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An instruction set and programming examples are described for

a Distributed Logic Memory computer organization. The computer is

designed to take advantage of the economies of very large-scale cir-

cuit integration. In addition, the computer can grow in an orderly

way. As it grows there is increased parallelism possible so that the

amount of spare real time in a control application is not greatly re-

duced. Finally, such an organization should permit stored program

control in relatively small applications where up to now control by a

conventionally organized computer has been prohibitively expensive.

The computer consists of a linear array of identical, small, se-

quential machines, or cells. The structure is similar to that of the

Distributed Logic Memory originally proposed by C. Y. Lee. It was

demonstrated by J. N. Sturman that the addition of sequential logic to

each cell permits the memory to become a self-contained computing



system.

It is the purpose of this thesis to produce an application-oriented

process control computer design based on the concepts of Lee and

Sturman. It was found necessary to increase the length of the memory

word in each cell. The ability to store instructions and data in cells

is retained. Increasing the memory word length of each cell permits

an expanded instruction repertoire. The low-ordered three bits of

every memory word are arranged to identify a cell as one of eight

possible types. A program instruction includes modifier bits which

specify the types of cells on which the instruction is to operate. This

facility enhances the efficiency of programs.

The logic design of the cell is complete enough to permit esti-

mating gate count per cell. An analysis of the sensitivity of gate

count to changes in the instruction set is included. A program simu-

lation of the Distributed Logic Memory computer assisted- in its de-

velopment and later permitted verification of programs written for the

computer. The existence of a compiler permitted such programs to

be written in a convenient, symbolic form.

A data multiplexer is developed as a practical application for

the Distributed Logic Memory computer structure. The necessary

data multiplexer program, which consists of about 100 instructions,

is shown.
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DISTRIBUTED LOGIC MEMORY COMPUTER FOR
PROCESS CONTROL

I. INTRODUCTION

The natural evolution in semiconductor technology to large-

scale circuit integration is currently taking place. A drastic reduc-

tion in cost, size and power consumption of logic circuit elements is

predicted. The ability to batch fabricate 100 to 1000 gates on a sili-

con chip is having its impact on computer architecture.

Attempts are being made to functionally partition conventionally

organized computer systems into realizable arrays of gates (Levy,

et al. , 1967; Boysel, 1968). One physical restriction is the number

of terminals or pins possible on an array package; perhaps a figure of

100 terminals is a practical upper limit. The resulting system may

require 10 to 20 separate ir_tegrated circuit designs.

This study is motivated by the new economics wrought by batch

fabrication technology. A conventional computer stores instructions

and data in a binary store, performs arithmetic and logical operations

in an arithmetic unit, stores data temporarily in hardware registers

and performs input-output operations in peripheral units. The sepa-

rate units are optimized to their specific functions; thus, the comput-

er is an ensemble of distinct functional blocks. The economy of batch

fabrication permits combining the memory and logic functions into one
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modular unit. Only one integrated circuit design is used repetitively

to implement the Distributed Logic Memory (DLM) computer. The

result is a one-dimensional array computer. There is economy in

standardizing on one integrated circuit design.

Distributed Logic Memory was originally proposed as a memory

by C. Y. Lee (1962) especially for applications in information retriev-

al, and later improved by Lee and others (Lee and Paull, 1963; Gaines

and Lee, 1965; and Crane and Githens, 1965). It consists of a content-.

addressable memory driven by a conventionally organized, stored

program computer. It has the usual associative memory property of

being able to search, store or read over any or all fields of all mem-

ory locations simultaneously. However, in addition, it has the ability

to cause communication between adjacent memory locations. Much

use is made of such communication in the computer organization to be

described. The memory consists of building blocks called "cells",

interconnected in a regular pattern. Cells are identical and consist

of a set of flip-flops for storing the memory word and additional gating

logic. The primary communication between cells is carried on a

common group of leads interconnecting all cells.

It is the addition of logic to each cell which permits the Distrib-

uted Logic Memory to become a self-contained computing system. In-

deed it was first demonstrated by J. N. Sturman (1968b) that the plac-

ing of sequential logic in each cell eliminates the need for a driving
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computer; that is, an entire computing system can be constructed out

of a linear array of interconnected cells. No external memories,

control units or arithmetic units are needed. Instructions as well as

data are stored in the cells. Especially in small applications, the

system cost should be less when a driving computer is not required.

When a program instruction is initiated by one cell, the instruction is

carried simultaneously to all cells via the common bus that intercon-

nects the cells. The inherent parallelism possible becomes clear.

A number of selected cells can be operated on simultaneously by each

instruction, rather than one cell at a time.

The cell logic in Sturmants machine uses three bits for the

memory word, four bits for ',activity" which is related to the content

addressing structure and four bits for sequential control. Each cell

therefore contains 11 flip-flops, which reflects some measure of its

complexity. The three bits of the memory word permit coding eight

distinct instructions.

The current study concerns a DLM computer designed specifi-

cally for control applications, especially small applications consisting

of perhaps 100 to 1000 cells. The instruction set to be described is

tailored accordingly. It consists primarily of bit manipulating in-

structions. Another part of the study concerns expanding the cell's

memory word to perhaps 15 or 25 bits, mainly for data storage effi-

ciency. However, at the same time this permits expanding the
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instruction set. A balance is sought between the complexity of each

cell and the total number of cells required for a particular application

since the system cost is related to the product of these two factors.

The low-ordered three bits of the cellfs memory word are set aside

to act as a key to the cell' s use. There are therefore eight distinct

types of cell uses. Modifier bits are part of every program instruc-

tion and specify which types of cells are to respond to the instruction,

according to their stored use key. This facility permits efficient pro-

gramming.

The content addressable structure permits the DLM computer to

start small and grow in an orderly way. In addition, there is inherent

parallelism so that the effective computing rate can actually increase

with growth. Content addressing appears to be naturally suited to a

modular structure. By adding cells, the DLM computer grows in

terms of control as well as memory. The ability to start small and

yet grow in performance by small steps is a desirable feature for con-

trol computers.

The economics of batch fabrication dictate that consideration be

given toward reducing the number of external connections required to

be brought off an integrated circuit chip. Besides the obvious physical

restrictions, the cost of connectorization and test may eventually out-

weigh the cost of silicon chip processing. Therefore, in this study a

primary effort has been made to reduce the number of terminals
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required per cell. The use of a single-rail interconnecting bus (one

lead per bit) rather than a double-rail bus is a departure from previ-

ous DLM work. This leads to the use of a two-step timed sequence of

signals to represent a 0 signal, a 1 signal or a "don't care" signal.

Furthermore, the common bus leads are time-shared in order to

carry both control information and data to the various cells. However,

input-output connections to the outside world are available on each

cell rather than time-sharing the common bus for this function also.

The DLM computer is structurally fault tolerant. The loss of

one cell does not necessarily prevent the remainder of the machine

from continuing to operate. Repair may consist of strapping the faulty

cell out of service and adding a new cell to an end of the array. Con-

tent addressing removes certain of the physical ordering require-

ments.

An instruction set is proposed and programming examples are

given for the DLM computer. The logic of the cell is developed suffi-

ciently to be able to estimate gate count. A practical application for

the DLM structure in the data transmission field is presented. A

data multiplexer is designed which time multiplexes the signals from

80 teletypewriter lines onto a single high-speed data channel. The

necessary data multiplexer program, which consists of about 100

DLM instructions, is included.
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II. DLM COMPUTER STRUCTURE

Consider now the DLM computer structure. Figure 1 shows the

interconnection pattern for the linear array of cells. The cells are

truly identical and are interconnected in a regular way. The machine

structure is therefore well suited to large-scale integration. One

cell per chip should be achievable now; multiple cells per chip may

be worth considering because of the large number of shared terminals

in the common bus. The need for relatively few interconnecting leads

(perhaps less than 50) is consistent with integrated circuit require-

ments. The DLM computer could be both compact and relatively in-

expensive if realized with integrated circuit cells.

Some preliminary estimates of the number of logic circuits per

cell and the number of interconnecting leads can be given. Thirty-

two logical states, coded onto five state flip-flops, have been found

ample for sequential control within each cell. One Match flip-flop and

one Control flip-flop are provided for "activity" in the content ad-

dressing structure. The size of the memory word may depend some-

what on the application. It is analogous to the word length of a con-

ventionally organized machine; certainly many sizes have been pro-

posed. Many times, however, the programmer finds himself short of

bits per memory word but is able to program around the restriction

at some additional cost in program. Programming experience with
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the proposed DLM computer suggests that perhaps 15 to 25 bits are

sufficient. At the present time, a 16-bit word is provided for in the

simulator. The resulting number of flip-flops together with the nec-

essary gating in each cell will amount to about 200 to 300 gates.

The common bus presently consists of eighteen leads and there

are three intercell leads. The input-output leads will number two or

more. Actually, input-output leads would only be attached to cells

associated with input-output; however, it is proposed that such termi-

nals be provided on each cell in order that all cells may be truly iden-

tical.

The number of leads on the common bus is related to the length

of the cell's memory word. Therefore, the memory word cannot be

greatly extended without causing the cell to be terminal limited. That

is to say that probably a 100-bit word is not feasible whereas a 15-bit

or 25-bit word is feasible.

A synchronous or "clocked" computer is assumed. However,

J. N. Sturman (1968a) has demonstrated an asynchronous version,

achieved by adding several leads to the common bus and some addi-

tional logic to each cell. The asynchronous machine runs more rapid-

ly because usually an instruction does not have to propagate to the

ends of the machine before a succeeding instruction can be issued.

The increased speed in small applications may or may not be worth-

while; but this question will not be treated here.
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III. INSTRUCTION SET

The DLM computer has a rich structure; that is, there are

many, many alternatives to the design of the logic within the cell and

to the number of leads interconnecting cells. The selection of an in-

struction set is made empirically, just as it is with a conventionally

organized machine. The test of the power of an instruction set comes

when actual programs are written and compared.

The instruction set for the improved cell memory (Gaines and

Lee, 1965) is taken as the starting point. In particular, MATCH,

SET and STORE are bit manipulating instructions. The pattern B re-

fers to the bit pattern of the memory word. Any or all bits of the

memory word may be specified; any bits that are not specified are

treated as "don't cares". An active cell is one with its M (Match)

flip-flop set, and C is the cell's so-called Control flip-flop. The fol-

lowing describes the instructions of the improved cell memory:

MATCH B - Set the Match flip-flop in each cell in which the

pattern B and the condition on C, if specified, are

stored.

SET B - Store the pattern B and the conditions on C or M,

if specified, in every cell.

STORE B - Store the pattern B and the condition on C, if spec-

ified, in each active cell.
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READ - Read out the pattern bits of any active cell onto the

common bus.

MARK - Simultaneously activate all cells to the right of

each active cell, up to an including the first cell

whose C flip-flop is set. (In order to avoid a tim-

ing problem, an active cell with its C flip-flop set

would not activate its right neighbor. )

LEFT - Activate the left neighbor of each cell whose C

flip-flop is set.

RIGHT - Activate the right neighbor of each cell whose C

flip-flop is set.

For example, STORE (C=1, X8=0) would cause active cells only

to have their C flip-flops set to 1 and the eighth bit of their memory

words set to 0. Other instructions concerned with program sequenc-

ing and with input-output must be added to the above instructions since

the DLM computer will no longer have a driving computer.

Cells may be used to store instruction or data words. The two

must be distinguished in some way because an instruction normally

operates on data words and not on other instructions. In fact, it can

be shown that other instructions can be inadvertently destroyed if in-

structions are permitted to operate indiscriminately on all cells. Two

approaches were tried. In the first case a unique logical state was

initially assigned to a cell depending upon the cellts use. However,
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this leads to a complicated logical state structure. In the second case

a portion of the memory word, say the low-order bits, was assigned

as a key to the cell's use. Not just two but five distinct uses for cells

have been found helpful, and these are shown in Figure 2. Notice that

the assignment of USEKEY's is arbitrary and may be altered in an

actual realization. The coding of five USEKEY's onto three bits

leaves three combinations available for the use of the programmer.

Program labels are a convenient means to deal with the "ad-

dresslessness" of a content-addressed memory. Thus, at a condition-

al or unconditional branch which interrupts an instruction sequence,

the program label of the next series of instructions is identified and

instruction sequencing carries on from that point. Program labels

are also used to provide a rapid means of locating a particular point

within a particular instruction string to facilitate instruction modifi-

cation. Other cell uses will be explained later.

Cells must go into intermediate logic states as instructions are

carried out. At the present time, twenty-two logical states are used,

coded onto five logical state flip-flops. The number of logical states

required, of course, depends on the instruction set proposed.

The instruction set is shown in Figure 3. The present contents

of a cell are represented by a double (USEKEY, Symbol). For exam-

ple, (6, 18)(5, I) is shown for the short form of MATCH. This is a

two-cell instruction. The first cell contains a USEKEY of 6 because
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it stores the op -code, which is 18. The second cell is the operand,

which carries a USEKEY of 5; "I" symbolizes the stored bit pattern of

the symbol. In a typical three-cell instruction, such as (6,5)(5,I)(5,J),

"I" and "J" symbolize stored bit patterns. The assignment of opera-

tion code values is arbitrary.

Some instructions take several cells to arrange. An attempt

has been made to reduce the number of cells required for an instruc-

tion at the expense of additional operation codes. It is felt worthwhile

to increase the complexity of each cell somewhat if the total number

of cells required for a job can be significantly reduced.

The proposed instruction set has been derived in part from pre-

vious works (Gaines and Lee, 1965; Crane and Githens, 1965; Stur-

man, 1968b). (Among other important results, Crane and Githens

(1965) give efficient algorithms for numerical operations using a sim-

ilar instruction set. ) Both long and short forms of certain instruc-

tions are provided. This is analogous to the use of variable length in-

structions in current, conventionally organized machines. Significant

storage and execution time can be saved if the shorter instructions

can be used extensively.

The detailed structure of a typical instruction is shown in Fig-

ure 4. For STORE 0 (C=0, X8=1) three cells are required. The first

cell contains the op-code and has a USEKEY of 6; the second and third

cells contain operand fields and have USEKEY's of 5. Using separate
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USEKEY's for program op-code and program operand cells is an al-

ternative which simplifies the logical state diagram. With but one

USEKEY, eight additional logical states would be needed. The op-

code is stored in bits X3 through X7. The remaining eight bits of the

first cell (X8 through X15) act as modifiers for the instruction and

specify on which types of cells the instruction is to operate. One bit

is associated with each of the eight USEKEY's and these are identified

in Figure 4. For example, bit X8 is associated with a USEKEY of 0,

and bit X15 is associated with a USEKEY of 7. Thus, a 1 only in bit

X8 specifies that the instruction is to operate only on DATA- WORD's,

which have a USEKEY of 0.

The operand fields of the second and third cells specify which

bits are involved and which bits are don't cares. Bit positions X3

through X
13

can be specified. Bit positions X14 and X15 are used to

specify conditions for the C and M flip-flops, respectively. There-

fore, bit positions X14 and X15 of data words are normally unused.

Ones are placed in the operand field of the second cell in those bit

positions specified as ones; other bit positions are filled with zeros.

Similarly, zeros are placed in the operand field of the third cell in

those bit positions specified as zeros; ones are filled into the other

bit positions. In this way a zero in the second cell and a one in the

same bit position of the third cell specify a don't care. In the exam-

ple of Figure 4, ones are placed in both X8 bits to accomplish X8=1
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and zeros are placed in both X14 bits for C =O.

DLM computer instructions are specified in a three-element

symbolic format: op-code, modifiers and information for the operand

or operands. Recall the current example:

STORE 0 (C=0, X8=1)

"STORE" is a mnemonic for the op-code. "0" specifies a modifier

field which includes only cells whose USEKEY1s are 0, i. e. , DATA-

WORD cells. "(C =O, X8=1)" specifies the bit pattern required in the

operand cells. Consider one further example:

RESETM 0, 1, 2, 3, 4, 5, 6, 7

RESETM is a one-cell instruction so there is no information for op-

erands. The modifier field specifies all USEKEY1s. Therefore, the

instruction is to operate on all cells.

The three intercell leads A, M and Z may now be described.

Both A and M are carried over directly from the cell memory (Gaines

and Lee, 1965). Lead A is associated with MARK-LEFT or MARK-

RIGHT and propagates a signal either to the left or right, respective-

ly. Lead M is associated with LEFT or RIGHT and also propagates a

signal either to the left or right, respectively. A signal on lead A and

a signal on lead M will never occur simultaneously so that a single

intercell lead would be sufficient at the cost of encoding and decoding
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circuitry in each cell. Lead Z propagates a signal for instruction se-

quencing only to the right. Z signals apply only to cells used as

PROGRAM-OPCODEI s, PROGRAM-OPERAND' s and PROGRAM-

LABEL' s; other cells disregard Z signals. To begin execution of a

program, a Z signal is supplied as the left input to the entry cell of

the program. This cell responds by placing its contents onto the com-

mon bus. At the next clock time it issues a Z signal to its right neigh-

bor. Instruction sequencing continues in this way until either a branch

instruction or the end of the program is reached. The branch instruc-

tion is arranged to automatically stop the current chain of Z signals

and to begin a new one at the next instruction to be executed.

The common bus transmits a cell's contents to all cells. It con-

sists of one lead per bit for bits X3 through X15; the USEKEY in bits

X
0

through X2 need not be transmitted. Only if the bit transmitted is

a logical one will there be a signal on that bus lead. In addition, there

is a 0 lead which runs to all cells. The 0 lead is active whenever the

first cell of an instruction is being transmitted on the common bus,

i. e. , the op-code of the instruction. In this way cells can keep in

step with the instruction stream that is coming down the common bus.

There is a possible tradeoff here between supplying the 0 lead and us-

ing a separate USEKEY for PROGRAM-OPCODE and PROGRAM-

OPERAND, or else adding eight additional logical states which act

essentially as timing states to keep the cells in step.
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The following sections describe the individual instructions in de-

tail. Each instruction has modifiers that specify which cells are to

be operated on, according to USEKEY. Cells that are not specified

simply ignore the instruction entirely.

LEFT, RIGHT, MARK-LEFT and MARK-RIGHT

These are all one-cell instructions which cause communication

between cells. LEFT or RIGHT causes the left or right neighbor,

respectively, of each cell whose C flip-flop is set to be made active.

This is done by a signal on the M intercell lead.

MARK-LEFT or MARK-RIGHT causes simultaneous activation

of all cells to the left or right, respectively, of each active cell up to

and including the first cell whose C flip-flop is set. This is done by

a signal on the A intercell lead. To avoid a timing problem, an ac-

tive cell whose C flip-flop is set does not begin activation. Notice

that MARK-LEFT or MARK-RIGHT can cause many cells to be acti-

vated simultaneously, i. e. , within one machine cycle. A primary use

of the C flip-flop, therefore, is to control intercell communication.

One condition can cause stoppage of the A-signal propagation be-

fore a cell is encountered whose C flip-flop is set: If a cell in the

chain is found whose USEKEY was not specified in the modifiers of

the marking instruction, then not only is the A-signal propagation

stopped, but also that particular cell is not activated.
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MATCH, MATCH-LEFT, MATCH-RIGHT, SET and STORE

Members of this family of instructions have similar formats.

Both long and short forms are available except for MATCH-LEFT,

which is always a three-cell instruction. These instructions are the

most often used and are the primary data manipulating instructions.

In all of these instructions, only bits X3 through X13 can be specified;

bits X14 and X15 of a cell are ignored. Also, bits X
0

through X2

(USEKEY) are specified as a modifier that goes with the instruction's

op-code. Bits X14 and X15 of the instruction operand specify condi-

tions on M and C flip-flops.

Consider MATCH first. The short form (6, 18)(5, I) applies to

the case where the symbol to be matched against can be completely

specified, i. e. , no bit positions are don't cares. The op-code 18

tells all cells that the instruction is a short-form MATCH, and that

during the next clock time, the symbol I to be matched against will

appear on the common bus. Cells that match set their M flip-flops

and other do not.

The long form (6, 5)(5, I)(5, J) applies to the usual case where the

symbol to be matched against contains don't cares in certain bit posi-

tions. The symbol I contains ones in those bit positions that are to be

matched as ones, and zeros in the don't care positions. Similarly the

symbol J contains zeros in those bit positions that are to be matched
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as zeros, and ones in the don't care positions. By supplying symbols

I and J properly, don't care bit positions are easily accommodated.

MATCH-LEFT and MATCH-RIGHT are similar except that in

case of a match condition, it is the left or right neighbor, respective-

ly, that is activated via the M intercell lead.

SET and STORE both cause symbols to be written into cells.

STORE has the restriction that it operates only upon active cells

whereas SET operates on all cells whose USEKEY's were specified.

Because SET and STORE are so similar they can share the same logi-

cal states.

The short forms of these instructions are a convenience and

save one cell whenever they can be used. However, the long forms

are sufficient for all cases.

RESETM and RESETC

Both of these are one-cell instructions. RESETM is equivalent

to the three-cell instruction SET (M=0) and similarly RESETC is

equivalent to SET (C=0). These operations often come up in programs

so that it is thought worthwhile to include short-form equivalent in-

structions. Since each instruction has modifiers, one can selectively

reset cells, according to USEKEY.
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STORE-SPECIAL and SET-SPECIAL

These instructions are included to permit changing a cell's

USEKEY and its bits X14 and X15. This is useful in instruction modi-

fication and also in loading the machine initially.

In the long form of STORE-SPECIAL, no don't cares are per-

mitted; yet it is a three-cell instruction. STORE-SPECIAL operates

only on active cells. The first operand contains the desired USEKEY

in bit positions X3 through X5 and the desired values for bits X14 and

Xis in bit positions X6 and X7, respectively; bit positions X8 through

X15 are unused. The second operand contains the desired bit pattern

in bit positions X3 through X13 and the condition on C in bit position

X14; bit position X15 is unused.

SET-SPECIAL and the short form of STORE-SPECIAL only per-

mit changing a cell's USEKEY and are two-cell instructions. The

operand contains the desired USEKEY in bit positions X3 through X5

and other bit positions are unused. These two instructions are simi-

lar and share the same logical states. STORE-SPECIAL operates

only on active cells whereas SET-SPECIAL operates on all cells.

OUTPUT

The OUTPUT instruction (6, 14)(5, 0) alerts all active cells to

place their contents on the common bus during the next clock time and
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to reset their M flip-flops. If there is more than one cell active there

may be an ambiguous result on the common bus because the bus OR's

the symbols presented to it. If so, then an isolating algorithm which

makes just one particular cell active should precede the OUTPUT in-

struction. On the other hand, certain algorithms rely on the OR func-

tion of the bus. The null operand (5, 0) does not perturb the common

bus and, therefore, the bus is free to carry the released symbol or

symbols. However, the null operand does supply continuity in the Z-

signal propagation for proper instruction sequencing.

CONDITIONAL-BRANCH and UNCONDITIONAL-BRANCH

Branching, i. e. , interrupting normal instruction sequencing, is

a relatively complicated operation. The current Z-signal propagation

must be stopped, the next instruction string to be executed must be

located and the new Z-signal propagation must begin at this point.

Nevertheless, conditional branching is basic, especially to a control

application. Therefore, an attempt has been made to provide efficient

branching instructions.

UNCONDITIONAL-BRANCH occurs at the end of one instruction

string, linking to the next instruction string. To identify the start of

an instruction string it is convenient to use a unique PROGRAM-

LABEL (4, I). The cell acts as an address--a place to branch to.

UNCONDITIONAL-BRANCH (6, 6)(5, I) alerts all program labels to
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match the symbol on the bus at the next clock time. Symbol I is the

next symbol on the bus. The program label with symbol I matches

this symbol and issues a Z signal to its right at the next clock time.

Conditional branching is further complicated by having to branch

or not, depending upon the result of a previous computation. Branch

on Match is provided. That is, if one or more cells are active, then

a branch is to take place; otherwise the present string of instructions

is to be continued. In fact the type of cells that must be active for

branching is specified as a modifier for the CONDITIONAL-BRANCH1

instruction.

CONDITIONAL-BRANCH1 assumes that specified active cells,

if any, will contain the branch address to which control should be

transferred. This unusual requirement permits the simplest arrange-

ment found thus far for accomplishing conditional branching.

CONDITIONAL-BRANCH1 (6, 16)(5, 0) alerts all program labels to

match the next symbol on the bus and at the same time acts like the

OUTPUT instruction to cause all selected active cells to place their

symbols on the bus during the next clock time and reset their M flip-

flops. The (5, 0) null operand frees the bus during its clock time but

also interrupts ordinary Z-signal propagation temporarily by going

into an intermediate logical state because it has seen the op-code 16

on the bus and received a Z signal at the same time.

Consider first the case where there are no matches and hence



21

no need to branch. The symbol on the bus during the null operand will

be all zeros and therefore the program label (4, 0) matches its symbol

and issues a Z signal to its right. The doublet (4, 0)(6, 15) need appear

just once in the program whenever any number of CONDITIONAL-

BRANCH1 instructions are present. CONDITIONAL-BRANCH2 (6,15)

is the next instruction that goes out on the bus but further Z-signal

propagation is automatically stopped at this point. The null operand

is monitoring this clock time for the op-code 15. In this case the op-

code 15 is seen and the null operand issues a Z signal to the right.

Ordinary processing continues from this point. If the op-code were

not 15, the null operand would simply reset and not issue a Z signal.

Consider now the case where there is at least one selected ac-

tive cell and hence the need to branch. The symbol on the bus during

the null operand will automatically be the preset program label of the

next instruction sequence. Therefore, that PROGRAM-LABEL will

match and issue a Z signal to its right. The null operand which was

monitoring the bus for the 15 will simply reset and thereby stop the

old Z-signal propagation.

TRANSFER

Transferring data from one part of memory to another is a rela-

tively inefficient process. TRANSFER requires selecting the receiv-

ing cell, selecting the supplying cell and finally causing the receiving
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cell to pick the information off the common bus during a null operand

on the bus. Therefore, where possible, data will be used wherever

it exists and transfer of data will be avoided.

TRANSFER provides for moving one symbol of data in memory.

Multiple transfers would require multiple TRANSFER instructions.

The first step before TRANSFER is to match the receiving cell

(or cells) using ordinary instructions. Then TRANSFER (6, 1) causes

selected active cells to change logical state and to reset their match

flip-flops. Such cells now monitor the bus for the next OUTPUT se-

quence (6, 14)(5, 0) and ignore all other instructions.

Because the transfer operation can be a variable length opera-

tion, any number of instructions may now be inserted before the out-

put sequence. The one function that must be completed is to match the

supplying cell.

The OUTPUT instruction (6, 14)(5, 0) causes the selected active

cell (which is the supplying cell in this case) to place its symbol on the

bus. The receiving cell (or cells), which has been monitoring the bus

for (6, 14), takes up the symbol during the null operand to complete

the transfer. All bit positions X3 through X15 are transferred.

INTERPRETIVE-MATCH

INTERPRETIVE-MATCH is a convenient means of comparing

the contents of two isolated cells when the full contents of neither cell
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are known. It is similar in some ways to the transfer instruction. A

receiving cell is selected, a supplying cell is selected and finally the

symbol of the supplying cell is put onto the common bus. The receiv-

ing cell matches its contents against the bus and sets its Match flip-

flop accordingly. In this case only bits X3 through X11 currently en-

ter into the match; this permits the other bits to be used as flags

which need not be identical.

The first step before INTERPRETIVE-MATCH is to match the

receiving cell. Then INTERPRETIVE-MATCH (6, 4) causes selected

active cells to change logical state and to reset their Match flip-flops.

Such cells now monitor the common bus for the OUTPUT sequence

(6, 14)(5, 0) and ignore all other instructions. The supplying cell is

now matched. The OUTPUT instruction (6, 14) causes a selected ac-

tive cell to place its symbol on the bus during the following null oper-

and. The receiving cell matches its contents against the common bus

during the null operand and sets its Match flip-flop only if a match

exists on bit positions X3 through X11. At this time the supplying

cell is not active and the result of the interpretive match is at the re-

ceiving cell.

PROGRAM-LABEL and DATA-LABEL

PROGRAM-LABEL (4, I) is a unique label that can be placed

within instruction strings not only in connection with branching
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instructions but also to facilitate instruction modification. It propa-

gates Z signals immediately without the usual one clock time delay

and does not perturb the common bus. It responds to instructions,

when its modifier has been specified just as all cells do. PROGRAM-

LABEL provides a rapid means of locating a particular point within a

particular instruction string.

DATA-LABEL (1, I) is another unique label that can be placed

within data areas to facilitate rapid isolation of selected data areas

for further processing.

Since PROGRAM-LABEL's and DATA-LABEL's are sometimes

accessed by MATCH, MATCH-RIGHT or MATCH-LEFT instructions,

which check bit positions X3 through X13 only, there are really only

211 or 2048 useful combinations available for each type of label. For

small applications of perhaps 1000 instructions, this number of labels

should be adequate. However, for larger applications, the following

two design alternatives are available:

1. Expand the memory word to more bits. Each added bit

doubles the number of useful combinations for labels. At

the same time this may permit more efficient programs to

be written because of the additional bits per cell.

2. Modify the cell logic to permit labels to extend over more

than one cell. For example, there could be one-cell labels,

two-cell labels, three-cell labels and so forth. Potentially

any number of labels are permitted but there is an overhead

associated with isolating the particular label of interest.



25

IV. Z -SIGNAL PROPAGATION

This section will complete the description of Z-signal propaga-

gation. Z signals control instruction sequencing; there is no instruc-

tion counter. In a typical instruction chain, a Z signal propagates to

the right from cell to cell at each cycle time. Receipt of a Z signal

instructs a cell to place its contents onto the common bus and to send

a Z signal to its right neighbor during the next clock time. There

normally will be only one active Z signal at a time in the entire com-

puter. A cell's Z flip-flop is automatically reset. There are five

special situations:

a) A cell in a data area (i. e. , a cell with a USEKEY of 0, 1,

2, 3 or 7) does not set its Z flip-flop upon receipt of a Z

signal. No properly written program will try to execute

data as instructions; control is transferred around data

areas by unconditional branching. Thus the contents of a

cell's memory word condition the setting of its Z flip-flop.

b) A cell being used as a PROGRAM-LABEL propagates a Z

signal immediately without the usual one-cycle delay and

does not put its contents onto the common bus. The cell

provides a direct path through itself for Z signals. Thus,

its Z flip-flop is not used.

c) Recall that CONDITIONAL-BRANCH1 is a two-cell instruc-

tion of the form (6, 16)(5, 0). The null operand is the cell
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which temporarily interrupts ordinary Z-signal propagation.

It responds to the presence of an op-code of 16 on the bus

and the receipt of a Z signal by going into an intermediate

logical state.

d) Recall that UNCONDITIONAL-BRANCH is a two-cell in-

struction of the form (6, 6)(5, I). The operand responds to

the presence of an op-code of 6 on the bus and the receipt of

a Z signal by inhibiting the setting of its Z flip-flop. Thus,

this chain of Z-signal propagation is stopped.

e) Recall that CONDITIONAL-BRANCH2 is a one-cell instruc-

tion of the form (6,15). Upon receipt of a Z signal, the in-

struction inhibits the setting of its Z flip-flop which stops

this chain of Z-signal propagation.
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V. STATE TRANSITION DIAGRAM

The logical state of a cell is an encoding of the S
0

through S4

state flip-flops of Sequence Control. Twenty-two logical states have

been found sufficient to implement the proposed instruction set of Fig-

ure 3. Consider now the detailed state changes for the typical instruc..

tion MATCH - Long Form (6, 5)(5, I)(5, J), shown in Figure 5. State 0

is designated as the normal idle state for all cells. Therefore, the

cells storing the MATCH instruction as well as the cells on which the

MATCH instruction is to operate all begin in State 0.

Assume that the instruction MATCH 0 (C=0, X8=1) is to be exe-

cuted. This is a long-form MATCH with MODIFIER 0, which there-

fore is to operate on cells with USEKEY=0, i. e. , DATA-WORD's.

Thus, all DATA-WORD cells with C flip-flop reset and eighth memory

word bit set are to set their Match flip-flops; all other cells do not.

The three cells containing the MATCH instruction propagate Z signals

and place their contents on the common bus during successive clock

times while they remain in logical State 0; there is no need for them

to go into intermediate states. However, all DATA-WORD's must go

into an intermediate state, which in this case is State 4.

All cells are constantly monitoring the 0 lead of the bus because

when the 0 lead is 1 there is an instruction op-code on the bus. As-

sume that the contents of the first cell of the MATCH instruction have
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now been placed on the bus; the 0 lead is 1 because an op-code is be-

ing transmitted. All cells now compare the modifiers being transmit-

ted with their own USEKEY's. If a particular cell finds that its USE-

KEY has not been specified, then it simply remains in State 0 and

waits until the 0 lead becomes 1 again during some succeeding clock

time. On the other hand, all DATA-WORD's in this case recognize

that they are being specified, decode the op-code bits and go into the

appropriate intermediate state (State 4). This completes the action

during the first clock time.

During the second clock time the contents of the second cell of

MATCH are placed on the bus; the 0 lead is 0 because an operand is

being transmitted. Only cells in State 4 take any action; all other

cells wait during this clock time. Cells in State 4 compare their in-

dividual contents with the current signals on the common bus. Speci-

fically such cells monitor bus leads X3 through X13 and bus lead X14'

bus lead X15 is ignored. Bus lead X14 carries the specification for

the Control flip-flop in this case. Cells try to form a tentative match

involving just those bit positions for which ones are being transmitted

on the bus. In this example only bus lead X8 is transmitting a one.

Thus, all cells in State 4 whose eighth bit is a one achieve a tentative

match and go to State 5; all other cells in State 4 return to State 0 and

wait for the next instruction to come down the bus. This completes

the action during the second clock time.
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During the third clock time the contents of the third cell of

MATCH are placed on the bus; the 0 lead remains at 0 because an

operand is being transmitted. Only cells in State 5 take any action;

all other cells wait during this clock time. Cells in State 5 try to

form a match involving just those bit positions for which zeros are

being transmitted on the bus. In this example only bus lead X14 is

transmitting a zero. Thus all cells in State 5 whose Control flip-flop

is reset achieve a match and set their Match flip-flops; all other cells

do not. In either case such cells return to State 0. This completes

the action for the MATCH instruction.

The complete state transition diagram is shown in Figure 5.

Generally three-cell instructions require two intermediate states, as

for example the State 0, State 4, State 5 complex used for MATCH

(Long Form); two-cell instructions require one intermediate state and

one-cell instructions do not require intermediate states. SET and

STORE are the only instructions found that can share corresponding

intermediate states. Other instructions are independent in terms of

the logical states that they use. Thus, at this stage in the design it is

a relatively simple matter to add or delete instructions.

There are four stable states: State 0, the normal idle state;

State 11, associated with TRANSFER; State 13, associated with

INTERPRETIVE-MATCH; and State 17, associated with CONDITIONAL-

BRANCH'. Consider again the use of the 0 lead to keep cells in step
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with the instruction stream coming down the bus. The alternative is

two timing states per stable state for a total of eight additional states

as mentioned previously.

States associated with the various other instructions can now be

identified. States 1 and 2 are associated with MATCH-LEFT, and

States 9 and 10 are associated with the long-form MATCH-RIGHT.

These instructions are implemented in a similar way to the long-form

MATCH instruction described above; if a cell is in State 1 or State 9

and does not achieve a match on the first operand, the cell returns to

State 0.

State 3 is associated with the short-form MATCH. A cell in

State 3 returns to State 0 whether or not its contents match the oper-

and; of course, the cell's Match flip-flop is set accordingly in the pro-

cess. State 6 is associated with the short-form MATCH-RIGHT and

operates in a similar way.

States 7 and 8 are shared by the long forms of SET and STORE.

A cell can reach State 7 by having its USEKEY specified and an op-

code for SET (Long Form) or an op-code for STORE (Long Form) if

the cell's Match flip-flop is set. In a similar way State 20 is shared

by the short forms of SET and STORE; State 21 is shared by SET-

SPECIAL and the short-form STORE-SPECIAL. States 18 and 19 are

associated with the long-form STORE-SPECIAL.

States 11 and 12 are associated with TRANSFER. A cell in
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State 11 remains there and ignores all instructions on the bus except

for OUTPUT; when OUTPUT is received, the cell advances to State

12. In a similar way States 13 and 14 are associated with

INTERPRETIVE-MATCH. A cell in State 13 remains there until

OUTPUT is received, ignoring all other instructions on the bus.

State 15 is used only by cells which are PROGRAM-LABEL's

(USEKEY=4). When a PROGRAM-LABEL cell receives an op-code

for UNCONDITIONAL-BRANCH or CONDITIONAL-BRANCH1, the cell

goes to State 15. At the next clock time each PROGRAM-LABEL

matches its contents with the operand on the bus. That PROGRAM-

LABEL which achieves a match issues a Z signal to its right neighbor

and returns to State 0; all other PROGRAM-LABEL cells simply re-

turn to State 0.

States 16 and 17 are used only by null PROGRAM-OPERAND's

(USEKEY=5, Symbol=0) and are associated with conditional branching.

A null PROGRAM-OPERAND in State 0 which receives an op-code for

CONDITIONAL-BRANCH1 proceeds to State 16. The null PROGRAM-

OPERAND which then receives a Z signal proceeds to State 17 at the

next clock time; all others return to State 0. A cell in State 17 waits

for the next instruction on the bus before returning to State 0. If the

next instruction on the bus is CONDITIONAL-BRANCH2, the null

PROGRAM-OPERAND in State 17 issues a Z signal to its right neigh-

bor as it returns to State 0; otherwise no Z signal is issued.
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VI. PROGRAMMING STRATEGY

Cells are identical but may be put to a variety of uses. Each

cell has its own Match and Control flip-flops which are needed for

data manipulations or instruction modification. Modifiers on instruc-

tions specify just which types of cells are to respond. In this way the

machine can pass between various active states without having to con-

tinually save and restore M and C flip-flop contents. The concept of

USEKEY also permits simple clearing and loading of the machine ini-

tially as well as instruction modification.

Physical location within the machine is important even though

there is a content addressable structure. Certain instructions com-

municate with an immediate left or right neighbor of a cell of interest

while other cells communicate with a number of cells in either the

left or right direction. In addition, labels act as addresses and per-

mit rapid location of a point or points within the machine.

For storage efficiency certain cells may have identical contents

while representing entirely different information. There must be a

distinguishing feature. It may be proximity to a unique label or sim-

ply the leftmost active cell. In the DLM computer, the programmer

is continually isolating cells of interest from all others. Cells of in-

terest can be flagged for further processing by setting the higher or-

der bits of the memory word to a particular pattern. Thus typically
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the lower order bits store the information of a data word and the high-

er order bits act as flags. In addition, the Control flip-flop can act

as a flag when it is not needed in connection with intercell communica-

tion.

In the following sections algorithms are presented in a symbolic

machine language. A compiler program which interprets the symbol-

ic statements and generates the required machine language code has

been written by J. L. Cottrill (1968). For example,

MARK-RIGHT 0, 1, 3

would generate a one-cell MARK-RIGHT instruction with modifier bits

specifying cells of USEKEY equal to 0, 1 and 3. Similarly,

STORE 0 (X8=0)

would generate a three-cell STORE instruction with modifier bits

specifying cells of USEKEY equal to 0 and operands arranged to reset

bit X8 and leave other memory word bits untouched. Finally,

SET 2 (3AE8)

would generate a two-cell SET instruction with modifier bits specify-

ing cells of USEKEY equal to 2. In this short-form instruction the bit

pattern of the operand is specified by the four-digit hexadecimal num-

ber 3AE8. This number is expanded below to show its correspondence
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Hexadecimal
Number
3AE8 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1

M C X X X
X7

X
l3X12 1 10

X
8 7 X6 X5 4 X3

This specification is equivalent to: (M=0, C=0, X13=1, X12=1, X11=1,

X
10

= 0, X
9

=1 , X
8

= 0, X
7

=1,X
6

=1,X
5

=1,X
4

=0,X
3

=1);
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since this is a two-

cell instruction there can be no don't care bit positions. Because this

cell is a program operand, its USEKEY must be 5 and, therefore,

bits X0 through X2 are not specified.
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VIE. CLEARING AND LOADING THE DLM COMPUTER

The concept of USEKEY, i. e. , the placing of part of the sequen-

tial control of the cell's logic in the memory word itself, permits ef-

ficient means for clearing and loading the computer. Access only to

the common bus and to the intercell leads of the leftmost cell in the

computer is all that is needed. (Actually the computer can also be

loaded from its right-hand end. ) The STORE-SPECIAL instruction

which is useful in instruction modification is also required for clear-

ing and loading.

A special loader is envisioned which can be attached to the left-

hand end of the DLM computer. The loader places signals on the

common bus and occasionally must signal the M and Z intercell leads

of the leftmost cell. The DLM computer acts as a cell memory dur-

ing clearing and loading while being driven by the loader.

Consider first the case when it is necessary to clear the entire

machine and load initially. This need arises for example when power

is first turned on. Actually the memory elements of the cells may

come on in any state and the clearing routine will clear the entire ma-

chine with one exception: The Z flip-flop per cell associated with Z-

signal propagation must be reset initially. This can be done by an

additional lead of the common bus, running to each cell. Such reset-

ting prevents the machine from coming on in a state to be executing
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stop the machine as a maintenance tool.

The CLEARING routine consists of the following five instruc-

tions:

OUTPUT 0, 1, 2, 3, 4, 5, 6, 7

RESETC 0, 1, 2, 3, 4, 5, 6, 7
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MARK-RIGHT 0,1, 2, 3, 4, 5, 6, 7

STORE-SPECIAL 0, 1, 2, 3, 4, 5, 6, 7 (0000, U=0, C=0)

RESETM 0

This routine is sufficient to cause the resetting of every flip-flop of

every cell, assuming that every Z flip-flop has already been reset,

even though a cell may have been in any state with any memory word

contents. OUTPUT causes all cells to go to State 0. All cells re-

spond because all USEKEY's were specified as modifiers. Cells in

stable States 11 and 13 are freed by OUTPUT; cells in State 17 go to

0 on any instruction; cells in unused States 22 through 31 automatical-

ly go to State 0 after the first clock time. RESETC resets the C flip-

flops in all cells. Now at this point, if the leftmost cell would be

made active, a succeeding MARK-RIGHT would activate all other cells

in the machine. This is what is done. During the RESETC above,

the loader activates the leftmost cell by a signal on the M intercell

lead. MARK-RIGHT therefore causes all cells to be activated. All

cells respond to STORE-SPECIAL therefore because all cells are
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active. STORE-SPECIAL causes zeros to be written into all bits of

the memory word, including the USEKEY. Thus all cells have been

transformed into data words. Finally RESETM resets all Match flip-

flops. That the machine can be cleared with five instruction execu-

tions begins to illustrate the power of the content-addressed structure

in which many cells can be operated upon simultaneously.

Loading of the machine can now begin. Loading takes place

from the leftmost cell to the rightmost cell, one cell at a time. The

loader accepts one cells contents from an external source and sup-

plies a short routine which causes this information to be stored in the

appropriate cell. This routine is repeated as many times as there

are cells to be loaded. The strategy is to activate the cell to be load-

ed and to store its contents while setting its C flip-flop. Its Match

flip-flop is reset, its right neighbor activated and then its C flip-flop

reset. The next cell to be loaded is now active so the routine can be

repeated. The LOADING routine consists of the following four in-

structions:

STORE-SPECIAL 0, 1, 2, 3, 4, 5, 6, 7 (XXXX, U=X, C=1)

OUTPUT 0, 1, 2, 3, 4, 5, 6, 7

RIGHT 0, 1, 2, 3, 4, 5, 6, 7

RESETC 0, 1, 2, 3, 4, 5, 6, 7

Note: "X's " -in STORE-SPECIAL designate information supplied by

the external source for the particular cell being loaded.
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The loader begins by activating the leftmost cell with a signal on its

M intercell lead. The appropriate STORE-SPECIAL stores the re-

quired bit pattern in the leftmost cell, including USEKEY, and at the

same time sets its C flip-flop. OUTPUT reads out onto the bus the

information that has just been stored, which the loader may check,

and resets the M flip-flop of the leftmost cell. RIGHT activates the

right neighbor of the leftmost cell and RESETC resets its C flip-flop.

The next cell to be loaded is now the only one active and the routine

may be repeated.

When loading is complete, program execution can begin. One

alternative to starting execution is to have the loader supply a branch

instruction to the entry point of the program; then after execution has

begun, the loader is disconnected. However, it is probably safer to

do the following: (a) Use the leftmost two cells to store a branch in-

struction to the entry point of the program. (b) Disconnect the loader

immediately after loading is complete. (c) Supply a signal to the left-

most cell on its Z intercell lead. Thus processing will begin by a

branch to the entry point,
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VIII. PROGRAMMING EXAMPLES

In this section several examples will be described to illustrate

how the proposed instruction set can be used. At the present time,

approximately 40 short routines have been written for a variety of

tasks.

Isolating the Leftmost Active DATA-WORD Cell

Algorithms for the cell memory (Gaines and Lee, 1965; Crane

and Githens, 1965) can be rewritten for the DLM computer. Such is

the case with this example. Assume that a number of DATA-WORD

cells are active and one wishes to deal with the leftmost first. Use is

made of MARK-RIGHT which can cause many cells to be activated

during one clock time.

Consider the following:

MARK-RIGHT 0

STORE 0 (C=1)

RESETM 0

RIGHT 0

STORE 0 (C=0)

RESETM 0, 1, 2, 3, 4, 5, 6, 7

MATCH 0 (C=1)

The assumption is made that between active DATA-WORD cells
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there are no cells which are not DATA-WORD's, that all DATA-

WORD's have their C flip-flops reset and that the contents of M flip-

flops need not be retained. If these conditions are not met, a more

complicated algorithm is needed.

MARK-RIGHT causes all DATA-WORD's to the right of the left-

most active DATA-WORD to be activated, up to but not including the

first cell encountered with differing USEKEY. STORE (C=1) sets the

C flip-flops of all active DATA-WORD's and RESETM resets their M

flip-flops; RIGHT activates the right neighbors of such cells. Notice

that what had been the leftmost active DATA-WORD is not activated

and therefore has been isolated. The remaining steps reset active

DATA-WORD's and then activate what had been the leftmost active

DATA-WORD.

Isolating a Flagged Cell Among Many

This procedure permits efficient use of flags and illustrates how

data labels can be helpful. Consider a portion of memory laid out

with groups of data words separated by data labels. Assume previous

processing has flagged one data word in some groups by setting bit

X11. Hence many data words may be so flagged and isolation of a

particular one relies on its proximity to the data label of its group.

One can quickly determine if there is a flagged cell in a particular

group and activate it by the following:
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MATCH 0 (X11=1)

STORE 0 (C=1)

RESETM 0

MATCH-RIGHT 1 (03F0)

MARK-RIGHT 0

STORE 0 (X13=1)

RESETM 0

MATCH 0 (C=1, X13=1)

RESETC 0

SET 0 (X13=0)

MATCH (X11=1) and STORE (C=1) set C flip-flops in flagged data

words; RESETM clears the M flip -flop in the same cells. Assume

that the group of data words preceded by DATA-LABEL (03F0) is the

particular group of interest; MATCH-RIGHT (03F0) activates the right

neighbor of this data label. MARK-RIGHT begins at this point to acti-

vate cells in a sequence to the right until a data word cell is found

with its C flip-flop set or until the next data label is found. In the lat-

ter case no flagged cell was found in this group and the remaining in-

structions simply restore conditions. Consider the former case. The

flagged cell is the last cell in the sequence to be activated. It has

been isolated because it is the only active data word with its C flip-

flop set. The remaining instructions restore conditions and leave the

isolated, flagged cell active. STORE (X13=1) sets a temporary flag
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in all active data words and RESETM clears the M flip-flop in the

same cells. MATCH (C=1, X13=1) activates the isolated, flagged data

word. Finally RESETC resets C flip-flops and SET (X13=0) resets the

temporary flags.

MARK-LEFT and MARK-RIGHT have been found useful to signal

from one point in memory to another in one clock time. The flagged

cell isolates itself in this case by stopping A-signal propagation. No-

tice that if there were several flagged data words in one group of in-

terest, this algorithm would isolate the leftmost.

A feature of various DLM instructions should be noted. An in-

struction, such as MATCH or STORE, may or may not change the

contents of any cells depending upon the state of the cells at execution

time. Thus, in the above algorithm the latter half can remain the

same whether or not a flagged cell is found; there is no need to set up

conditional branching machinery to be able to handle the two cases.

Nothing would be saved by conditional branching in this example. Of

course, there are other cases where the contrary is true and condi-

tional branching instructions are available. However, one would ex-

pect to find less branching when compared to a conventionally organ:-

ized machine not only because of the instruction set but also because

there is less need for looping since operations are carried out in par-

allel.
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Subroutine Linkage

Ordinary subroutine linkage provides an example of instruction

modification (actually "address" modification). Before a subroutine

is entered, the proper return address, i. e. , program label is stored

in the subroutine by the main program. In fact, the return address is

stored as the operand of the UNCONDITIONAL-BRANCH instruction

at the logical end of the subroutine. Consider the following:

Main Program

MATCH-RIGHT 4(3E58)

STORE 5 (0F68)

RESETM 5

UNCONDITIONAL-BRANCH 4 (3F78)

PROGRAM-LABEL (0F68)

Subroutine

PROGRAM-LABEL (3F78)

UNCONDITIONAL-BRANCH 4-

PROGRAM-LABEL (3E58)

(XXXX)
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In the subroutine notice that PROGRAM-LABEL (3E58) has been

inserted between the op-code and operand of UNCONDITIONAL-

BRANCH 4(XXXX). The program label does not affect execution of

the branch but does permit rapid location of the operand into which

the proper return address is to be stored. Refer now to the main pro-

gram. MATCH -RIGHT (3E58) activates the right neighbor (i. e. , the

return address operand) of the subroutine's PROGRAM-LABEL

(3E58). STORE (0F68) stores the return address and RESETM clears

the M flip-flop. Now that the return address has been preset the sub-

routine can be entered by a branch to its entry point. Notice that

PROGRAM-LABEL (3E58) serves as a convenient, unique pointer to a

cell that will be changed without interfering with normal instruction

execution.

There is normally never a need to physically pass parameters

to a subroutine. If the parameters are uniquely flagged, the subrou-

tine can identify them and operate on them where they exist. However,

it will often be the case that there is a shortage of unique flags.

Therefore, a second technique which employs USEKEY's that are

available to the programmer is efficient. For example, assume that

three data words are parameters, which are located perhaps in wide-

ly separated cells, and are not uniquely flagged in memory. Before

branching to the subroutine, the main program can temporarily set

the USEKEY's of the parameters to 7, for example, using the short
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form of STORE-SPECIAL. As long as the parameters are flagged so

as to be distinguishable from each other, the subroutine can identify

them because of their unique USEKEY. Upon return from the subrou-

tine, the USEKEY's of the parameters can be restored to 0 by using

SET-SPECIAL.

Increment Selected Cells by One

This procedure illustrates the parallelism possible in the DLM

computer. Assume that certain selected cells each contain a code for

one of the decimal digits 0 through 9 and it is desired to increment

each digit by 1. The algorithm will accomplish this simultaneously

in as many cells as desired. Assume that memory word bits X6

through X3 store the decimal digit according to the following table:

Decimal Memory Word Bits
Digit X6 X5 X4 X3

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0
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The strategy is to recognize certain patterns and then to supply

the appropriate pattern for the incremented digit. Assume that the

selected cells which may be anywhere in memory are data words and

are temporarily flagged by X13=1; as a cell's digit is incremented the

flag is reset. Consider the following:

MATCH 0 (X13=1, X3=0)

STORE 0 (X13=0, X
3

=1)

RESETM 0

MATCH 0 (X
13

=1, X
4

=0, X3 =1)

STORE 0 (X13 =0, X
4

=1,X
3

=0)

RESETM 0

MATCH 0 (X
13

=1,X
5

=0,X
4

=1,X
3

=1)

STORE 0 (X
13

=0,X
5
=1,X

4
=0, X

3
=0)

RESETM 0

MATCH 0 (X
13

=1,X
6

=0,X
5

=1,X
4

=1,X
3

=1)

STORE 0 (X13 =0, X6 =1, X5 =0, X4 =0, X3 =0)

RESETM 0

There are four pairs of MATCH and STORE instructions. The

first identifies all selected cells which contain an even-numbered dec-

imal digit (i. e. , 0, 2, 4, 6 or 8). This digit is incremented simply

by setting bit X3. Similarly, the second pair deals with selected cells

whose digits contain the pattern X4=0 and X3=1 (i. e. , 1, 5 or 9). In

this way all possible cases are treated.
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This procedure may appear lengthy just to accomplish addition

by one. However, recall that the DLM computer has no adders as

such, and that addition by one is being carried out in many cells si-

multaneously.

Branch on No-Match

This procedure is a convenient means of achieving branching

when there are no cells that became active during the previous set of

instructions. Note that this is branching in the opposite sense com-

pared to the conditional branching instruction, which provides

"Branch on Match". Consider the following:

Instructions which may or may

not generate active cells

MARK-RIGHT 0, 1, 2, 3, 4, 5, 6, 7

STORE 0 (C=0)

RESETM 0, 1, 2, 3, 4, 5, 6, 7

RIGHT 0

CONDITIONAL-BRANCH1 0, 4, 5

) Work Area

DATA-WORD (C=1)

DATA-WORD (3AFO) /*BRANCH ADDRESS */
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PROGRAM-LABEL (3AFO)

PROGRAM-LABEL (0000)

CONDITIONAL-BRANCH2 5

Two DATA-WORD cells are placed to the right of the current

work area. The first is established as the only cell having its C flip-

flop set; its right neighbor contains the branch address (3AFO) which

is to be used if a branch is to take place. When this procedure begins

it is assumed that if any cells are active, then no branch is desired.

Consider first the case where there are no active cells. The

instructions MARK-RIGHT, STORE and RESETM have no effect.

RIGHT causes the right neighbor of the cell whose C flip-flop is set to

be activated; thus the cell containing the branch address is the only

active cell. Then CONDITIONAL-BRANCH1 causes this active cell

to release its contents on the bus and instruction sequencing continues

from PROGRAM-LABEL (3AF0).

Consider now the case where there are active cells. MARK-

RIGHT causes all cells to be activated from the leftmost active cell

up to and including the DATA-WORD cell whose C flip-flop is set;

this is a means of signaling that at least one active cell is present.

STORE resets the C flip-flop of all DATA-WORD's and RESETM
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resets all M flip-flops. RIGHT has no effect because no cell has its

C flip-flop set now. Thus, there are no active cells as CONDITIONAL-

BRANCH1 is executed. The net result is that no branch takes place.

A Flexible Multiway Branch

This procedure is similar to the "Computed GO TO" statement

in the FORTRAN programming language. It is one way to satisfy the

need for a conditional branch, based on a previous computation, to

more than two alternative paths.

Consider first a typical "Computed GO TO" statement:

GO TO (1513, 21, 783, 2), LINK

LINK is an integer which can be given the values 1, 2, 3 or 4. The

statement is interpreted to mean that if LINK has the value 1 at this

time, then program control is to be transferred to the statement la-

beled 1513, if 2, then statement 21, if 3, then statement 783 and if 4,

then statement 2. Hence the program is directed to one of several

paths depending upon the current value of LINK.

The procedure to be described here is somewhat more flexible

in that LINK need not be restricted to consecutive values of 1, 2, 3

and 4. Instead LINK can have any value that may be specified by pat-

tern bits X3 through X11. The following structure can be provided

for example:
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GO TO ((0AF8, 13A0)(OBFO, 0318)(0A18, OCF8)(0CF8, 3A50)), LINK

This statement is interpreted to mean that if LINK contains the sym-

bol (0AF8) then a branch is to occur to PROGRAM-LABEL (13A0); if

symbol (OBFO), then branch to (0318); if symbol (0A18), then branch

to (0CF8); and finally if symbol (0CF8), then branch to (3A50).

The procedure makes use of a branch table in which each sym-

bol for LINK has the corresponding branch address as its right neigh-

bor. Both TRANSFER and INTERPRETIVE-MATCH instructions are

used. Consider the following:

MATCH 1 (3E18)

STORE 1 (C=1,3E18)

MATCH 1 (3E10)

MARK-RIGHT 0, 3

INTERPRETIVE-MATCH 0

RESETM 1, 3

MATCH-RIGHT 1 (03F8)

OUTPUT 0

STORE 0 (C=1)

RIGHT 0

MATCH-RIGHT 4 (30E8)

TRANSFER 5

OUTPUT 3



RESETM 0

RESETC 0, 1

UNCONDITIONAL-BRANCH 4 - --

PROGRAM -LABEL (30E8)

(XXXX)

DATA-LABEL (3E10)

DATA-WORD (0AF8)

SPECIAL-3 (13A0)

DATA-WORD (OBFO)

SPECIAL-3 (0318)

DATA-WORD (0A18)

SPECIAL-3 (0CF8)

DATA-WORD (0CF8)

SPECIAL-3 (3A50)

DATA -LABEL (3E18)

/ * BRANCH TABLE

/*

1*

/*

/*

/*

/*

/*

/*

*1

*/

*/

*/

*1

/ BRANCH TABLE */
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DATA-LABEL (03F8)

DATA-WORD (OBFO) / * LINK = (OBFO) *1

Let LINK be the DATA-WORD which is the right neighbor of DATA-

LABEL (03F8); in this example LINK has the value (OBFO). SPECIAL-

3 cells are cells specified by the programmer as having a USEKEY of

3; they are used here to hold branch addresses and are right neighbors
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to DATA-WORD's which contain the corresponding symbols that LINK

may obtain.

The strategy is to isolate the branch table, to match interpre-

tively symbol entries with the current value of LINK, to pick up the

corresponding branch address and to place it as the operand of an

UNCONDITIONAL-BRANCH instruction. The method thus includes a

form of table lookup for which a content addressed memory is ideally

suited.

MATCH and STORE activate and set the C flip-flop of the data

label marking the right-hand end of the branch table. The second

MATCH activates the data label marking the left-hand end of the

branch table. MARK-RIGHT activates the cells in between. Note

that the use of DATA-LABEL's and MARK-RIGHT permits rapid iso-

lation of a group of cells of interest. INTERPRETIVE-MATCH now

causes active DATA-WORD's to go to an intermediate logical state

and to reset their M flip-flops in preparation for a match. RESETM

resets the M flip-flops of DATA-LABEL and SPECIAL-3 cells. The

system is now ready to perform the table lookup. MATCH-RIGHT

activates the cell containing LINK and OUTPUT puts LINK onto the

bus, which at the same time completes the interpretive match.

DATA-WORD's which had been in intermediate states now return to

State 0 and the one which contains (OBFO) sets its M flip-flop; the inter-

pretive match has been accomplished. STORE (C=1) sets the C
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flip-flop of this cell. RIGHT activates the right neighbor. MATCH-

RIGHT (30E8) activates the operand of the UNCONDITIONAL-BRANCH

and TRANSFER causes this cell to go to an intermediate state and re-

set its M flip-flop in preparation for picking up the branch address.

OUTPUT causes the active cell which contains the branch address to

put it onto the bus; the operand of the unconditional branch stores this

branch address and returns to State 0. RESETM and RESETC reset

M and C flip-flops. UNCONDITIONAL-BRANCH now causes instruc-

tion execution to continue from PROGRAM-LABEL (0318).

The above six examples illustrate how the DLM computer can

be programmed. There are certainly variations possible to these

procedures according to the needs of the particular application.
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IX. LOGICAL DESIGN OF CELL

This section will explore further the internal details of the cell.

The logical design is not complete; however, enough is known to be

able to accurately estimate the total number of gates required for a

cell.

The NAND gate will be used as the basic building block to estab-

lish gate count. The NAND gate is widely used in current computers,

including the central control of No. 1 ESS (Cagle et al. , 1964) and the

IBM 360 models (Davies et al. , 1964). A possible circuit implemen-

tation is shown in Figure 6. The diode AND gate is followed by a

transistor stage for inversion and amplification. Notice that all in-

puts must have sufficiently high, positive levels in order that the tran-

sistor may be driven to conduct and saturate, and thereby develop a

low output level.

A NAND gate developed for large-scale integration might well

be different from the circuit shown; however, it should have the same

logical properties. That is, it should be permissible to tie outputs

together and thereby derive an additional logic function. In the exam-

ple of Figure 6, a six-gate circuit is reduced to a four-gate circuit

by appropriate tying of outputs together. Besides there being fewer

gates, there is also less switching delay.

A block diagram of the cell is shown in Figure 7. Sixteen
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memory word flip-flops (X0 through X1 5) are indicated together with

M, C, Z and five state memory flip-flops (S0 through S4) of Sequence

Control. As mentioned previously, the number of bits in the memory

word can be adjusted to suit the application.

The Decoder performs checks and translation for Sequence Con-

trol. The Decoder remains inactive until the 0 lead signals the pre-

sence of an op-code on the common bus. At this time the modifier

field from the bus is compared with the stored USEKEY. If there is a

match, indicating that the cell is to respond to the current instruction,

the op-code on the bus is translated and passed to Sequence Control.

Sequence Control represents the 22-state sequential circuit con-

trolling the cell. Sequence Control contains leads to control gating

into and out of memory word bits, to control intercell signals and to

control the M and C flip-flops.

Logic to perform gating into and out of typical memory word bits

is shown in Figure 8. Eight gates per bit are required for this. Leads

labeled Setl, Set2, Output, Matchl and Match2 come from Sequence

Control and Mismatch is a return lead. Consider memory word bit

X4 for example. The flip-flop itself is realized in the usual way by

connecting two NAND gates back-to-back. To gate information from

the bus into bit X4, the leads Setl and Set2 are used. By convention a

1 signal on the common bus appears as a ground (low) and a 0 is a pos-

itive level (high). Separate leads Setl and Set2 are needed to
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implement the long-form SET or STORE instructions with their "don't

care" conditions. Setl is active during transmission of the first op-

erand and Set2 is active during the second operand. When the short-

form SET or STORE instruction is used, Setl and Set2 are activated

simultaneously. Therefore, when Setl or Sett becomes positive, the

X4 bus lead is sampled and the X4 flip-flop is set or reset appropri-

ately. Conversely, if it is desired to gate information onto the com-

mon bus, Output is made high; the memory word flip-flop is sampled

and the result passed to the common bus lead.

Separate leads Matchl and Match2 are needed to implement the

long-form MATCH instruction with its "don't care" conditions.

Matchl is active during transmission of the first operand and Match2

is active during the second operand. When the short-form MATCH

instruction is used, Matchl and Match2 are activated simultaneously.

Mismatch is the reply signal to Sequence Control indicating, when ac-

tive, that at least one of the memory word bits in question has a mis-

match.

Figure 9 shows the intercell lead arrangements. Consider the

A lead first. An A signal propagates to the right or to the left but not

in both directions simultaneously. The one-way transmission ele-

ments (two NAND gate circuits), inserted in the A lead, are condi-

tioned by Sequence Control. Depending upon their contents, certain

cells initiate A-signal propagation, other cells stop propagation and
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intermediate cells pass A signals with little delay. Indeed the trans-

mission elements must be designed for minimum delay since it must

be possible to propagate an A signal down the entire machine during

one cycle time.

The M signal is passed to the cell on the left or the cell on the

right but not in both directions simultaneously. The M lead is simply

an extension of the Match lead that would ordinarily set the cell's own

Match flip-flop and is under the control of Sequence Control.

The Z signal is passed only to the right for instruction sequenc-

ing. When a Z signal is received, a cell's Z flip-flop is set and Se-

quence Control is alerted. At the next clock cycle, the Z flip-flop is

reset.

This completes the description of the cell's logic except for

input-output interfaces which are covered in a later section. Sequence

Control is to be a straightforward design of a 22-state, clocked se-

quential circuit although the details have not yet been completely

worked out. A simple clock with two non-overlapping phases, carried

on separate bus leads, is thought sufficient. Due to timing require-

ments in certain parts of the cell's logic, it is probably not convenient

to limit each cell to but one clock lead. Furthermore, the need for

another clock phase appears in the preferred scheme for bus amplifi-

cation as described in the following section.
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X. GROWTH AND BUS AMPLIFIERS

When cells are added to increase the size of the DLM computer,

the common bus must necessarily be extended. The propagation delay

for instructions on the common bus to reach all cells is therefore in-

creased. The clock frequency must be correspondingly reduced.

However, there is increased parallelism possible with more cells so

that the effective computing rate may increase rather than decrease.

In the present design, the machine cycle is limited by the

MARK-LEFT and MARK-RIGHT instructions. Recall that MARK-

LEFT or MARK-RIGHT can cause the propagation of A signals from

cell to cell throughout the entire machine during one machine cycle;

the propagation of A-signals will take somewhat longer than the prop-

agation of the instruction on the common bus. Consider the following

worst case: All cells have their C flip-flops reset, the rightmost cell

has its M flip-flop set and the leftmost cell in the machine issues a

MARK-LEFT instruction. The instruction propagates to the right the

full length of the machine; the rightmost cell responds by initiating A-

signal propagation to the left, which continues the full length of the

machine. This underlines the need to minimize delay in the A-signal

gating in each cell.

There are several alternatives for preventing MARK instruc-

tions from restricting the machine speed.
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1. Restrict the programmer to an A-signal propagation of at

most 100 cells.

2. Dedicate two or three clock cycles to the MARK-LEFT and

MARK-RIGHT instructions by the addition of states to state

memory.

3. Permit the clock to monitor instructions on the common

bus and automatically provide additional timing whenever a

MARK instruction is seen.

As the DLM computer grows, provision must be made for bus

amplifiers in the common bus leads. For example, at 100 cells the

fanout capability of gates in the cell that drive common bus leads may

be exceeded. One method which uses ordinary one-way amplifiers is

shown in block diagram form in Figure 10 and in some detail in Fig-

ure 11. A common bus lead now becomes a pair of leads, one running

in each direction. The design of the cell must be changed to accom-

modate this. Two terminals on the cell are used where one was re-

quired before. In addition, notice the increase from 8 to 10 gates per

memory word bit for the gating previously described. When a cell

drives a common bus pair, the same signal is sent in each direction.

However, when a cell is reading from a common bus pair, an active

signal (a low level by convention) on either lead of the pair is suffi-

cient. Requiring additional terminals per cell is more significant than

adding to the cell's logic. Reducing the number of terminals required
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per cell is a very practical goal for an integrated circuit implementa-

tion.

A solution is sought that uses one lead rather than a common

bus pair. Consider the method using two-way amplifiers shown in

Figures 12 and 13. The design of the cell and the common bus leads

are unchanged; the two-way amplifiers are simply inserted into the

bus leads as needed.

The requirement on the two-way amplifier is that it regenerate

active signals coming from either direction. By convention, the ac-

tive 1-signal on the bus is a low level and the 0-signal is a high. The

amplifier is in a sense inactive when it sees high levels on both its

left side and right side. Notice that the amplifier is indeed stable in

this case, even regardless of the clock signal.

Assume that a low signal is now initiated from a cell on the left.

If the clock signal is high, the amplifier transmits a low signal to its

right as required. The low signal is also fed back to the left side of

the amplifier; the feedback loop is designed to permit sensing when

amplification is to take place from right to left. However, in the pre-

sent case the effect is to bring the amplifier to a stable, active state

in which the amplifier continues to transmit a low signal to the right

even though the originating signal on the left disappears. The clock

signal therefore is needed to periodically restore the amplifiers. If

the clock signal goes low momentarily, the amplifiers are reset.
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Gate-1 may be viewed as a detector which senses when amplification

is to take place in either direction; Gate-2 and Gate-3 are amplifying

gates. If a low signal is initiated by a cell on the right, the bus am-

plifier transmits a low signal to the left in similar fashion. Notice

that the amplifier again achieves a stable, active state and must be

reset by the clock signal later.

The use of clocked bus amplifiers must necessarily reduce the

effective computing speed of the machine; the amplifiers must be re-

set during a dedicated phase of the basic machine cycle. However,

the resulting savings in terminals required per cell is thought to be a

good trade-off.
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XI. INPUT AND OUTPUT ARRANGEMENTS

In keeping with the desire for a single cell design, all cells are

provided with input-output lead terminals whether or not the terminals

are ever to be connected to actual inputs or outputs. A design is

sought which minimizes the number of such terminals. Solutions re-

quiring only one lead per equipped memory word bit will be described.

Figure 14 shows three simple interface arrangements. Three

types of applique circuits are available for location adjacent to the

cell. A single lead from the 0-side of the memory word bit is extend-

ed to the applique circuit. The applique circuit is to provide buffer-

ing of logic levels and noise protection for the cell. The NAND gates

shown are expected to be designed especially to these requirements.

The single lead is sufficient for the output applique. The X3

output lead tracks the state of the X3 flip-flop as it is changed during

program execution. When X3 is storing a 1, the X3 output lead is

high.

The provision of a single lead is somewhat restrictive in the

case of input. There are cases where it is desirable for the state of

the flip-flop to track the input lead. In the present circuit, the flip-

flop can be set by the input lead but program action is required to re-

set the flip-flop. If the program is designed to deal with input cells

at sufficiently frequent intervals, no input information is lost. When
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the X3 input lead goes high, a 1 is to be stored in X3; the 0-side of

the X3 flip-flop is driven low, causing it to be set. An appropriate

SET or STORE instruction is then sufficient to reset X3. Notice that

the input cell in fact buffers a momentary input signal for later pro-

cessing; for some applications such buffering is beneficial.

The combination input-output applique provides for sharing the

single lead for both input and output. There must again be coordina-

tion between the program and the input signals.

Two-way buffer circuits, similar to the bus amplifiers previ-

ously described, can be used as interfaces. These should provide

better noise protection as compared with extending leads directly

from the memory word flip-flops. Figure 15 shows a typical arrange-

ment. Filters on the output leads are needed to eliminate spurious

signals caused by the two-way buffer circuits being periodically reset.

Input buffers match logic levels for input signals; similarly, the last

stage of the filters match logic levels for output signals.

On input there must still be coordination between program ac-

tions and input signals. Observe how the X3 input lead going high

causes the X3 flip-flop to be set; The two-way buffer associated with

X3 receives a low on its right side. In turn it transmits a low to its

left side, which is attached to the 0-side of X3 flip-flop. This low

signal causes X3 to be set. The X3 output lead goes high and remains

so as long as X3 remains set. This return signal can be used as a
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form of check that the input signal was received.

The stylized waveforms of Figure 15 illustrate how the X3 out-

put signal is developed when the X3 flip-flop changes from the reset

state to the set state. The change of state may be due either to an in-

put signal, as described above, or to a program action. When X3 is

set, its 0-side goes low. The low in turn is transmitted by the two-

way buffer to the filter, together with extraneous, inverted clock

pulses. The clock-like pulses are developed at times when the two-

way buffer is being periodically reset. The filter is simply a flip-

flop and gating. The filter flip-flop retains its previous state during

the clock pulse and therefore the extraneous clock pulses are removed

from the output signal.
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XII. ESTIMATING THE NUMBER OF GATES PER CELL

The number of gates per cell is a measure of the cell's com-

plexity. In this section, estimated gate counts are given for various

lengths of the cell's memory word.

There are practical constraints on the physical realization of a

cell as an integrated circuit. The number of permissible external

connections to the chip is a limit not easily extended. In the present

cell design, reducing the number of required terminals has been a

primary consideration. The gate count is related to the area required

for the chip. Chip area is also required for leads interconnecting the

gates. The cell is obviously not a planar circuit so that a certain

number of crossovers of interconnecting leads on the chip are essen-

tial. Reducing the number of such crossovers is a secondary design

consideration not yet attempted.

Consider now the terminal requirements for the cell under

study. Figure 16 shows a listing of the 33 terminals required, as-

suming eight input-output lead terminals; that is, eight bits of infor-

mation could be simultaneously put into the cell or read out of the

cell. Notice that if two cells could be realized on one chip, the ter-

minal requirements would only be increased by another set of eight

input-output lead terminals; the three intermediate, intercell leads

would be internal to the chip, and the bus leads are common to both
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Figure 17 is a set of curves showing the number of terminals
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per cell (one cell per chip) as a function of the number of memory

word bits and the number of input-output leads. The cell with 16

memory word bits and eight input-output leads is shown to require 33

terminals .

In an earlier section an extensive instruction set for the DLM

computer was proposed. It is obvious that the effect of certain of the

instructions can be realized by a sequence of other instructions pre-

sent. The inclusion of the additional instructions permitted a reduc-

tion in program storage and execution time. It is well to consider if

a significant number of gates per cell would be saved if a reduced in-

struction set were used. Two reduced instruction sets were postulat-

ed, as shown in Figure 18. The "medium" instruction set is generat-

ed by eliminating INTERPRETIVE-MATCH, SET-SPECIAL and five

of the short-form instructions; the equivalent long-form instructions

are sufficient. The "small" instruction set represents a near mini-

mal repertoire. Noticeable by their absence are the two types of

branching instructions. Their loss is not quite as restrictive in a

DLM computer as compared to a conventionally organized machine

because, with parallel processing, looping is frequently not required.

However the lack of branching instructions does limit the applicability

of the machine.
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A breakdown of estimated gate counts for the three instruction

sets is shown in Figure 19. Reducing the instruction set produces

savings in Sequence Control and Decoder. All items except Sequence

Control are combinatorial logic so that gate counts are directly esti-

mable. The number of eight gates per memory word bit, derived pre-

viously, was used for X3 through X11.

Sequence Control was essentially designed for each of the three

cases with the aid of a set of computer programs developed by P. M.

Sherman (1964) and others. The results consist of a listing of inter-

connected NAND gates so that gate count is established. The comput-

er programs do an extensive amount of searching for near-minimal

solutions to the sequential circuit realizations. Certain simplifying

assumptions were required in Sequence Control in order to adapt it to

the capabilities of the design programs; to compensate for possible

omissions, gate counts for Sequence Control were increased by 10%.

A range of 235 gates to 295 gates, depending upon instruction

set, is found for a cell with a 16-bit memory word. Estimated gate

counts for a range of word sizes are shown in Figure 20. It should be

noted that the proportion of logic saved per cell by using a reduced in-

struction set is not great. Also a greater number of cells would nor-

mally be required. Therefore, the full instruction set should probably

be used.
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XIII. HOMOGENEITY

A computer has been described which is built out of identical

cells. There are no external registers or adders; the logic and mem-

ory are distributed throughout the system. Cells used to store in-

structions are identical with cells used to store data or with cells

having input-output applique circuits attached.

Consider the following three categories of cells: (a) Program

cells, (b) Data cells and (c) Input-Output cells; and consider whether

savings could be effected by developing three types of cells. All cells

must have a certain logical consistency in order to work together pro-

perly. However, program and data cells do not need input-output lead

terminals and data cells do not need Z-signal intercell leads and as-

sociated internal gating. Some simplification is therefore possible in

the Sequence Control of data cells. Notice, however, that once pro-

gram cells and data cells are made different, data cells can no longer

be changed to program cells, and vice versa, by program instructions,

as can be done presently. Moreover, the possible savings in logic

are probably less than 10% and therefore not significant.

There is more cause to make input-output cells different. Cer-

tain applications may require eight or sixteen input-output lead termi-

nals whereas others only require that one memory word bit be

equipped. In addition the arrangement of the input-output interface
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hardware is variable.

For the present, a general-purpose cell is proposed for all

three categories of cells. However, it is recognized that special

input-output cells may be sometimes justified.
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XIV. DATA MULTIPLEXER AS A PRACTICAL APPLICATION

This section describes in some detail a practical application for

the DLM computer structure. An inexpensive data multiplexing sys-

tem is desired. Specifically the information carried on 80 teletype-

writer lines is to be multiplexed onto a single, high-speed data chan-

nel of about 9000 bit/second capacity. The present proposal covers

only the transmitting end which receives information from the various

teletypewriter lines and places it in proper time sequence on the high-

speed data channel; the equipment at the receiving end is undoubtedly

similar but is not discussed here. It will be seen that parallelism in-

herent in the DLM structure is exploited to simultaneously assemble

the various teletypewriter characters.

Current teletypewriters use an 11-element character, transmit-

ted serially in approximately 100 milliseconds. Refer to Figure 21,

which shows stylized, typical waveforms. A teletypewriter character

contains eight information bits and three bits (START, STOP-1 and

STOP- 2) for synchronization. A teletypewriter line, when idle, trans-

mits the 1-level. The START bit is always 0 and establishes charac-

ter timing. There may be any length idle periods between characters;

the START bit effects resynchronization. Note from Figure 21 that

signals on the various lines are not in synchronism, which compli-

cates the problem. It is essential that the beginning of a START bit
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be recognized promptly in order that the following bits may be detect-

ed properly in view of the permissible signal distortion on a teletype-

writer line. Therefore, it is proposed that every teletypewriter line

be sampled about every 70 microseconds; in the worst case less than

1% of a START bit would have passed before detection.

The solution to be described is straightforward to explain but

perhaps not the most economical to implement. No hardware inter-

rupt capability is assumed to aid in scheduling tasks. A 31-bit cell is

used although clearly a shorter memory word is feasible if the num-

ber of cells is increased. A hardware shift register is used at the

interface to the high-speed channel equipment to eliminate a timing

requirement.

The program itself is essentially straight line code which is to

be run every 71 microseconds. A basic machine cycle time of about

0. 25 microseconds is required. With this programming strategy,

very little work is accomplished during any particular run of the pro-

gram; however, if work to be done is found, it is completed on time.

Figure 22 shows a layout of the cellular structure. One group

of cells is devoted to program storage. Eighty line cells have access

to the individual teletypewriter lines via simple input appliques. The

input appliques act to buffer logic levels and provide noise protection.

The output buffer cell connects with eight leads to the hardware shift

register. The shift register is arranged to signal a cell when a new
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teletypewriter character may be placed in the output buffer cell; this

removes yet another timing requirement from the program. It is

clear that hardware-software tradeoffs proposed here would have to

be re-examined in an actual implementation.

A single clock with countdown arrangements is sufficient. A Z

signal is supplied to the entry point of the program every 71 micro-

seconds. The program runs to completion and the cellular structure

is idle until the program is reinitiated.

The high-speed data channel is designed to run at a slightly fast-

er rate than the composite signaling rate of the 80 teletypewriter

lines. A transmission frame consists of a unique framing character

followed by one teletypewriter character from each of the 80 lines,

transmitted serially in sequence. If a teletypewriter line has not sup-

plied a complete character at the time that its time slot occurs, a

unique idle character is automatically inserted. Briefly, the job of

the DLM computer in this application is to sample lines and assemble

the teletypewriter characters and to place the characters in proper

time sequence in the output buffer cell.

Consider now the layout of the 31-bit line cell as shown in Fig-

ure 23. The lead from the input applique is connected to flip-flop X3

(present look). Therefore, X3 represents the current state of the

teletypewriter line. X4 (last look) is a record of the state of the line

at the last time the program was run. To protect against noise, two
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successive, identical samples must be seen before a change of state

on the line is accepted. X5 (corrected last look) is updated whenever

the present look and last look agree.

Bits X25 and X26 are used to establish four separate modes:

Mode X
26

X25

0 0 0 Idle

1 0 1 Receiving START Bit

2 1 0 Assembling Character

3 1 1 Character Complete

Bits X6 through X12 are used as a 7-bit counter. In nonidle

line cells, the counter is incremented each time the program is run,

i. e. , every 71 microseconds, and thereby provides timing for sam-

pling the individual bits of the teletypewriter character, Note that

71 p.sec x 27 = 9. 09 msec

which is the nominal length of each bit of the teletypewriter character.

Bits X13 through X16 are used as a 4-bit counter to establish

which bit of the teletypewriter character is currently being sampled.

Bits X17 through X24 are set aside to store the individual bits and

thereby assemble the teletypewriter character.

Finally, bits X27 and X28 are assigned as flags to aid process-

ing. Bits X29 and X30 are used in program cells to specify conditions
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on Match and Control flip-flops and therefore are not used in data

cells. The way in which bits in the line cell are processed should be-

come clear as the program is described in the following section.

Description of Data Multiplexer Program

The data multiplexer program is flowcharted in Figure 24. The

bulk of the program is straight-line code. The three indicated deci-

sion points deal with the transfer of characters from line cells to the

output buffer cell. The flowchart should aid in understanding the pro-

gram itself, which is given in its entirety in the Appendix.

The hardward shift register can signal that it is ready for a new

character anytime during the last bit of the previous character. It

will be shown that the output buffer cell can supply a new character

within 71 microseconds after such a signal.

The several sections of the data multiplexer program, listed

in the Appendix, will now be described in sequence:

a) Update Corrected Last Look Bit. The instruction SET 0

(X3=0) is needed to bring the present look bit (X3) of each line cell up

to date. Recall that with the simplified, one lead per bit, input ar-

rangement, memory bits must be reset by program control. The cor-

rected last look bit (X5) is then made to agree with present look and

last look bit in all cells where they have the same value. The cor-

rected last look therefore represents a smoothed value of the input



75

signal. Finally the last look bit (X4) becomes the current present

look.

b) Detect START Bit. When the mode of a line cell is 0 and its

corrected last look becomes 0, the beginning of a START bit has been

recognized; the mode is set to 1 and the timer, bit counter and char-

acter bits are reset.

c) Sample START Bit at Midpoint. While the mode of a line

cell is 1 or 2, its timer is incremented by one each time the data

multiplexer program is run, i. e. , every 71 microseconds. When the

count reaches 64 while mode =l, the state of the corrected last look

bit is tested. If CLL=0, a valid START bit is assumed; mode is set

to 2. On the other hand, if CLL=1, a false start is recognized and

mode is reset to 0.

d) Increment Timers in Nonidle Cells. All line cells with mode

of 1 or 2 are set with a temporary flag (X27). The instructions that

follow implement the incrementing by one of the 7-bit timer in each

flagged cell. The method used is the same as that for a previous pro-

gramming example. Note that when a timer which has reached its

maximum count is incremented, the count is reset to 0.

3) Assemble Character Bit. Note that timers continue to ad-

vance while a line cell has a mode of 2. Thus when the count reaches

64 a new bit may be sampled and stored. Such cells are temporarily

flagged (by C and X27). Their bit counters are incremented by one.
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Such cells with a bit count of 9 have previously stored the eight bits of

the character and are currently at the STOP-1 bit; their mode is set

to 3 to indicate character complete. In the other eight cases, the

mode is not changed and the sampled bit is stored according to the

current bit counter value.

f) Test if Shift Register Has Signaled Ready. The shift register

signal lead is connected to bit X3 of a sensor cell in the data area; a

unique USEKEY of 7 is assigned to this cell for convenience. Recall

that with the simple input arrangement, a momentary signal from the

shift register is sufficient to set X3. The conditional branch trans-

fers control to Label-4 if X3 = 1; if X3 =0, the program ends because

Z-signal propagation is stopped by the dummy DATA-LABEL.

g) Advance Floating Flag. Beginning at Label-4, bit X3 of the

sensor cell is reset so that another signal may be received. Bit X28

of every line cell is dedicated to the floating flag procedure. The pro-

cess is analogous to a ring counter; only one cell has X28.1 at any

time. The flag advances from left to right, one line cell at a time,

as the shift register signals that it is ready for a new character.

Floating flag has been found to be an efficient means to keep track of

the current time slot during each transmission frame. A cell with

unique USEKEY of 2 has been placed at the right of the last line cell.

This permits determination of whether the floating flag has reached

the far right-hand line cell and must next be restarted at the left.
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The conditional branch causes program control to branch to Label-3

if the floating flag must be restarted; if not, the program continues.

h) Test Flagged Line Cell for Character Complete. A TRANS-

FER sequence is used to move information from the flagged cell to

the output buffer cell. The output buffer cell is given a unique USE-

KEY of 3 for convenience. If the flagged cell does not have a com-

plete character, note that the MATCH instruction will not succeed in

matching. Therefore, during the null operand of the OUTPUT in-

struction, no signal will appear on the bus and the information stored

in the output buffer cell will be all 0's. A test is made for the all 0's

case, and if found, an idle character of seven l's and one 0 is placed

in the output buffer cell. The program ends again at a dummy DATA-

LABEL.

i) Restart Floating Flag at the Left. Beginning at Label-3, the

floating flag is stored in a spare DATA-WORD cell at the left of the

first line cell. Then a framing character is placed in the output buf-

fer cell. The program ends because Z-signal propagation is stopped

by the Label-2 DATA-LABEL.

Observations on Data Multiplexer Program

Recall that only two CONDITIONAL-BRANCH1 instructions ap-

pear in the program whereas three decision points are clearly indicat-

ed on the flowchart. This illustrates again that decision-making is
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built into some of the instructions so that conditional branching is not

always required. Indeed whether a particular cell responds to an in-

struction or not is a decision.

Some 116 instructions were required for the data multiplexer

program. Figure 25 summarizes some of the statistics for the pro-

gram. It is clear that the sample is too small to be able to reach

many general conclusions, e. g., on typical instruction mix. How-

ever, for the particular program, the bulk of the instructions used

were of the three-cell type. MATCH, STORE and RESETM were the

most often used instructions and this will probably be generally true

with such a content-addressed structure. There was little opportunity

to use the short-form instructions. The powerful instructions MARK-

LEFT and MARK-RIGHT were not used at all.

A 31-bit memory word cell is convenient as a line cell but cer-

tainly wasteful as a program cell; the additional bits are not put to

use. For comparison, the entire data multiplexer program was re-

written with a 16-bit cell restriction and the results are summarized

here. It is clear that the data area will require more cells and the

program size will increase somewhat to deal with the new cells. Spe-

cifically, two auxiliary cells were associated with each line cell, one

placed on its left and the other on its right. This essentially triples

the number of cells required in the data area. However, the number

of instructions only increases to 141, requiring 324 cells. The total
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system consists of 570 cells, each having a memory word of 16 bits.

The maximum number of machine cycles per program run is only in-

creased to 321. It is clear that more must be known about the cost of

manufacturing cells in quantity before one or the other system can be

preferred. It is certainly feasible to design programs around the

shorter memory word cell however.

The use of the floating flag provides a potential dividend. If

technology improves so that more teletypewriter lines can be multi-

plexed onto a higher speed data channel, additional line cells can be

inserted into the structure without reprogramming. The floating flag

circulates through the old line cells and through the new line cells to

keep track of time slots. Of course, the hardware shift register tim-

ing must be increased appropriately.
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XV. FUTURE WORK

It is felt that the DLM structure may find application in tele-

phone switching systems as well as data transmission terminals. For

example, the task of autonomous line scanning and dialed digit col-

lection is a candidate. The task of path search for the switching net-

work is another. Some work has already been done on the latter

(C rane, 1968).

Testing the feasibility of the DLM structure programmed as an

autonomous line scanner is yet to be done. However, possible simi-

larities in programming strategies for line scanner and data multi-

plexer are already evident.
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XVI. DLM COMPUTER SIMULATOR

A simulator for the DLM computer was written in FORTRAN IV

and Assembler language for an IBM 360/30, which has about 44, 000

bytes of core storage available to the user. The simulator permits a

check on the system design by simulating individual DLM computer

instructions and furthermore is a debugging aid for such programs.

Simulations are presently limited to 2000 cells. The simulator can

trace individual cell contents, common bus signals and intercell lead

signals after each machine cycle, if desired. Therefore, it is easy

to see the response of cells to the individual instructions of a DLM

computer program being executed. The example programs described

previously (including the data multiplexer program) were run on the

simulator, as were approximately 35 other short programs.
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XVII. SUMMARY

The advent of large-scale integration has caused renewed inter-

est in new computer organizations. The straightforward partitioning

of a conventionally organized, central processing unit into blocks of

logic results in a number of different, integrated circuit designs and

perhaps also a large number of terminals per circuit. One goal of

the present study was a computer organization utilizing only one inte-

grated circuit design, requiring a suitable number of terminals.

Furthermore, a small but growable computer was sought to

compete with special-purpose, wired-logic controllers. The usual

functions performed by static registers, shift registers and counters

are programmable in the DLM computer. It is felt that the DLM

computer will prove to be less expensive to manufacture and program

than would a number of unique wired-logic controllers, where several

control applications are anticipated.

The economy of large-scale integration is certainly required

for feasibility. The total number of gates in a DLM computer is

large. Practicality must probably wait for a manufacturing cost per

gate of a few cents. But such costs are predicted in connection with

large demand, large-scale integrated circuits (Petritz, 1967).

Finally, not all computer organizations involving large-scale

integration have yet been investigated. The present study covered a

particular structure, leading to a family of computers. Certainly

quite different structures are possible. However, content addressing

seems to be naturally suited to a modular structure.
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APPENDIX



UPDATE CORRECTED LAST LOOK BIT

Data Multiplexer Program Instructions and Data Areas

IN ALL LINE CELLS */
SET 0 X5=0) /* UPDATE PRESENT LOOK IN ALL LINE CELLS *
MATCH 0 X4 =0 X3 =0) /* LAST LOOK =O, PRESENT LOOK =O */
STORE 0 X5=0) /* CORRECTED LAST LOOK i 0 */
RESETM 0
MATCH 0 X4 =1 X,3 =1) /* LAST LOOK=1, PRESENT LOOK=1 */
STORE 0 (X5=1) /* CORRECTED LAST LOOK 1 */
RESETM 0
MATCH 0 X5=1 /* PRESENT LOOK=1 */
SET 0 X,_=0
STORE 0 X4 =1 /* UPDATE LAST LOOK */
RESETM 0

DETECT START BIT */
MATCH 0 (X5=0,X56=0,X55=0) /* CORRECTED LAST LOOK=0, MODE =O, I.E., START BIT BEGINNINGSTORE 0 X 25=1,-12 O,X 11=O0X lo=0,Xg=0,X5=0,X,=0,x6=0,X18=0,X15=0,X142,X1

X17=0,Xip=0,X19=0,K20=0,Xql=0,X55=0,X2s=0,K21=0) RESET TIMER, BIT COUNTER, CHARACTER BITS */RESETM 0

SAMPLE START BIT AT MIDPOINT AND RESPOND */
MATCH 0 (X5=0,X28=0,X25=1,X15=1,X11=0,X15=0,Xg=0,X5=0,X5=0,X6=0)
STORE 0 (X58=1,X25=0) /* MODE .2, BEGIN TO ASSEMBLE CHARACTER
RESETM 0
MATCH 0 (X5=1,X2s=0,X25=1,K12=1,K11=0,X10=0,X9=0,X5=0,X7=0,X6=0)intim 8 (x2,--o,x25=0) /* MODE -.0, FALSE START SO RETURN TO rnrp

/* CLL =O, MODE=1, TIMER=64
*/

/* CLL=1, MODE=1, TIMER=64
*/

INCREMENT TIMERS IN NONIDLE CELLS */
MATCH 0 X56 =0,X25=1
MATCH 0 X201 X25 =0 /* SELECT NONIDLE CELLS, MODE=1,2 */STORE 0 X57=1) /* SET TEMPORARY FLAG DURING INCREMENTING */RESETM 0
MATCH 0 (X57=1,X6=0)
STORE 0 (X57=0,X5=1) /* 0 -. 1 */
RESETM 0
MATCH 0 (X57=1,X7=0,X8=1)
STORE 0 (X27=0,X7=1,X6=0) /* 01 10 */
RESETM 0
MATCH 0 (X57=1,X5..0,X7=1,X8=1)
STORE 0 (X57=0,X5=1,X7=0,X5 =0) /* ----011 ----100 */
RESETM 0
MATCH 0 (X27=1,X9=0,X5=1,X7=1,X6=1)
STORE 0 (X57 =0,X5=1,X5=0,X7 =0,X8=0) /* -- -3111 ---1000 */
RESETM 0

*/



MATCH
STORE
RESETM
MATCH
STORE
RESETM
MATCH
STORE
RESETM
MATCH
STORE
RESETM

ASSEMBLE
INCREMENT BIT COUNTER AS FIRST STEP */

MATCH 0 (X28=1,X22=0,X12=1,X11=0,X/2=0,Xg=0,X8=0,X2=0,X6=0) /* MODE=2, TIMER=64 */STORE 0 (C=1,X27=1) /* SET TEMPORARY FLAGSRESETM 0
MATCH 0 (X27=1,X12=0)
STORE 0 (X22=0,X13=1) /* 0 1 */RESETM 0
MATCH 0 (X22=1,X14=0,X13=1)
STORE 0 (X22=0,X14=1,X13=0) /* 01 , 10 */RESETM 0
MATCH 0 (X27 =1, Xi 5 .0, X4 4 =1, 3 =1 )
STORE 0 X2 = 0 , X1 X1 4 X1 3 /* .4011 , 100 */RESETM 0
MATCH 0 (X27 =1, X16 =0,X1 5 =1,X14 =1 ,Xla =1)
STORE 0 (X27 =0,X1 6 .1.0(15=0.0E14 =0,X1 3 .0) /* 0111 , 1000 */RESETM 0

0 (X27=1,X10=0,X9=1,XA=1,X7=14X6=1)
0 (X22=0,X10=1,X9=0,X8=0,X2=0,X6=0) /* --01111 --10000 */
0
0 (X27=1,X11=0,X12=1,X2=1,X8=1,X2=1,X6=1)
0 (X22=0,X11=1,X10=0,X9=0,X8=0,X2=0,X6=0) /* 011111 - 100000 */0
0 (X2,=1,X12=0,X11=1,X12=1,X9=1,X8=1,X2=1,X6=1)
0 (X22=0,X12=1,X11=0,X12=0,X9=0,Xe=0,X2=0,X8=0) /* 0111111 1000000 */
0
0 (X27=1,X12=1,Xit=1,X12=1,X9=1,X8=1,X2=1,X8=1)
0 (X27=0,X12=0,X11=0,X10=0,X9=0,X8=0,X2=0,X6=0) /* 1111111 0000000 */
0

CHARACTER BIT IN ALL LIRE CELLS DUE TO BE SAMPLED */

*/

STORE INDIVIDUAL CHARACTER BITS */
MATCH 0 (C=1,X16 =1,X15 =0,X14 =0,Xi3 =1,4 =0.1;7 .0,X1 8 =0,

X19 =0, X6 9 =0,X21 =0,42 =0,43 =0,1(24=0) /* BIT COUNT=9, CLL=0, ALL SPACE CHARACTER */STORE 0 O=0,X25=1,X24=1) /* UNIQUE CODE ?MALL SPACE CHARACTEE,MODE - 3, CHARACTER COMPLETE */MATCH 0 C=1,X,6=1,X15=0,X,4=0,X12=1) /* BIT COUNT=9 */STORE 0 X25=1) /* MODE 3, CHARACTER COMPLETE */RESETM 0
MATCH 0 (C=1,X 6=1,X1 5=0,X14=0,X12=0,X 5 =1) /* BIT COUNT=8, CLL=1 */STORE 0 (X24=1) /* BIT 8=1 */
RESETM 0
MATCH 0 (C=1,X16=0,X15=1,X14=1,X13=1,X5 =1) /* BIT COUNT=7, CLL=1 */STORE 0 (X23=1) /* BIT 7=1 */RESETM 0
MATCH 0 (0=1,X16=0,X15=1,X14=1,X12=0,X5 =1) /* BIT COUNT=6, CLL=1 */STORE 0 (X22=1) /* BIT 6=1 */RESETM 0
MATCH 0 (C=1,X 6 =0,X15=1,X14=0,X12=1,X 5 =1) /* BIT COUNT=5,CLL=1 */STORE 0 (X21=1) /* BIT 5=1 */
RESETM 0
MATCH 0 T,1=0,X.5=1,Xt4=0,X,2=0,X2 =1) /* BIT COUNT=4, CLL=1STORE 0 ( /* BIT 4=1 */
RESETM 0

00
Ch



MATCH (c=1,;(18-0,x12=0,x1,=1,xi2=1,x2=1) /* BIT COUNT=3, CLL=1 */
STORE o (x12=1) /* BIT 3 =1 */RESETM 0
MATCH (c=1,x16=o,x12=0,x14=1,x12=o,x5=1) /* BIT COUNT=2, CLL=1STORE o (x12.1) /* BIT 2=1 */RESETM 0
MATCH (c=1,x12=o,x12=o,x,4=o,xt2=1,x2=1) /* BIT COUNT=1, CLL=1 */
STORE o (x17=1) /* BIT 1=1 */RESETM 0
RESETC 0

/* TEST IF SHIFT REGISTER HAS SIGNALED THAT IT IS READY FOR A NEW CHARACTER */MATCH 7 (0001 0008) /* TEST SHIFT REGISTER SENSOR FOR X3 =1 */
CONDITIONAL-BRANCH1 4,5,7 /* IF MATCH, GO TO LABEL-4 */
DATA-LABEL (0000 0000) /* DUMMY CELL USED TO STOP Z-SIGNAL PROPAGATIGIN /

PROGRAM-LABEL (0000 0000) /* LABEL=1 */
CONDITIONAL-BRANCH2 5 /* PROGRAM LEG IF NO MATCH AT CONDITIONAL BRANCH

/* ADVANCE FLOATING FLAG */
PROGRAM-LABEL 0001 0008) /* LABEL-4 */
SET 7 /* RESET X,2 FLIP-FLOP OF SPECIAL-7 */MATCH-RIGHT 0
SET 0,2

x3=0)
/* SELECT CELL TO RIGHT OF FLAGGED CELL */

x22=0 /* CLEAR FLOATING FLAG */
STORE 0,2 X28.81 /* STORE FLOATING FLAG */RESETM 0,2

/* TEST IF FLOATING FLAG HAS ADVANCED BEYOND RIGHTMOST LINE CELLMATCH 2 (1000 1000 /* X28=1 */
STORE 2 (0000 1000
CONDITIONAL-BRANCH1 2,4,5 /* IF MATCH, GO TO LABEL-3

/* TEST FLAGGED LINE CELL FOR CHARACTER COMPLETE
SET 3 (4000 0000) /* RESET OUTPUT BUFFER CELL BUT SET M FLIP-FLOP */TRANSFER 3
MATCH (x-1o,x,,,=1,x.1) /* SELECT FLAGGED CELL WITH CHARACTER COMPLETESTORE o (x,6=,x.,=o) /* MODE 0, IDLE */

*/
OUTPUT 0,3 /* COMPLETE TRANSFER SEQUENCE */MATCH 3 (X =0) /* TEST FOR NO INFORMATION TRANSFERREDSTORE 3 (x,77=1,x=1,x,9=1,x20.1,x2i=1,x=1,x23=1,x24=0) /* STORE IDLE CHARACTER */RESETM 3
DATA-LABEL (0000 0000) /* DUMMY. CELL USED TO STOP Z-SIGNAL PROPAGATION */

/* RESTART FLOATING FLAG AT THE LEFT OF LINE CELLS */
PROGRAM-LABEL (0000 1000) /* LABEL-3 */

7* SELECT CELL IMMEDIATELY TO LEFT OF LINE CELL 1
/* STORE FLOATING FLAG, X28=1 */

MATCH-RIGHT 1
STORE 0
RESETM 0
SET 3

0000 0100
1000 0000

(ooAA 0000)

*/

/* STORE FRAMING CHARACTER IN OUTPUT BUFFER CELL, FRAMING CHARACTER=10101010 */



/* DATA AREA */
DATA-LABEL 0000 0100 /* LABEL-2 */
DATA-WORD 1000 0000 /* CELL USED WHEN FLOATING FLAG RESTARTED, INITIALLY X26=1 */DATA-WORD 0000 0000 /* LINE CELL 1, X3 CONNECTED TO INPUT APPLIQUE */
DATA-WORD 0000 0000 /* LINE CELL 2, X3 CONNECTED TO INPUT APPLIQUE */

1

t

DATA-WORD 0000 0000 /* LINE CELL 80, X3 CONNECTED TO INPUT APPLIQUE */
SPECIAL-2 0000 1000 /* USEKEY=2, SENSOR FOR FLOATING FLAG NEEDED TO BE RESTARTED */
SPECIAL-7 0001 0000 /* USEKEY=7, SENSOR FOR SHIFT REGISTER READY, X3 CONNECTED TO SHIFT REGISTER
SPECIAL-3 0000 0000 /* USEKEY=3, OUTPUT BUFFER CELL, X17 THROUGH Xy4 CONNECTED TO SHIFT REGISTER

Note: An eight-digit hexadecimal number, such as (00AA 0000) is used as an alternate method of specifying the bit pattern for the 31-bit cell.
This number is expanded below to show its correspondence with the desired bit pattern:

Hexadecimal
Number Desired Bit Pattern

00AA 0000 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 I 1 0 1 0 1 0 0 0 0 10 0 0 010 0 0 010 0 0 01
M C X25 X27 X26 X25 X24 X23 X2 2 X,1 X20 X19 X58 X17 X16 XI 5 X14 XI 3 XI 2 X11 X10 Xg X3 X7 X8 X5 X4 X3 X2 X1 XO



Inter ce II
Leads

Comm on
Bus
Leads

Input/Output
Leads

CELL

Figure 1. Cell interconnections for DLM computer.
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USEKEY

Bits of
Memory Word

X2 X1 X
0 Use of Cell

0 0 0 0 Data Word

1 0 0 1 Data Label

2 0 1 0 (Available to Programmer)
3 0 1 1 (Available to Programmer)

4 1 0 0 Program Label
5 1 0 1 Program Operand

6 1 1 0 Program Op-Code

7 1 1 1 (Available to Programmer)

Figure 2. Assignment of USEKEY's.
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TRANSFER (6, 1 )

LEFT (6, Z)

RIGHT (6, 3)

INTERPRETIVE-MATCH (6, 4)

MATCH - Long Form (6, 5)(5, I)(5, J)

UNCONDITIONAL-BRANCH (6, 6)(5, I)

RESETM (6, 7)

STORE - Long Form (6, 8)(5, I)(5, J)

SET - Long Form (6, 9)(5, I)(5, J)

MATCH-LEFT (6, 10)(5, I)(5, J)

MATCH-RIGHT - Long Form (6, 11)(5, I)(5, J)

MARK-LEFT (6, 12)

MARK-RIGHT (6, 13)

OUTPUT (6, 14)(5, 0)

CONDITIONAL- BRANCH2.. (6, 15)

CONDITIONAL-BRANCH1 (6, 16)(5, 0)

RESETC (6, 17)

MATCH - Short Form (6, 18)(5, I)

MATCH-RIGHT - Short Form (6, 19)(5, I)

STORE-SPECIAL - Long Form (6, 20)(5,1)(5, J)

STORE - Short Form (6, 21)(5,1)

SET - Short Form (6, 22)(5, I)

STORE-SPECIAL - Short Form (6, 23)(5, I)

SET-SPECIAL (6, 24)(5, I)

Figure 3. Proposed instruction set for DLM computer.
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Match
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Modifiers-1
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USEKEY
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Cell (N)

Figure 4. Example of
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typical instruction: STORE 0 (C=0, X8=1).
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Mismatch
Op-Code=5

Check Ps

Check O's

That portion of State Transition Diagram for MATCH - Long Form
(6, 5)(5, I)(5, J)

Figure 5. State transition diagram.
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+V +V

NAND Gate

Output

Symbol

A
B

C
D

Logical Function
f = (AB+CD)(EF)v

Equivalent Form

Figure 6. Example of NAND gates whose outputs may be tied
together.
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Inte rcell
Leads

F

Input-Output Leads

so
Sequence Control

Connections to Common Bus

Figure 7. Block diagram of cell..

CELL]
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Set]. Sett

Common Bus Leads

0 0 0 0
Output Matchl Match2 Mismatch

CELL

X7

4

Figure 8. Input-output gating of memory word and common bus
interconnections.
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Cell

Perhaps 100 Cells
Between Bus Amplifiers

Common Bus
Bus
Amplifiers

Figure 10. Cell interconnections including one-way bus amplifiers.
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CELL
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*-1
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Figure 11. Cell interconnections with one-way bus amplifiers.
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Cell

Perhaps 100 Cells
Between Bus Amplifiers

Common Bus
Bus
Amplifiers

Clock Lead for Bus Amplifiers

Figure 1Z. Cell interconnections including clocked two-way bus amplifiers.
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Set I Set 2 u put Matchl Match2 Mismatch
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CELL
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Clock Lead for Bus Amplifiers

Figure 13. Cell interconnections with two-way bus amplifiers.
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Input Applique

3
Input Lead

1- p1

CELL

Output Applique
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3
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Figure 14. Examples of simple input-output interfaces.
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P

X

Input Buffers

F lte rs

Two- Way
Buffer Amplifier

L _ _

0
Clock

Point 1
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X5 Input Lead

X5 Output Lead

X4 Input Lead

X4 Output Lead

X
3

Input Lead

X3 Output Lead

(Point 2 V

0

Point 3 + apiMi I I
ommummli

(Point 4 +V dip
0 .

Figure 15. Using two-way buffer amplifiers and filters for input-
output interfaces.
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Common Bus Leads Intercell Leads

Terminal 1. +V Terminal 20. Left A

2. Common 21. Left M

3. Clock-1 22. Left Z

4. Clock-2 23. Right A

5. 0 Lead 24. Right M

6 Z Reset 25. Right Z

7. X3 Input-Output Leads

8. X4 Terminal 26. X3

9. X5 27. X4

10. X6 28. X5

11. X7 29. X6

12. X8 30. X7

13. X9 31. X8

14. X10 32. X9

15. X11 33. X10

16. X12

17. X13

18. X14

19. X15

Assumptions: 1) Sixteen-bit Memory Word.
2) Eight bits of Memory Word equipped for input-

output.

3) Two clock leads with non-overlapping phases.

Figure 16. Listing of terminal requirements for cell.
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Assumptions:

1) One terminal per memory word bit equipped for gating on and off
common bus.

2) One terminal per memory word bit equipped with input-output
inte rface.

3) Three-bit USEKEY.

4) Two clock leads with non-overlapping phases.

100

90

80

70
U

a)

a, 60
cn

71;

r. 50

a)

E-1

40
0

30

20

10

0

aeL

0 5 10 15 20 25 30 35

Number of Memory Word Bits

40 45 50

Figure 17. Number of terminals per cell vs. number of memory
word bits for various numbers of input-output leads.
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Small Instruction Set (9 States) Large Instruction Set (22 States)

1. TRANSFER 1. TRANSFER

2. LEFT 2. LEFT

3. RIGHT 3. RIGHT

4. MATCH - Long Form 4. INTERPRETIVE -MATCH

5. STORE - Long Form 5. MATCH - Long Form

6. SET - Long Form 6. UNCONDITIONAL-BRANCH

7. MARK-LEFT 7. RESETM

8. MARK-RIGHT 8. STORE - Long Form

9. OUTPUT 9. SET - Long Form

10. STORE-SPECIAL - Long Form 10. MATCH-LEFT

11. MATCH-RIGHT - Long Form

Medium Instruction Set (16 States) 12. MARK-LEFT

1. TRANSFER 13. MARK-RIGHT

2. LEFT 14. OUTPUT

3. RIGHT 15. CONDITIONAL-BRANCH2

4. MATCH - Long Form 16. CONDITIONAL-BRANCH1

5. UNCONDITIONAL-BRANCH 17. RESETC

6. RESETM 18. MATCH - Short Form

7. STORE - Long Form 19. MATCH-RIGHT - Short Form

8. SET - Long Form 20. STORE-SPECIAL - Long Form

9. MATCH-LEFT 21. STORE - Short Form

10. MATCH-RIGHT - Long Form 22. SET - Short Form

11. MARK-LEFT 23. STORE-SPECIAL - Short Form

12. MARK-RIGHT 24. SET-SPECIAL

13. OUTPUT

14. CONDITIONAL-BRANCH2

15. CONDITIONAL-BRANCH1

16. RESETC

17. STORE-SPECIAL - Long Form

FIGURE 18. Three instruction sets for which the gate counts of the corresponding
sequence controls were estimated.



Item

Estimated Gate Count
Small

Instruction Set
Medium

Instruction Set
Large

Instruction Set

1. Sequence Control 9 States 47 16 States 72 22 States 85

2. Decode r 10 Instructions 44 17 Instructions 49 24 Instructions 58

3. Memory Word Bits
and Gating

X
0

through X2 12 12 12

X3 through X11 72 72 72

X12 through X15 32 32 40

4. Intercell Lead Gating 15 15 15

5. Match, Control Flip-
Flops and Gating 13 13 13

6. Input-Output None* None* None*

Totals 235 gates 265 gates 295 gates

It is assumed that external input-output interfaces are sufficient so no allowance is made for
gates as part of the cell.

Figure 19. Breakdown of estimated gate counts for the three instructions sets.
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1 - Mark
Idle

Line .1_0 - Space START 1 2

11-Element Teletypewriter Character (100 rnsec)

3 1 4

Line 2

5 j 6 7
ISTOPSTOPI

8 ji 1 2 j

Line 13 I

TART 1 j 2 3 I 4 5 j 6
T 0 T

7 8
1 1 I 2! I Idle

Little 4

Line 5

Lin 6

Figure 21. Stylized typical waveforms to be expected at teletypewriter line terminals.



Clock 7C ounte r
T'

Program

From
Teletypewriter

Line I

7 7
Common Bus Leads

A InTte

_

Teletypewriter
Lines

Line 1 Data
Line 2 Multiplexer

Line M

From
Teletypewriter

Line 80

Line Cells
L.

,

j

High-Speed Data Channel

To
High-Speed

Data Channel Equipment

Output
Buffer

Bit 8

Bit 1

Shift
Register
and
Counte r

Figure 22. Layout of cells for use as data multiplexer.
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X0, Xi, X2 - USEKEY

X3 - Present Look (PL)

X4 - Last Look (LL)

X5 - Corrected Last Look (CLL)

X6, X7, X8, X9, X10, X11, X12 - 7-Bit Timer

X13' X14' X15' X16 - 4-Bit Bit Counter

X17 - Bit 1

X18 - Bit 2

X19- Bit 3

X20 - Bit 4
--Teletypewriter Character

X21 - Bit 5

X22 - Bit 6

X23 - Bit 7

X24 - Bit 8

X25' X26 - Mode bits

X27 - Temporary flag used when timer incremented

X28 - Floating flag for Transfer

X29

X30

--unused for DATA-WORD cells

Figure 23. Memory word bit assignments for 31-bit line
cell.



Start

Update Corrected Last Look
Bit in All Line Cells

Increment Timers in
Non-Idle Cells

Assemple Character Bit in All
Cells Due to be Sampled

Has Shift Register
Signaled That it is Ready for

a New Character?

V

End
Advance Floating Flag

112

Has Floating Flag
Advanced Beyond the

Rightmost Line Cell?

Does Flagged
Line Cell Have a

Complete Character?

Restart Floating Flag at the Left
of Line Cells.
Store Framing Character in
Output Buffer Cell.

Store Idle Character in
Output Buffer Cell

End

Move Character to Output
Buffer Cell
Reset Flagged Line Cell to
Idle Mode

End

End

Figure 24. Flowchart for data multiplexer program.
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Number of Instructions of Each Type

One -Cell Two -Cell Three -Cell Total

35 10 71 116

Instruction Frequency of Use

TRANSFER 1 MARK-RIGHT 0

LEFT 0 OUTPUT 1

RIGHT 0 CONDITIONAL-BRANCH2 1

INTERPRETIVE-MATCH 0 CONDITIONAL-BRANCH1 2

MATCH - Long Form 33 RESETC 1

UNCONDITIONAL-BRANCH 0 MATCH - Short Form 2

RESETM 32 MATCH-RIGHT - Short Form 1

STORE - Long Form 33 STORE SPECIAL - Long Form 0

SET - Long Form 4 STORE - Short Form 2

MATCH-LEFT 0 SET - Short Form 2

MATCH-RIGHT - Long Form 1 STORE-SPECIAL - Short Form 0

MARK-LEFT 0 SET-SPECIAL 0

Number of Cells Required

Program
273

Data Total

85 358

Number of Machine Cycles Required per Program Run

Maximum

264

Minimum

223

Figure 25. Data multiplexer program statistics.


