6 research outputs found

    Interframe differential vector coding of line spectrum frequencies

    Get PDF
    Line Spectrum Frequencies (LSF's) uniquely represent the Linear Predictive Coding (LPC) filter of a speech frame. In many vocoders LSF's are used to encode the LPC parameters. In this paper, an interframe differential coding scheme is presented for the LSF's. The LSF's of the current speech frame are predicted by using both the LSF's of the previous frame and some of the LSF's of the current frame. Then, the difference vector resulting from prediction is vector quantized

    Interframe differential coding of line spectrum frequencies

    Get PDF
    Cataloged from PDF version of article.Line spectrum frequencies (LSF's) uniquely represent the linear predictive coding (LPC) filter of a speech frame. In many vocoders LSF's are used to encode the LPC parameters. In this paper, an inter-frame differential coding scheme is presented for the LSF's. The LSF's of the current speech frame are predicted by using both the LSF's of the previous frame and some of the LSF's of the current frame. Then, the difference resulting from prediction is quantized

    Line spectral frequency representation of subbands for speech recognition

    Get PDF
    In this paper, a new set of speech feature parameters is constructed from subband analysis based Line Spectral Frequencies (LSFs). The speech signal is divided into several subbands and the resulting subsignals are represented by LSFs. The performance of the new speech feature parameters, SUBLSFs, is compared with the widely used Mel Scale Cepstral Coefficients (MELCEPs). SUBLSFs are observed to be more robust than the MELCEPs in the presence of car noise. © 1995

    Subband analysis for robust speech recognition in the presence of car noise

    Get PDF
    In this paper, a new set of speech feature representations for robust speech recognition in the presence of car noise are proposed. These parameters are based on subband analysis of the speech signal. Line Spectral Frequency (LSF) representation of the Linear Prediction (LP) analysis in subbands and cepstral coefficients derived from subband analysis (SUBCEP) are introduced, and the performances of the new feature representations are compared to mel scale cepstral coefficients (MELCEP) in the presence of car noise. Subband analysis based parameters are observed to be more robust than the commonly employed MELCEP representations

    New methods for robust speech recognition

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Science of Bilkent University, 1995.Thesis (Ph.D.) -- Bilkent University, 1995.Includes bibliographical references leaves 86-92.New methods of feature extraction, end-point detection and speech enhcincement are developed for a robust speech recognition system. The methods of feature extraction and end-point detection are based on wavelet analysis or subband analysis of the speech signal. Two new sets of speech feature parameters, SUBLSF’s and SUBCEP’s, are introduced. Both parameter sets are based on subband analysis. The SUBLSF feature parameters are obtained via linear predictive analysis on subbands. These speech feature parameters can produce better results than the full-band parameters when the noise is colored. The SUBCEP parameters are based on wavelet analysis or equivalently the multirate subband analysis of the speech signal. The SUBCEP parameters also provide robust recognition performance by appropriately deemphasizing the frequency bands corrupted by noise. It is experimentally observed that the subband analysis based feature parameters are more robust than the commonly used full-band analysis based parameters in the presence of car noise. The a-stable random processes can be used to model the impulsive nature of the public network telecommunication noise. Adaptive filtering are developed for Q-stable random processes. Adaptive noise cancelation techniques are used to reduce the mismacth between training and testing conditions of the recognition system over telephone lines. Another important problem in isolated speech recognition is to determine the boundaries of the speech utterances or words. Precise boundary detection of utterances improves the performance of speech recognition systems. A new distance measure based on the subband energy levels is introduced for endpoint detection.Erzin, EnginPh.D

    Speech spectrum non-stationarity detection based on line spectrum frequencies and related applications

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and The Institute of Engineering and Sciences of Bilkent University, 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 124-132In this thesis, two new speech variation measures for speech spectrum nonstationarity detection are proposed. These measures are based on the Line Spectrum Frequencies (LSF) and the spectral values at the LSF locations. They are formulated to be subjectively meaningful, mathematically tractable, and also have low computational complexity property. In order to demonstrate the usefulness of the non-stationarity detector, two applications are presented: The first application is an implicit speech segmentation system which detects non-stationary regions in speech signal and obtains the boundaries of the speech segments. The other application is a Variable Bit-Rate Mixed Excitation Linear Predictive (VBR-MELP) vocoder utilizing a novel voice activity detector to detect silent regions in the speech. This voice activity detector is designed to be robust to non-stationary background noise and provides efficient coding of silent sections and unvoiced utterances to decrease the bit-rate. Simulation results are also presented.Ertan, Ali ErdemM.S
    corecore