6 research outputs found

    Transmitting ECG waveforms by means of optical antennas

    Get PDF

    A survey: Issues and challenges of communication technologies in WBAN

    Get PDF
    Wireless Body Area Network (WBAN) refers to a group of small intelligent electronic devices placed on the human body to monitor its vital signals. It provides a continuous health monitoring of a patient without any constraint on his/her normal daily life activities through the health care applications. Due to the strong heterogeneous nature of the applications, data rates will vary strongly, ranging from simple data at a few Kbits/s to the video stream of several Kbits/s. Data can also be sent in bursts, which means that it is sent at a higher data rate during the bursts. This study covers the main requirements of communication technologies that are used in WBAN comprise of two major parts. The first part, which presents the short-range classification, gives a specialized outline of a few standard wireless technologies that are short-ranged. These are introduced as contenders for intra-BAN communications for communications inside a Body Area Network (BAN) and between the elements

    Performance measurements of Bluetooth 5 technique under interference

    Get PDF
    Abstract. This thesis focuses on experimental performance of the Bluetooth 5 technology and compares results with the previous version. Bluetooth technology, institute of electrical and electronics engineers (IEEE) Std. 802.15.4, and other techniques share the same unlicensed 2.4 GHz industrial, scientific, and medical (ISM) spectrum. Various technologies are operating in the same frequency band, and if the channel utilized by these technologies overlap, end in cross-technology interference (CTI). Measurements have been performed in indoor scenario and ZigBee nodes were used as an interference. Performance output of the Bluetooth 5 is compared to a previous release Bluetooth low energy (BLE) 4 which is currently one of the popular technologies in commercial wireless devices and expected to be even more widespread in the future. This new Bluetooth technology has featured increased data rate, low power consumption, longer range, higher broadcasting capacity, and improved coexistence with other wireless technologies operating in the same frequency band. The main goal of this work was to evaluate the experimental communication range and throughput of the BLE 5 coded version under interference. Nordic Semiconductor nRF52840 chipset has been used for measurements and result shows the practical communication range and throughput of BLE 5 coded version under interference. In this work, with error correction coding, one-third BLE link gain was achieved when considering packet error rate (PER) less than 10%. In addition, ZigBee interference was found to be very harmful for the Bluetooth communication when operating in the same frequency band

    Energy efficiency evaluation of BLE 5 technology

    Get PDF
    Abstract. As the demand for consumer electronic gadgets keep on growing rapidly day by day, a class of wirelessly connected digital accessories is getting to be built up. In this case, energy efficiency is considered as an essential basic necessity for a wireless communication system to be well adapted for the internet of things (IoT) application. The protocol parameters must be optimized for a given application in order to minimize power consumption. An energy model is therefore required, which can predict the energy consumption of a wireless device based on, Bluetooth low energy (BLE), e.g., for different parameter values. In this case, the BLE 5 technique can be a very effective solution. Lately, the Bluetooth 5 specifications have been introduced in order to offer remarkable improvements in comparison to the previous versions of the protocol. Bluetooth 5 coded is a new special kind of connection that comes with reliable communication features that varies in speed, range, and energy consumption aiming at providing better long-distance connections, but at a lower bit rate. Bluetooth 5 targets to improve twice the speed, four times range, and eight times the advertising in comparison to Bluetooth 4. This thesis describes the evaluation of the energy efficiency of recently specified BLE 5 technique’s coded mode. This work analyses both the analytical, and experimental performance of the energy efficiency of BLE 5 (S = 8) coded mode solution. It includes analytical modelling, Matlab programming, and real-life measurement using Nordic semiconductor nRF52840 development kit. The performance of lately revealed BLE 5 coded technique is compared to the performance of the BLE 4, which is seen today to be mostly used in case of commercial wireless devices. To improve the communication range of this low-power technique for IoT purposes, BLE 5 coded mode uses a forward error correction (FEC) method. Because of coding overhead, the packet length increases, and the throughput decreases. In this thesis, the frequency 2.4 GHz is considered. The LE Coded PHY is responsible for adding two steps into the packet transmissions, and reception. Firstly, FEC method is applied to the packet so that the receiver can make a correction of bit errors when the packet is received, and would be capable to improve the packet error rate (PER). Secondly, a pattern mapper method is applied to the packet. This FEC, and pattern mapping results in getting better sensitivity. The experimental results from this thesis show that BLE 5 technique provides better packet error rate (PER) performance, communication range performance, and received signal strength indicator (RSSI) performance than BLE 4, and BLE 5 consumes less energy than BLE 4, which was found out using analytical modelling

    SNR-based evaluation of coexistence in wireless system of hospital

    Get PDF
    Abstract. The wireless system (IEEE Std. 802.11) of North Karelian Central Hospital (NKCH) has been studied in the newly opened J2 building of the hospital. The measurements have been carried out using Ekahau Sidekick spectrum analyser and Ekahau Pro software. Signal propagation has been modelled in the control ward of the Emergency department because many coexisting systems are used with critical requirements of data communication over there. The analytical models have been developed to understand the radio-frequency (RF) signal propagation in the entire building. Measurements have also been carried out on the entire first floor, in the Department of the Abdominal Diseases on the ground floor and in the Children’s wards on the third floor. The multi-slope path-loss propagation models with shadowing have been generated based on the Received Signal Strength Indicator (RSSI) measurements for typical hospital environment at the 2.4 GHz and 5 GHz Industrial, Scientific, and Medical (ISM) band. The measurements have been carried out within the two predefined routes. The models have also been compared to the empirically derived path-loss models. The probability of signal outage has been calculated for both measured routes. The aggregate interference has been measured within the routes that cover the area where remarkable signal variations and the high level of interference has been indicated based on the heatmaps of Ekahau. The use of Ekahau Sidekick and Ekahau Pro software in the coexistence study has been described. The noise floor has been determined based on the averaged values of the six measurement campaigns. The local changes in signal strength of the desired signal and aggregated power of interference have been studied. The Signal-to-Interference Ratio (SIR) models have been generated within the measured routes. The rapid decreases of Signal-to-Noise Ratio (SNR) have been indicated on all measured floors of building J2. They have been studied and their effect on the network performance has been evaluated. The evaluation has been done by comparing the measured values of RSSI, SNR and SIR to the requirements of the respective Modulation and Coding Scheme (MCS). The link margins have been calculated based on the chosen bit error probability and the given SNR requirement of the respective MCS. The comparison between the measured RSSI readings and the required threshold of the respective MCS has been done using the defined shadowing as a link margin. It has been shown that the measured difference between the signal strength of the 2.4 GHz and 5 GHz bands has been caused by the reduced transmit power at the 2.4 GHz band. Based on the SIR measurements, it has been shown that the access points of the neighbouring building have contributed locally to the measured aggregate interference in the Control ward. However, the primary reason for the decrease of SIR at the 2.4 GHz band has been the decrease of desired signal power that has been contributed by the above mentioned reduced transmit power. The strong SNR drops have been indicated on every measured floor before the roaming has occurred.Sairaalan langattoman järjestelmän arviointi signaali-kohina-suhteen avulla. Tiivistelmä. Tässä diplomityössä on tutkittu Pohjois-Karjalan keskussairaalan (PKKS) langatonta verkkoa (IEEE Std. 802.11) äskettäin avatussa sairaalan laajennusosassa (J2-rakennus). Mittaukset on toteutettu käyttäen Ekahau Sidekick spektrianalysaattoria ja Ekahau Pro -ohjelmaa. Päivystyksen valvontaosasto on valittu tutkimuskohteeksi, koska siellä käytetään paljon eri teknologioihin perustuvia järjestelmiä, joiden välinen tiedonsiirto on luonteeltaan kriittistä. Luotujen mallien avulla rakennuksen langatonta toimintaympäristöä tutkitaan RF-järjestelmän (Radio-Frequency) näkökulmasta myös muissa mittausten kohteina olleissa tiloissa. Mittauksia on tehty myös valvontaosaston ulkopuolella 1. kerroksessa sekä 3. kerroksen lastenosastoilla ja Vatsakeskuksen tiloissa pohjakerroksessa. RSSI-mittausten perusteella on luotu radiotiehäviöihin perustuvat etenemismallit molemmilla käytössä olevilla ISM-taajuuskaistoilla (Industrial, Scientific and Medical bands). Varjostuminen ja etenemishäviökertoimen muutokset on otettu huomioon etenemismalleissa. Mittaukset on suoritettu ennalta määritellyillä reiteillä. Luotuja malleja on verrattu myös tutkimuskirjallisuudessa esitettyihin, empiirisesti johdettuihin etenemishäviömalleihin. Signaalikatkoksen todennäköisyys on laskettu molemmille reiteille 2.4 GHz:n taajuuskaistalla. Vastaanotetun häiriötehon summa on mitattu koko mallinnettavan tilan alueelle ulottuvien mittausreittien pohjalta. Mittausreitit on määritelty Ekahau Pron tuottamien kuuluvuus- ja häiriökarttojen avulla ottaen huomioon havaitut signaalitason vaihtelut. Ekahau Sidekick -spektrianalysaattorin ja Ekahau Pro -ohjelman käyttöä on kuvattu tämän tutkimuksen kontekstissa. Kohinataso on määritelty kaikissa kuudessa mittauskampanjassa mitattujen kohina-tehoarvojen keskiarvona. Paikallisten hyötysignaalinvoimakkuus- ja häiriötehovaihteluiden vaikutusta verkon suorituskykyyn on tutkittu ja molemmat mittausreitit kattavat SIR-mallit (Signal-to-Interference Ratio) on luotu. Kaikissa tutkituissa kerroksissa havaittuja äkillisiä signaali-kohinasuhteen vaihteluita on tutkittu ja niiden vaikutusta järjestelmän suorituskykyyn on arvioitu. Mitattujen hyöty- ja häiriösignaalivaihteluiden arviointi on toteutettu vertaamalla mittaamalla saatuja SNR- (Signal-to-Noise ratio), SIR- ja RSSI-arvoja (Received Signal Strength Indicator) eri tiedonsiirtonopeuksia käyttävien MCS-indeksien vaatimiin signaalinvoimakkuus- ja signaali-kohina-suhteen arvoihin. Kynnysarvoille on laskettu linkkimarginaalit käyttäen mitoitusvaatimuksena valittua bittivirhetodennäköisyyden arvoa. Mitattuja RSSI-arvoja on verrattu käyttäen linkkimarginaalina etenemismallinnuksessa määritettyjä varjostumisvaikutuksen arvoja. 2.4 ja 5 GHz:n taajuusalueiden välillä mitatun signaalinvoimakkuuseron on tutkimuksessa saatujen tulosten perusteella osoitettu olevan seurausta alennetusta lähetystehosta 2.4 GHz:n kaistalla. SIR-mittausten perusteella on todettu viereisen rakennuksen tukiasemien kasvattaneen vastaanotettua häiriötehosummaa valvontaosastolla paikallisesti. Ensisijainen syy mitattuihin SIR-arvojen vaihteluihin ovat kuitenkin alhainen signaalinvoimakkuus 2.4 GHz:n kaistalla, mikä osittain johtuu edellä kuvatusta alennetusta lähetystehosta. Voimakkaita SNR-vaihteluita on mitattu kaikissa kerroksissa ennen kuin päätelaite kytkeytyy uuteen tukiasemaan

    Interference of wireless technologies on BLE based WBANs in hospital scenarios

    No full text
    Abstract Bluetooth Low Energy (BLE) devices are becoming common in hospital scenarios. This technology is widely employed to collect patients’ vital signs, to provide wireless connectivity to medical equipment, and to enable communications between devices carried by hospital personnel, patients and visitors. This paper presents a mathematical model to evaluate the impact of the interferences, from different wireless technologies, on the performance of a BLE-based body area networks operating over the 1 Mbit/s physical layer (PHY). The interfering technologies addressed are ZigBee (802.15.4), Wi-Fi (802.11), and the newly introduced BLE version 5.0 (coded PHY). The results for the latter are supported by real-life measurements, which are reported in this paper, thus giving some insight into the practical performance of this new technology. The presented numerical results provide guidance on how to manage these various technologies to minimize the packet error rate (PER) of the communications emanating from the on-body BLE enabled devices
    corecore