358 research outputs found

    Optimal Thresholds for GMD Decoding with (L+1)/L-extended Bounded Distance Decoders

    Full text link
    We investigate threshold-based multi-trial decoding of concatenated codes with an inner Maximum-Likelihood decoder and an outer error/erasure (L+1)/L-extended Bounded Distance decoder, i.e. a decoder which corrects e errors and t erasures if e(L+1)/L + t <= d - 1, where d is the minimum distance of the outer code and L is a positive integer. This is a generalization of Forney's GMD decoding, which was considered only for L = 1, i.e. outer Bounded Minimum Distance decoding. One important example for (L+1)/L-extended Bounded Distance decoders is decoding of L-Interleaved Reed-Solomon codes. Our main contribution is a threshold location formula, which allows to optimally erase unreliable inner decoding results, for a given number of decoding trials and parameter L. Thereby, the term optimal means that the residual codeword error probability of the concatenated code is minimized. We give an estimation of this probability for any number of decoding trials.Comment: Accepted for the 2010 IEEE International Symposium on Information Theory, Austin, TX, USA, June 13 - 18, 2010. 5 pages, 2 figure

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Decoding Generalized Concatenated Codes Using Interleaved Reed-Solomon Codes

    Full text link
    Generalized Concatenated codes are a code construction consisting of a number of outer codes whose code symbols are protected by an inner code. As outer codes, we assume the most frequently used Reed-Solomon codes; as inner code, we assume some linear block code which can be decoded up to half its minimum distance. Decoding up to half the minimum distance of Generalized Concatenated codes is classically achieved by the Blokh-Zyablov-Dumer algorithm, which iteratively decodes by first using the inner decoder to get an estimate of the outer code words and then using an outer error/erasure decoder with a varying number of erasures determined by a set of pre-calculated thresholds. In this paper, a modified version of the Blokh-Zyablov-Dumer algorithm is proposed, which exploits the fact that a number of outer Reed-Solomon codes with average minimum distance d can be grouped into one single Interleaved Reed-Solomon code which can be decoded beyond d/2. This allows to skip a number of decoding iterations on the one hand and to reduce the complexity of each decoding iteration significantly - while maintaining the decoding performance - on the other.Comment: Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6 - 11, 2008. 5 pages, 2 figure

    On the error statistics of Viterbi decoding and the performance of concatenated codes

    Get PDF
    Computer simulation results are presented on the performance of convolutional codes of constraint lengths 7 and 10 concatenated with the (255, 223) Reed-Solomon code (a proposed NASA standard). These results indicate that as much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a (10, 1/3) convolutional code, instead of the (7, 1/2) code currently used by the DSN. A mathematical model of Viterbi decoder burst-error statistics is developed and is validated through additional computer simulations

    Decoding of Interleaved Reed-Solomon Codes Using Improved Power Decoding

    Get PDF
    We propose a new partial decoding algorithm for mm-interleaved Reed--Solomon (IRS) codes that can decode, with high probability, a random error of relative weight 1Rmm+11-R^{\frac{m}{m+1}} at all code rates RR, in time polynomial in the code length nn. For m>2m>2, this is an asymptotic improvement over the previous state-of-the-art for all rates, and the first improvement for R>1/3R>1/3 in the last 2020 years. The method combines collaborative decoding of IRS codes with power decoding up to the Johnson radius.Comment: 5 pages, accepted at IEEE International Symposium on Information Theory 201

    Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation

    Get PDF
    For many algebraic codes the main part of decoding can be reduced to a shift register synthesis problem. In this paper we present an approach for solving generalised shift register problems over skew polynomial rings which occur in error and erasure decoding of \ell-Interleaved Gabidulin codes. The algorithm is based on module minimisation and has time complexity O(μ2)O(\ell \mu^2) where μ\mu measures the size of the input problem.Comment: 10 pages, submitted to WCC 201

    On Burst Error Correction and Storage Security of Noisy Data

    Full text link
    Secure storage of noisy data for authentication purposes usually involves the use of error correcting codes. We propose a new model scenario involving burst errors and present for that several constructions.Comment: to be presented at MTNS 201
    corecore