235 research outputs found

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    A study of data coding technology developments in the 1980-1985 time frame, volume 2

    Get PDF
    The source parameters of digitized analog data are discussed. Different data compression schemes are outlined and analysis of their implementation are presented. Finally, bandwidth compression techniques are given for video signals

    Design of a digital compression technique for shuttle television

    Get PDF
    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power

    Orthogonal transforms and their application to image coding

    Get PDF
    Imperial Users onl

    Motion‐Compensated Transform Coding

    Get PDF
    Interframe Hybrid Transform/dpcm Coders Encode Television Signals by Taking a Spatial Transform of a Block of Picture Elements in a Frame and Predictively Coding the Resulting Coefficients using the Corresponding Coefficients of the Spatial Block at the Same Location in the Previous Frame. These Coders Can Be Made More Efficient for Scenes Containing Objects in Translational Motion by First Estimating the Translational Displacement of Objects and Then using Coefficients of a Spatially Displaced Block in the Previous Frame for Prediction. This Paper Presents Simulation Results for Such Motion‐compensated Transform Coders using Two Algorithms for Estimating Displacements. the First Algorithm, Which is Developed in a Companion Paper, Recursively Estimates the Displacements from the Previously Transmitted Transform Coefficients, Thereby Eliminating the Need to Transmit the Displacement Estimates. the Second Algorithm, Due to Limb and Murphy, Estimates Displacements by Taking Ratios of Accumulated Frame Difference and Spatial Difference Signals in a Block. in This Scheme, the Displacement Estimates Are Transmitted to the Receiver. Computer Simulations on Two Typical Real‐life Sequences of Frames Show that Motion‐compensated Coefficient Prediction Results in Coder Bit Rates that Are 20 to 40 Percent Lower Than Conventional Interframe Transform Coders using Frame Difference of Coefficients. Comparisons of Bit Rates for Approximately the Same Picture Quality Show that the Two Methods of Displacement Estimation Are Quite Similar in Performance with a Slight Preference for the Scheme with Recursive Displacement Estimation. © 1979 the Bell System Technical Journa

    Prediction error image coding using a modified stochastic vector quantization scheme

    Get PDF
    The objective of this paper is to provide an efficient and yet simple method to encode the prediction error image of video sequences, based on a stochastic vector quantization (SVQ) approach that has been modified to cope with the intrinsic decorrelated nature of the prediction error image of video signals. In the SVQ scheme, the codewords are generated by stochastic techniques instead of being generated by a training set representative of the expected input image as is normal use in VQ. The performance of the scheme is shown for the particular case of segmentation-based video coding although the technique can be also applied to motion-compensated hybrid coding schemes.Peer ReviewedPostprint (published version

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    Image compression techniques using vector quantization

    Get PDF

    An assessment of technology alternatives for telecommunications and information management for the space exploration initiative

    Get PDF
    On the 20th anniversary of the Apollo 11 lunar landing, President Bush set forth ambitious goals for expanding human presence in the solar system. The Space Exploration Initiative (SEI) addresses these goals beginning with Space Station Freedom, followed by a permanent return to the Moon, and a manned mission to Mars. A well designed, adaptive Telecommunications, Navigation, and Information Management (TNIM) infrastructure is vital to the success of these missions. Utilizing initial projections of user requirements, a team under the direction of NASA's Office of Space Operations developed overall architectures and point designs to implement the TNIM functions for the Lunar and Mars mission scenarios. Based on these designs, an assessment of technology alternatives for the telecommunications and information management functions was performed. This technology assessment identifies technology developments necessary to meet the telecommunications and information management system requirements for SEI. Technology requirements, technology needs and alternatives, the present level of technology readiness in each area, and a schedule for development are presented

    Long-Term Memory Motion-Compensated Prediction

    Get PDF
    Long-term memory motion-compensated prediction extends the spatial displacement vector utilized in block-based hybrid video coding by a variable time delay permitting the use of more frames than the previously decoded one for motion compensated prediction. The long-term memory covers several seconds of decoded frames at the encoder and decoder. The use of multiple frames for motion compensation in most cases provides significantly improved prediction gain. The variable time delay has to be transmitted as side information requiring an additional bit rate which may be prohibitive when the size of the long-term memory becomes too large. Therefore, we control the bit rate of the motion information by employing rate-constrained motion estimation. Simulation results are obtained by integrating long-term memory prediction into an H.263 codec. Reconstruction PSNR improvements up to 2 dB for the Foreman sequence and 1.5 dB for the Mother–Daughter sequence are demonstrated in comparison to the TMN-2.0 H.263 coder. The PSNR improvements correspond to bit-rate savings up to 34 and 30%, respectively. Mathematical inequalities are used to speed up motion estimation while achieving full prediction gain
    corecore