pulse is applied on this electrode, an in-plane

polarized current whose polarization direction is along the axis ŷ is injected into the MTJ.
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Figure 3.1: (a) A MTJ whose reference and free layer are in anti-parallel. The exerted torque is

zero as the two magnetization vectors are in parallel. (b) Free layer magnetization vector makes an

angle under the effect of the SHE current, and STT becomes available to switch the magnetization

of the free layer since it is not in parallel to that of the reference layer any more.
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The SHE current pulls the free layers magnetic vector from 0◦ or 180◦ to an intermediate angle,

as shown in Fig. 3.1(b). Since the magnetization orientations of the free layer and the reference

layer are no longer in parallel, the torque exerted by the spin polarized current will be larger than

zero. Hence, the SHE current is able to assist the spin polarized current to switch the MTJ much

faster. The incubation delay is eliminated and hence, both the switching time and the switching

energy consumption are reduced compared to the conventional STT-RAM.

The magnetization dynamics of the MTJ free layer in SHE-RAM design can be modeled by

solving the Landau-Lifshitz-Gilber (LLG) equation [21] with SHE current modification [24] as:

∂M
∂t

= −γµ0 (M×Heff) + α
Ms

(
M× ∂M

∂t

)
+

cSHE

M2
s

(M× σ̂SHE ×M) + cSTT

M2
s

(M× m̂ref ×M) +

βMTJ

Ms
(M× m̂ref) ,

(3.1)

where M is the magnetization vector of the free layer, Heff is the effective magnetic field vector, α is

Gilbert damping constant and Ms is magnetization saturation, cSHE is spin-Hall torque coefficient,

cSTT is spin-transfer torque coefficient and βMTJ=0.25cSTT as observed experimentally [24], γ is

electron gyro magnetic ratio, µo is permeability.

3.3 SHE-RAM DESIGNS

In conventional STT-RAM, the MTJ switching can be accelerated by three means: 1) increasing

the program current; 2) relaxing the MTJ non-volatility (e.g., by reducing the volume of free

layer); and 3) applying an external magnetic field [9]. However, increasing the program current and

applying an external magnetic field incur a large power consumption while non-volatility relaxation

degrades the retention time of the STT-RAM cell [30]. As a comparison, spin-hall effect offers a

very affordable option for programming performance improvement of the MTJ. Based on spin-hall

effect, we propose two SHE-RAM designs, namely, High Density SHE-RAM and Disturbance

Free SHE-RAM, aiming different applications. The device parameters used in the relevant analysis

are summarized in Table 3.1.
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Table 3.1: Summary of device parameters

Device Parameters Value Std. Dev.

Tran-

sistor

Channel length L 45nm 2.25nm

Channel width W 90− 720nm 2.25nm

Threshold voltage Vth 0.466V 30mV

MTJ

MTJ Volueme 45× 90× 1nm3 5%

High and low resistance 2000/1000Ω

Magnetization saturation 800emu/cc

Uniaxial anisotropy Hk 3400Oe

Gilbert damping constant α 0.01

3.3.1 High Density SHE-RAM

High Density SHE-RAM is designed for capacity demanding applications such as off-chip mem-

ory. A High Density SHE-RAM cell contains only one transistor and one MTJ, as shown in

Fig. 3.2. A SHE metal wire and a SHE control transistor are shared by all the SHE memory cells

connected to the same source line. The programming current to the MTJ of each memory cell is

supplied by the transistor connected to the MTJ. During the write operation of a memory cell, both

the SHE control transistor and the corresponding cell transistor are turned on simultaneously and

the polarization of the programming current is determined by the biases applied on the bit line and

the source line.

As a perpendicular MTJ is applied, write operations do not have any requirement on the di-

rection of the SHE current. For example, writing ‘1’ and ‘0’ almost equally benefit from a SHE

current flowing from SHE control transistor to source line and vice versa becayse SHE currents

with both polarizations can disturb the initial alignment of the magnetization direction of the free

layer. Similar to the conventional STT-RAM, when the MTJ programming current flows from the

bit (source) line to the source (bit) line, the magnetization orientation of the free layer will switch

to the same as (opposite to) that of the reference layer, indicating logic ‘0’ (‘1’). The influence of

the SHE current on the dynamics of the magnetization vector of the free layer is virtually depicted
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Figure 3.2: Illustration of High Density SHE-RAM. SHE current is controlled by the SHE con-

trol transistor and MTJs are accessed through the connected word line transistors. During write

operations, the data is still written by applying appropriate bias on the source line and the bit line.

28



(a) (b)

Figure 3.3: (a) Free layer’s magnetic moment under the effect of SHE and STT currents. The

oscillations starts from the deviated alignment of the free layer. (b) Free layer’s magnetic moment

under the effect of only STT current. Incubation delay takes place.

in Fig. 3.3(a). When the SHE current is applied, the magnetization vector of the free layer takes

almost no time to deviate from the initial position. After that, the magnetization vector of the free

layer quickly switches to the target state under the impact of the STT current. As a comparison, if

only STT current is applied, significant oscillations occur when the MTJ deviates from the initial

position, as shown in Fig. 3.3(b).

Note that the SHE current is required only at the beginning of the write operation to disturb

the initial alignment of the free layer. Hence, for energy saving purpose, the SHE current can be

supplied for only a very short time, i.e., sub-nanosecond, rather than the whole writing process.

Fig. 3.4 compares the switching time of the MTJ when different SHE current pulse width is applied

under different sizes of the cell transistor in a High Density SHE-RAM cell. The device and circuit

level parameters are summarized in TABLE 3.1. The SHE current is fixed at 20µA. In general,

the longer the SHE current pulse width is, the shorter the MTJ switching time will be: when

the transistor width equals 90nm, raising the SHE current pulse width from 0.5ns to 0.7ns will

reduce the MTJ switching time by half. However, as the transistor width increases, the difference
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Figure 3.4: Simulated MTJ switching time under different transistor widths. Applying SHE current

will significantly improve the MTJ switching performance, especially when the transistor width is

small (or the STT current is small).
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between the switching times of the MTJ at different SHE current pulse widths shrinks, implying

the relatively increased impact of the STT current. For comparison purpose, we also simulated

the switching time of the MTJ when only STT current is applied. When the transistor width is

small, say, 90nm, applying a 0.7ns SHE current pulse can reduce the MTJ switching time by

almost 5× compared to the case where only the STT current is applied. Again, the MTJ switching

time reduction incurred by the SHE current becomes less significant when the transistor width

increases. Fig. 3.5 shows that increasing the amplitude of the SHE current will slightly improve

the MTJ switching performance. But this effect is very limited.

The read operation of the High Density SHE-RAM is similar to the conventional STT-RAM:

The word line is asserted and a read current Ir is injected. Depending on the data stored on the MTJ

device (or its resistance state), a high or a low voltage will be generated on the bit line. The value

of the stored data can be read out by comparing the bit line voltage with a predefined reference

voltage.

We note that the SHE current shared by the memory cells connected to the same source line

may cause the disturbance to the unselected cells during write operations when thermal fluctuation

is taken into account. Such a disturbance can be further aggravated by the process variations of the

MTJ, which result in the variability of the MTJ geometry size, the MTJ critical switching current,

and the non-volatility. For example, a 20µA SHE current will result in a disturbance rate of 0.072%

for the unselected MTJ at 300K. In order to prevent disturbing the unselected bits, we proposed

Disturbance Free SHE-RAM.

3.3.2 Disturbance Free SHE-RAM

Instead of sharing the SHE current among the cells on the same source line in High Density SHE-

RAM, in Disturbance Free SHE-RAM, the SHE current is shared among the cells on the same

word line, as illustrated in Fig. 3.6: One Disturbance Free SHE-RAM cell includes two transistors.

One of the transistors connects the MTJ and the word line (e.g., W0−MTJ0) and the other one is

inserted between the segments of the SHE line (e.g., W0−SHE0)). During write operations, the SHE

current only passes through the cells that are selected by signal Wx−SHE (x = 0, 1, ... as the word

line number). No disturbances to the unselected cells are introduced. The write operations can be

performed as follows: First, SHE line (e.g., W0−SHE) is activated for a duration of subnanosecond
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Figure 3.5: MTJ switching time of a High Density SHE-RAM cell under different SHE current

amplitudes for a 0.7ns pulse width.
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Figure 3.6: Disturbance Free SHE-RAM Design. SHE current is shared by the cells on the entire

word line and controlled by Wx−SHE transistors.
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Figure 3.7: Switching time comparison for High Density SHE-RAM Design and Disturbance Free

SHE-RAM Design for different transistor widths.

to allow the SHE current to flow underneath all the cells along the entire SHE line and disturb

their free layer magnetization alignment. After the SHE line is deactivated, MTJ line (W0−MTJ)

is turned on to select the cells along the whole MTJ line and the data are programmed into the

cells by applying appropriate biases on the bit line and the source line. Since the SHE line has

been deactivated before the MTJ line is activated, each cell can be written independently without

causing any inference between them. However, the interval between turning on MTJ line and

turning off SHE line may adversely affect the SHE effect, as depicted in Fig. 3.7. Keeping the

interval short (but no-zero) is critical for improving the write performance of the Disturbance Free

SHE-RAM.

We note that compared to High Density SHE-RAM, Disturbance Free SHE-RAM generally has

a longer write operation because the SHE and STT currents are applied at different times, as also

shown in Fig. 3.7. After the SHE line is deactivated, the SHE effect immediately starts to decay. As

depicted in Fig. 3.7, when the interval between turning off the SHE current and turning on the STT

current is increasing, the MTJ switching time increases. Nonetheless, Disturbance Free SHE-RAM

still demonstrates significantly enhanced write performance compared to conventional STT-RAM.
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Figure 3.8: Switching time probability distribution for Disturbance Free SHE-RAM Design and

for conventional Perpendicular MTJ for 90nm and 720nm transistor width.

Fig. 3.8 further shows that Disturbance Free SHE-RAM offers not only a faster MTJ switching

time but also a tighter distribution of the MTJ switching time when both process variations and

thermal fluctuations are considered. This fact holds true over a very wide transistor width range,

say, from 90nm to 720nm.

The read operation of Disturbance Free SHE-RAM is also similar to conventional STT-RAM

except that transistors Wx−SHE must be turned off in order to operate on each cell independently.

The estimated memory cell areas of High Density SHE-RAM and Disturbance Free SHE-RAM

are 0.0243µm2 and 0.0567µm2, respectively, at 45nm technology node.

3.4 CONCLUSION

In this work, we proposed two designs of SHE-RAM, namely, High Density SHE-RAM and Dis-

turbance Free SHE-RAM, for capacity-sensitive and reliable applications, respectively. The intro-

duction of SHE current reduces the amplitude of the required switching current to the MTJ.
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This leads to small cell area of High Density SHE-RAM. The disturbance to the unselected

cells in High Density SHE-RAM can be then eliminated by the shared word line design in Distur-

bance Free SHE-RAM though extra cell area overhead is needed.
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4.0 MODELING OF BIAXIAL MAGNETIC TUNNELING JUNCTION FOR

MULTILEVEL CELL STT-RAM REALIZATION AND RELIABILITY ANALYSIS

4.1 INTRODUCTION

Technology scaling imposes many challenges on design and manufacturing of conventional mem-

ories, such as high leakage and reliability issues of SRAM, DRAM, and NAND flash. Extensive

research has been performed to develop new memory technologies that can overcome these chal-

lenges, including phase-change memory (PCM), resistive memory (ReRAM), spin-transfer torque

random access memory (STT-RAM), etc. Among all these technologies, STT-RAM is particularly

identified as a potential replacement of DRAM in future main memory application because of its

many attractive features like zero standby power, nanosecond access time, high integration density,

excellent CMOS-compatibility, etc [34].

In a conventional STT-RAM cell, the data is stored as one of the two resistance states of a

magnetic tunneling junction (MTJ) device. The resistance of the MTJ can be switched between

the two states by applying a programming current with proper polarization, which is supplied by a

select transistor. An important design tradeoff of STT-RAM technology is to balance between the

access performance and the storage density [3]: Increasing the programming current can reduce

the MTJ switching time while also increasing the select transistor size [28], and consequently,

increasing the STT-RAM cell area [30].

Multi-level cell (MLC) technology was recently introduced to STT-RAM designs to improve

the storage density, i.e., MLC-STT. MLC-STT allows storing more than 1 bit in a memory cell

and hence, needs to realize at least 4 resistance states in a single STT-RAM cell [2]. Popular

implementations of MLC-STT include connecting two MTJs with different sizes in series (or in

parallel) to construct four different resistance states [35]. In these designs, one MTJ serves as a
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soft domain that can be switched by a smaller current while the other MTJ serves as a hard domain

that can be switched by only a larger current. Since the soft domain is also flipped when switching

the hard domain, a two-step programming procedure is needed and consequently, leading to a long

write operation time.

Very recently, a new MTJ structure named biaxial MTJ is proposed to enable one-step pro-

gramming in MLC-STT design [25]. Different from the conventional uniaxial MTJ technology,

biaxial MTJ technology can implement four stable resistance states on one MTJ device. Although

biaxial MTJ has started to gain increasing attentions in STT-RAM design society [22] , [7], lacking

a capable model that can describe the static and dynamic behaviors of biaxial MTJ greatly hinders

the study of biaxial MTJ based MLC-STT design. Ideally, such a model shall also be able to

simulate the influences of process variations and thermal fluctuations, which are two major factors

affecting the reliability of STT-RAM cells [27].

In this work, we developed, to the best knowledge of the authors, the first dynamic macro-

magnetic model for biaxial MTJ for MLC-STT circuit designs. Besides simulating the relations

between the switching current and the switching time of each MTJ resistance state, our model is

also capable to capture the switching transience that can be used to calculate the write error rate of

the MLC-STT cell. Write performance and energy consumption of the MLC-STT cell can also be

derived and optimized based on our model for different design configurations. Finally, our model

allows designers to perform a comprehensive reliability analysis of the MLC-STT cell by taking

into account the device parametric variations and the ambient temperature during write operations.

The rest of this paper is organized as follows: Section 2 presents the basics of STT-RAM and

uniaxial/biaxial anisotropy; Section 3 introduces our developed biaxial MTJ dynamic switching

model; Section 4 provides the validation of our model; Section 5 analyzes the impacts of process

variations and thermal fluctuations on the write operation of biaxial MTJ, including both perfor-

mance and energy consumption; Section 6 concludes our work.
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4.2 PRELIMINARY

4.2.1 Basic Operations of STT-RAM Cell

In a STT-RAM cell, data is stored as a resistance value in a MTJ, where a thin insulating layer is

stacked between two ferromagnetic layers as shown in Fig. 4.1(a) and (b). One of the ferromagnetic

layers has a fixed magnetization direction and is referred to as reference layer (RL) while the other

layer has a magnetization direction that can be changed by applying a switching current and is

referred to as free layer (FL). The resistance of the MTJ and thereby the stored logical data are

determined based on the relative orientations of the FL and the RL: when the two orientations are

in parallel (anti-parallel), the MTJ is in its low (high) resistance state.

Fig. 4.1(c) shows the popular one-transistor-one-MTJ (1T1J) STT-RAM cell design where a

NMOS transistor supplies the write and the read current to the MTJ. For an uniaxial MTJ, the

value being written is determined by the direction of the write current, i.e., from bitline (BL) to

sourceline (SL) for ‘0’ or from sourceline (SL) to bitline (BL) for ‘1’. For a biaxial MTJ, the value

(out of four possibilities) being written is determined by the combination of the direction and the

amplitude of the write current, as we shall show later.

4.2.2 Basics of Uniaxial and Biaxial Anisotropies

Energy function of the uniaxial crystalline anisotropy for a uniaxial MTJ, which is shown in

Fig. 4.1(a), can be defined as [18]:

Eu = Kusin
2(θ). (4.1)

Here, Ku is the uniaxial anisotropy constant and θ is the angle between the FL’s magnetization

vector and the easy axis. In Fig. 4.1, we choose easy axis as y-axis. Uniaxial crystalline anisotropy

has two minimum energy points along the y-axis at 0◦ and 180◦, respectively. These two minima

points correspond to the low (at 0◦) and the high (at 180◦) resistance states of the MTJ, or ‘0’ and

‘1’, respectively. Fig. 4.1(b) shows a biaxial MTJ where the energy function for the mixture of

uniaxial and biaxial crystalline anisotropy can be calculated by [18]:

Eb = Kusin
2(θ) +

1

4
K1sin2(2θ). (4.2)
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Figure 4.1: STT-RAM basics. a) Uniaxial MTJ. b) Biaxial MTJ. c) 1T1J STT-RAM cell structure.
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Here K1 is the biaxial anisotropy constant. Different from uniaxial, biaxial anisotropy energy has

four minimum energy points corresponding to four stable resistance states of the biaxial MTJ, as

illustrated in Fig. 4.2. The ratio between Ku and K1 determines where these energy minima are,

or the stable position of the direction of the FL. In order to maximize the resistance differences

between different resistance states, in this work, we choose Ku/K1 = 2.75/4.75 [25]. The

direction of the RL is also properly tilted to enable sufficiently large distinctions between adjacent

resistance states, as shown in Fig. 4.2 and Fig. 4.1(b).

The dynamic magnetic response of a MTJ’s FL can be modeled by the Landau-Lifshitz-Gilbert

(LLG) equation as [26]:

dmf

dt
+ α(mf ×

dmf

dt
) =

1

2
γHΣ4

i=1(
Γi
ltK

), (4.3)

wheremf is the unit vector of the FL’s magnetization vector, α is the Gilbert damping coefficient, γ

is the gyromagnetic ratio, t is the switching time,H is the anisotropy field, and lt is the thickness of

the free layer. mf is under the influence of four torque terms (Γ) including biaxial anisotropy (Γ1),

easy-plane anisotropy (Γ2), Langevin random thermal field (Γ3), and spin torque term (Γ4) from

the applied current. The solution of LLG equation for uniaxial anisotropy has been extensively

discussed in many prior-arts [11, 26]. In this work, we will extend the LLG equation to model the

biaxial anisotropy torque in a biaxial MTJ.

4.3 MODELING OF BIAXIAL MTJ

In this section, we will give the details on the mathematical development process of the three-

dimensional(3D) modeling for biaxial anisotropy torque, which is denoted as Γ1 in Eq.(4.3).

4.3.1 Model Description Of Biaxial MTJ

As presented in Section 4.2, the value of biaxial anisotropy energy (see Eq. (4.2)) is determined by

the θ angle between the FL’s magnetization vector and the easy axis (or the y-axis) in Fig.4.1(b).
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Figure 4.3: Illustration of FL’s magnetization vector in spherical coordinate system.

However, this efinition is valid for only a two-dimensional (2D) motion of the FL’s magnetiza-

tion vector and is no longer capable to fully model the 3D motion in a spherical coordinate system.

For the simulations where timing the process of magnetic reversal or switching time needs to be

precise, a 3D dynamic model will be more appropriate for MTJs [11]. In a 3D spherical coordinate

system, as shown in Fig. 4.3, θ or any other angles will not be solely enough to describe biaxial

anisotropy energy because the angle between the FL’s magnetization vector and the easy axis (ey)

does not depend on only θ but also the angle ϕ. Hence, ψ is introduced to denote the angle between

the FL’s magnetization vector (mf ) and the easy axis(ey) as depicted in Fig. 4.3. Here ψ satisfies

cosψ =
mf .e

‖mf‖ . ‖e‖
, (4.4)

where, (.) is dot product. mf and e are the FL’s magnetization vector and the easy axis vector,

respectively. mf and e can be defined by

mf =
Mf

Ms

= (sin θ cosϕx̂, sin θ sinϕŷ, cos θẑ), (4.5)

and

e = (exx̂, eyŷ, ez ẑ), (4.6)
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respectively, by substituting (4.5) and (4.6) into (4.4), we have

ψ = cos−1(mf .e) = cos−1(v). (4.7)

Here,

v = mf .e = ex sin θ cosϕ+ ey sin θ sinϕ+ ez cos θ. (4.8)

After obtaining ψ, the biaxial anisotropy energy function given by Eq. (4.2) can be rewritten to

Eb = Kusin
2(ψ) +

1

4
K1sin2(2ψ). (4.9)

In order to obtain the torque exerted by the biaxial anisotropy energy, we need to first calculate the

derivatives of the biaxial anisotropy energy function with respect to θ and ϕ. Since ψ is a function

of θ and ϕ, we can safely apply the chain rule as:

∂Eb
∂θ

=
∂Eb
∂ψ

∂ψ

∂θ
∂Eb
∂ϕ

=
∂Eb
∂ψ

∂ψ

∂ϕ
.

(4.10)

The first term on the right side, ∂Eb
∂ψ

, is a common item on both equations and can be expressed by:

∂Eb
∂ψ

= Ku sin(2ψ) +
1

2
K1 sin(4ψ). (4.11)

At the next step, in order to get the partial derivatives of ψ with respect to θ and ϕ on the right side

of Eq.(4.10), we have;
∂ψ

∂θ
=
∂ψ

∂v

∂v

∂θ
∂ψ

∂ϕ
=
∂ψ

∂v

∂v

∂ϕ
.

(4.12)

Here ψ is a function of v defined in Eq. (4.7). Hence, the first common term on the right side of

Eq. (4.12) can be expressed as;

∂ψ

∂v
=

−1√
1− v2

, (4.13)
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and the last two terms on the right side of Eq. (4.12) can be calculated as:

∂v

∂θ
= (ex cos θ cosϕ+ ey cos θ sinϕ− ez sin θ)

∂v

∂ϕ
= (−ex sin θ sinϕ+ ey sin θ cosϕ).

(4.14)

By substituting Eq. (4.14) and Eq. (4.13) in Eq. (4.12), we have:

∂ψ

∂θ
=

−1√
1− v2

(ex cos θ cosϕ+ ey cos θ sinϕ− ez sin θ)

∂ψ

∂ϕ
=

−1√
1− v2

(−ex sin θ sinϕ+ ey sin θ cosϕ).
(4.15)

Based on Eq. (4.15) and Eq. (4.11), the biaxial anisotropy torque expressed in Eq. (4.10) can be

rewritten as:
∂Eb
∂θ

= (Ku sin(2cos−1(v)) +
1

2
K1 sin(4cos−1(v)))

−1√
1− v2

(ex cos θ cosϕ+ ey cos θ sinϕ− ez sin θ)

∂Eb
∂ϕ

= (Ku sin(2cos−1(v)) +
1

2
K1 sin(4cos−1(v)))

−1√
1− v2

(−ex sin θ sinϕ+ ey sin θ cosϕ).

(4.16)

After obtaining the biaxial anisotropy torque terms as Eq. (4.16), in order to implement them to

the LLG equation, biaxial anisotropy effective fields are needed and can be calculated as;

Hθb = − 1

µ0Ms

∂Eb
∂θ

Hϕb = − 1

µ0Ms sin θ

∂Eb
∂ϕ

.
(4.17)

We note that the LLG equation given by Eq. (4.3) can be translated into spherical coordinate

system by defining the position of the FL’s magnetization vector in the 3D space using the angles

θ and ϕ as [11]. Hence, the dynamics of the FL’s magnetization can be remodeled as:

dθ

dt
=

γ0

1 + α2
(Hϕ + αHθ)

dϕ

dt
=

γ0

(1 + α2) sin θ
(αHϕ −Hθ).

(4.18)

HereHθ andHϕ are the net effective fields containing biaxial anisotropy, easyplane anisotropy[21].

Langevin random thermal field [17], and STT field [21] for θ and ϕ components.
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Figure 4.4: Change of mf during the MTJ switchings. a) ‘0’ to ‘1’ switching transience. b) ‘0’

to ‘1’ switching time. c) ‘0’ to ‘2’ switching transience. d) ‘0’ to ‘2’ switching time. e) ‘0’ to ‘3’

switching transience. f) ‘0’ to ‘3’ switching time.
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Table 4.1: Device and circuit simulation parameters

D
ev

ic
e

L
ev

el
Parameter Symbol Value Unit

Mag. Saturation Ms 230 kA/m

Anisotropy Field Hk 200 Oe

Gilbert Constant α 0.01

Free Layer Thickness lt 1 nm

C
ir

cu
it

L
ev

el

Parameter Mean Std. Dev

Channel length L = 65nm σL = 0.05L

Channel width W = 2L σW = 0.05W

Free layer volume V = L× 2L× 1nm3 σV = 0.05V

Resistance low RL = 1000Ω σRL = 0.05RL

Resistance high RH = 3000Ω σRH = 0.05RH

4.3.2 Basic Functions of Biaxial MTJ Model

In our work, we assume that a MTJ is a single domain structure and ignore the current generated

magnetic field. It is a valid simplification and represents the normal fabrication and operation mode

of the MTJ. Table 4.1 summarizes the device and circuit parameters adopted in our work, including

the performed experiments. These parameters are consistent with the ones characterized from the

fabricated MTJ device and have been validated in some prior-arts [8].

Fig. 4.4 depicts the simulation results of our model about the switching transience and the

switching time of the FL’s magnetization vector when a programming current is applied. It includes

the results when the MTJ switches from ‘0’ to ‘1’, ‘2’, and ‘3’, respectively.

Fig. 4.4(a) shows the 3D motion of the FL’s magnetization vector during the switching of

‘0’ to ‘1’. After applying a switching current (i.e., 76µA), the FL’s magnetization vector starts

precession from the energy minimum point corresponding to ‘0’ (see Fig. 4.2) and moves to the

energy minimum point corresponding to ‘1’ through relaxation spin. Fig. 4.4(b) shows the change

of the angle ϕ between the x-axis and the FL’s magnetization vector over time during this ‘0’ to ‘1’.
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Table 4.2: Possible switching current and switching time for each state

PPPPPPPPPPPPPP
From

To
Logic 0 Logic 1 Logic 2 Logic 3

Logic 0
Current - 76µA 110µA 130µA

Time - 45ns 25ns 18ns

Logic 1
Current 83µA - 110µA 140µA

Time 50ns - 25ns 20ns

Logic 2
Current -110µA -100µA - -83µA

Time 25ns 30ns - 55ns

Logic 3
Current -130µA -110µA -80µA -

Time 20ns 30ns 50ns -

The initial position of the FL’s magnetization of ‘0’ is 114◦ with respect to x-axis, and settles down

at 66◦ for ‘1’. Fig. 4.4(c), (e), (d), and (f) show the similar results for the switchings from ‘0’ to

‘2’ and ‘3’, respectively. The corresponding switching currents of the MTJ are 110µA and 130µA,

respectively. The final positions of the FL’s magnetization in these two switchings are 294◦ and

246◦, respectively, as shown in 4.4(d) and (f). As aforementioned at Section 4.2, the final positions

of the FL’s magnetization at different MTJ resistance states are determined by the ratio of Ku/K1.

An interesting observation from Fig. 4.4 is that, the switching times of writing ‘1’, ‘2’, and ‘3’

keep reducing, i.e., are 45ns, 25ns, 18ns, respectively. This is because that the switching currents

in these scenarios are not equal, say, increase from 76µA to 110µA and 130µA, respectively.

Besides the results shown in Fig. 4.4, possible switching currents and the corresponding MTJ

switching times for other MTJ switchings are summarized in Table 4.2. As we shall show in the

next section, the tradeoff between the switching current magnitude and the MTJ switching time in

each switching scenario of biaxial MTJs is different from that of uniaxial MTJs.
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4.3.3 Some Discussions

The observation that increasing the magnitude of the switching current can always speedup the

MTJ resistance switching process of uniaxial MTJs [32] does not always hold any more in the

switching of biaxial MTJs between adjacent states. Fig. 4.5 shows the simulated results of a biaxial

MTJ switching from ‘0’ to ‘1’ at two different switching currents. Increasing the switching current

from 76µA to 86µA does not introduce a faster switching time; the increased oscillations actually

extends the switching process that settles down at ‘1’. However, when the biaxial MTJ switches

between two states that are not adjacent and takes a long switching time, this observation may

still hold. As we can see in Fig. 4.6, increasing the switching current results in a faster switching

time when the biaxial MTJ switches from ‘0’ to ‘2’ or ‘3’. However, it should not be ignored

that increasing the switching current may also incur write error, e.g., switching from ‘0’ to ‘2’

may end up with ‘3’ when process variations and thermal fluctuations take place. A more detailed

discussion about the write errors of biaxial MTJs will be given in Section 4.5.

As aforementioned in Section 4.2, the magnetization of the RL is not in parallel to the one of

the FL at any MTJ resistance state in order to offer sufficient distinction between the states. Then

the MTJ resistance at each state can be calculated by [23]:

R(α) = R(0) + ∆R
1− cos(α)

2 + λ(1 + cos(α))
, (4.19)

where λ is a fitting parameter, and α is the angle between the magnetization vectors of the RL

and the FL at each MTJ resistance state. Since the RL is tilted 135◦ in the x-y plane, we have

α = 135− ϕ.

Fig. 4.7 shows the resistance switching transience of different MTJ switchings from ‘0’. The

final resistance states of each logic value are:

logic ‘0’−→ 1.03 KΩ,

logic ‘1’−→ 1.40 KΩ,

logic ‘2’−→ 2.87 KΩ,

logic ‘3’−→ 2.03 KΩ.
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Figure 4.5: ‘0’ to ‘1’ switchings at two different switching currents.
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Figure 4.6: ‘0’ to ‘2’ and ‘3’ switchings at two different current values.

4.4 MODEL VALIDATION

We validated our developed biaxial MTJ model against to one of the first four-state MTJ manu-

factured using epitaxial Co50Fe50-MgO-Co50Fe50 [22]. To ensure a fair validation, we make the

following customization and parameter adjustment of our model to accommodate the parameters

of the manufactured device.

1. Epitaxial Co50Fe50 electrode has four in-plane magnetization directions toward φ0, φ0 + 90◦,

φ0+180◦ and φ0+270◦ due to the magnetocrystalline anisotropy, where φ0 is the angle between

the magnetization vector of the reference layer and the x axis. If φ0 is set to 0◦, two out the

four possible magnetization directions, i.e., 90◦ and 270◦, will result the same MTJ resistance.

In order to avoid this problem, φ0 is set to be slightly different than 0◦ in [22].

As aforementioned, angles of the states can be adjusted by the energy constants Ku and K1,

which unfortunately are not disclosed in [22].
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In our validation, this angle is well fitted when the Ku/K1 ratio is 1/5.

2. It is known that a MTJ can be switched by both magnetic field and spin polarized current. The

biaxial MTJ fabricated in [22], however, was tested under magnetic field switching. Note that

two (orthogonal) magnetic fields are required to program the biaxial MTJ because the relative

magnetization directions of the FL and RL at the stable resistance states are not necessarily in

parallel, which is different from uniaxial MTJ. To accommodate this condition, we extended

our model by introducing the term representing the applied magnetic field.The energy for the

applied magnetic field can be written as:

Em = −µ0VMS(Hx sin θ cosϕ+Hy sin θ sinϕ). (4.20)

Where Hx and Hy are the applied magnetic fields at the directions of x and y axes, respec-

tively.The torque terms for the applied magnetic field can obtained as;

∂Em
∂θ

= −µ0VMS(Hx cos θ cosϕ+Hy cos θ sinϕ)

∂Em
∂ϕ

= −µ0VMS sin θ(Hx sinϕ−Hy cosϕ).
(4.21)

In order to implement these applied field torques to LLG Eq. (4.18), the corresponding effective

fields can be expressed as:

Hmθ = (Hx cos θ cosϕ+Hy cos θ sinϕ)

Hmϕ = (Hy cos θ −Hx sin θ)
(4.22)

and included in the LLG Equation.

We first simulated the final position of the FL of each MTJ resistance state in the absence of

external magnetic field, as shown in Fig 4.8. The magnetization direction of the FL may start

with any arbitrary position but after some spin relaxations, it will settle down to a stable state

corresponding to ‘0’, ‘1’, ‘3’, and ‘2’, respectively.

Fig. 4.9 illustrates the writing process of the biaxial MTJ between four different states using

magnetic field. Note that two orthogonal magnetic fields may need to be respectively applied along

±x-axis and ±y-axis in sequence to finish some MTJ programming. For example, to switch the

MTJ from ‘0’ to ‘3’, the first magnetic field must be applied at the direction of +y-axis to switch
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Figure 4.8: Four distinct positions of free layer’s magnetization vector at 0◦, 90◦, 180◦, and 270◦

for ‘0’, ‘1’, ‘3’, and ‘2’, respectively.
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Figure 4.9: Switching motion of biaxial MTJ under the effect of the applied magnetic field.
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Figure 4.10: Model validation against to reference [22] for resistance values and the applied mag-

netic field.

Table 4.3: Device level simulation parameters

D
ev

ic
e

L
ev

el

Parameter Symbol Value Unit

Mag. Saturation Ms 1050 kA/m

Anisotropy Field Hk 800 Oe

Gilbert Constant α 0.01 −

Magneto-resistance Ratio TMR 145% −

Free Layer Thickness lt 20 nm

Free Layer Area A 10× 10 µm2
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the MTJ state to ‘1’ (or -y-axis to switch the MTJ state to ‘2’) and then the second magnetic field

must be applied at the direction of -x-axis to switch the MTJ state to ‘3’.

Fig. 4.10 compares the simulated results of different MTJ switchings using our model and the

measured data in [22] under the applied magnetic fields. Note that here we have to approximate

some devices parameters, e.g., magnetization saturation, anisotropy fields etc., which are not dis-

closed in [22] to generate our simulation results. These approximated parameters are summarized

in Table 4.3. Nonetheless, our model matches the measured data switchings very well.

4.5 RELIABILITY ANALYSIS

All the analysis’ in previous sections are based on the nominal values of the device parameters.

However, parametric variabilities (a.k.a. process variations) of MTJ (and CMOS device) and ther-

mal fluctuations under different ambient temperatures greatly influence the MTJ switching process.

In this section, we will use our developed model to perform reliability analysis of biaxial MTJs in

terms of switching performance, energy consumption, and write errors.

4.5.1 Switching Time and Energy Consumption of Biaxial MTJs

During write operations of a MLC-STT cell, the switching current of the MTJ is determined by

the voltage applied on the memory cell. In order to obtain the MTJ switching time distribution, we

first conducted 1000 times Monte-Carlo SPICE simulations to collect the MTJ switching current

samples at each MTJ resistance state by considering CMOS device parametric variations. In our

simulation, we set the operating voltage of the MLC STT-RAM cell to 1.1V , which generates the

nominal switching currents shown in Table 4.2. We then apply the switching current samples to

our biaxial macro-magnetic model and run another 1000 times Monte-Carlo simulations at 300K.

Both MTJ device parametric variations and thermal fluctuations are considered in these simula-

tions. All the device parameters adopted in our simulations are summarized in Table 4.1. Here the

transistor channel width is set to 130nm. Fig. 4.11 shows the switching time distributions when the

biaxial MTJ switches from ‘0’ to ‘1’, ‘2’, and ‘3’, respectively. The switching energy consumption
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Figure 4.11: Biaxial MTJ switching time distribution for ‘0’ to other states at 300K.
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can be calculated as the integral of the switching current and the supplied voltage (V ) over the

programming time τwt as:

Ei =

τwt∫
0

(Ii ∗ t+ Ipi ∗ (τwt − t)) ∗ V ∗ dt. (4.23)

Here Ii is the ith current sample, Ipi is the corresponding post-switching current, t is the switching

time. We note that oscillations of the FL’s magnetization vector during the MTJ switching also

cause oscillations of the switching current, which are ignored in our simulations.

We assume a fixed programming time (τwt = 60ns) for all MTJ switchings (with different

programming current amplitudes though). The energy consumption distributions of each MTJ

switchings are depicted in Fig. 4.12. As can be seen from the result, the switching from ‘0’ to ‘1’

consumed much less energy than the switchings to other states because of a much lower switching

current. However, in real applications, the energy consumption of the switchings from ‘0’ to

‘1’ or ‘2’ can be further reduced when early-termination technique is applied [36], where the

switching current is timely removed once the MTJ switching completes. Nonetheless, the energy

consumptions of all switchings are at only pJ level.

Our experimental results show that the write energy consumption of biaxial MTJ-based MLC-

STT cells can be perfectly modeled by Gaussian distribution. Hence, after receiving the energy

consumption samples as above, the mean and the standard deviation of the write energy consump-

tion of the biaxial MTJ can be calculated by [8]:

µE =

n∑
i=1

Ei ∗ fi
n∑
i=1

fi

and σE =

√√√√√√√
n∑
i=1

(Ei−µE)2 ∗ fi
n∑
i=1

fi

, (4.24)

where fi is the number of occurrences of energy value Ei. n is the total sample number.

For comparison purpose, we simulated the energy consumption distributions of each MTJ

switching. The mean and the standard deviation values of these distributions can be found in

Fig. 4.13. Our simulation results show that the highest and the lowest energies are consumed

during the switchings of ‘1’ to ‘3’ and ‘0’ to ‘1’, respectively.
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Figure 4.12: Biaxial MTJ energy consumption distribution during the switchings from ‘0’ to other
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60



En
er

gy
 (

p
J)

Energy (pJ)

Standard
Deviation

Figure 4.13: Energy consumption mean and standard deviation values of biaxial MTJ’s each
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4.5.2 Write Errors of Biaxial MTJs

Uniaxial MTJs have two energy minimum points, each of which correspond to a resistance state.

In order to switch from one state to the other, an energy barrier between these two energy minima

must be overcome. If this barrier is not passed over within the write time, a write error of the

uniaxial MTJ is induced and reflected as an incomplete write at circuit level. However, the write

errors of biaxial MTJs are more complex since there are three energy barriers between four energy

minimum points, as shown in Fig. 4.2. Particularly, besides incomplete write, a MLC-STT cell

based on biaxial MTJs suffer from another write error type called “overwrite”: If the switching

current is too large, for example, during the ‘0’ to ‘1’ switching, the biaxial MTJ may cross over

multiple energy barriers and settle down to the next two energy minima that correspond to ‘2’ or

‘3’, respectively. Note that overwrite errors happen only when writing an intermediate logic states,

i.e., ‘1’ or ‘2’.

Fig. 4.14 illustrates our simulation results of the write error rates of the biaxial MTJ when

switching from ‘0’ to ‘1’, ‘2’, and ‘3’, respectively, with a fixed 60ns write time at different

temperatures. For comparison purpose, we also plot the write error rate of the uniaxial MTJ with

the same size switching from ‘0’ to ‘1’, which is the most erroneous switching direction of the

uniaxial MTJ [34]. Instead of running the costly Monte-Carlo simulations, we use an open source

tool – NVSim-VXs [8] that embeds process variations and temperature impacts in our simulations.

The MTJ switching time distribution model of NVSim-VXs is modified with our proposed biaxial

MTJ model. Fig. 4.14 shows that the biaxial MTJ switching of ‘0’ to ‘1’ suffers from the highest

error rate, which is also significantly higher than that of the uniaxial MTJ. However, the write error

rates of other switchings of the biaxial MTJ are close to the one of the uniaxial MTJ. It should

be noted that, the ‘0’ to ‘1’ switching is also the one takes the longest time among the simulated

biaxial MTJ switchings.
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Figure 4.14: Uniaxial MTJ and biaxial MTJ write error rates at different temperatures with 60ns

write time.
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4.6 CONCLUSION

To eliminate the two-step write operations of conventional MLC STT-RAM cells, biaxial MTJ

structure is proposed to store more than one bit in one MTJ device. In this work, we developed a

dynamic biaxial MTJ model that can capture the switching transience between different resistance

states of the biaxial MTJ and validated our model against the data measured from real device.

Both process variations and thermal fluctuations can be considered in our model to perform the

reliability and energy consumption analysis of the biaxial MTJ. Our results show that the highest

energy consumption of the biaxial MTJ happens at the ‘1’ to ‘3’ switching by assuming a fixed

write time while the lowest write error rate happens at the ‘0’ to ‘3’ switching. Hence, an adaptive

write scheme, e.g., dynamically adjusting the write time of the MTJ to assure the completion of the

write like early termination technology [36], may be critical in the MLC STT-RAM design based

on the biaxial MTJ for energy reduction and reliability enhancement.
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