62,599 research outputs found

    HOLOGRAPHICS: Combining Holograms with Interactive Computer Graphics

    Get PDF
    Among all imaging techniques that have been invented throughout the last decades, computer graphics is one of the most successful tools today. Many areas in science, entertainment, education, and engineering would be unimaginable without the aid of 2D or 3D computer graphics. The reason for this success story might be its interactivity, which is an important property that is still not provided efficiently by competing technologies – such as holography. While optical holography and digital holography are limited to presenting a non-interactive content, electroholography or computer generated holograms (CGH) facilitate the computer-based generation and display of holograms at interactive rates [2,3,29,30]. Holographic fringes can be computed by either rendering multiple perspective images, then combining them into a stereogram [4], or simulating the optical interference and calculating the interference pattern [5]. Once computed, such a system dynamically visualizes the fringes with a holographic display. Since creating an electrohologram requires processing, transmitting, and storing a massive amount of data, today’s computer technology still sets the limits for electroholography. To overcome some of these performance issues, advanced reduction and compression methods have been developed that create truly interactive electroholograms. Unfortunately, most of these holograms are relatively small, low resolution, and cover only a small color spectrum. However, recent advances in consumer graphics hardware may reveal potential acceleration possibilities that can overcome these limitations [6]. In parallel to the development of computer graphics and despite their non-interactivity, optical and digital holography have created new fields, including interferometry, copy protection, data storage, holographic optical elements, and display holograms. Especially display holography has conquered several application domains. Museum exhibits often use optical holograms because they can present 3D objects with almost no loss in visual quality. In contrast to most stereoscopic or autostereoscopic graphics displays, holographic images can provide all depth cues—perspective, binocular disparity, motion parallax, convergence, and accommodation—and theoretically can be viewed simultaneously from an unlimited number of positions. Displaying artifacts virtually removes the need to build physical replicas of the original objects. In addition, optical holograms can be used to make engineering, medical, dental, archaeological, and other recordings—for teaching, training, experimentation and documentation. Archaeologists, for example, use optical holograms to archive and investigate ancient artifacts [7,8]. Scientists can use hologram copies to perform their research without having access to the original artifacts or settling for inaccurate replicas. Optical holograms can store a massive amount of information on a thin holographic emulsion. This technology can record and reconstruct a 3D scene with almost no loss in quality. Natural color holographic silver halide emulsion with grain sizes of 8nm is today’s state-of-the-art [14]. Today, computer graphics and raster displays offer a megapixel resolution and the interactive rendering of megabytes of data. Optical holograms, however, provide a terapixel resolution and are able to present an information content in the range of terabytes in real-time. Both are dimensions that will not be reached by computer graphics and conventional displays within the next years – even if Moore’s law proves to hold in future. Obviously, one has to make a decision between interactivity and quality when choosing a display technology for a particular application. While some applications require high visual realism and real-time presentation (that cannot be provided by computer graphics), others depend on user interaction (which is not possible with optical and digital holograms). Consequently, holography and computer graphics are being used as tools to solve individual research, engineering, and presentation problems within several domains. Up until today, however, these tools have been applied separately. The intention of the project which is summarized in this chapter is to combine both technologies to create a powerful tool for science, industry and education. This has been referred to as HoloGraphics. Several possibilities have been investigated that allow merging computer generated graphics and holograms [1]. The goal is to combine the advantages of conventional holograms (i.e. extremely high visual quality and realism, support for all depth queues and for multiple observers at no computational cost, space efficiency, etc.) with the advantages of today’s computer graphics capabilities (i.e. interactivity, real-time rendering, simulation and animation, stereoscopic and autostereoscopic presentation, etc.). The results of these investigations are presented in this chapter

    Electrodynamical Modeling for Light Transport Simulation

    Get PDF
    Modernity in the computer graphics community is characterized by a burgeoning interest in physically based rendering techniques. That is to say that mathematical reasoning from first principles is widely preferred to ad hoc, approximate reasoning in blind pursuit of photorealism. Thereby, the purpose of our research is to investigate the efficacy of explicit electrodynamical modeling by means of the generalized Jones vector given by Azzam [1] and the generalized Jones matrix given by Ortega-Quijano & Arce-Diego [2] in the context of stochastic light transport simulation for computer graphics. To augment the status quo path tracing framework with such a modeling technique would permit a plethora of complex optical effects—including dispersion, birefringence, dichroism, and thin film interference, and the physical optical elements associated with these effects—to become naturally supported, fully integrated features in physically based rendering software

    Enhanced Dynamometer for Conducting Long-Term Brake Wear Testing

    Get PDF
    The purpose of this project is to develop an automated control system for two constant torque dynamometers Krauss Friction Tester Type RWS60A – Serial no. 080 built in Orangeburg, West Germany recently obtained by FDP Friction Science. This control system will be efficient, effective, safer, and meet the standards of modern day technologies. Currently, the machines are outdated, obsolete, and unable to operate. Therefore, to bring the dynamometers back into full operation and be competitive in today’s industry a new control system that meets industry expectations must be implemented. For this reason, a programmable logic controller from Automationdirect named ClickPLC is being utilized. This industrial computer control system will continuously monitor the state of input for the device while determining the desired outputs based on a ladder logic program written by the control system designers. To create interference between the operator and the machine a C-more touch panel human machine interference from Automationdirect will be use. The HMI will provide a graphical interface designed to interchange and display graphics, animation and data from the PLC by touching the screen. The HMI will be programed accordingly to replace pushbuttons, switches, meters and any other analog input devices. This will streamline the brake life testing process down to a one-man operation for cost effectiveness.https://scholarscompass.vcu.edu/capstone/1196/thumbnail.jp

    Computer aided processing using laser measurements

    Get PDF
    The challenge exists of processing the STS and its cargo through KSC facilities in the most timely and cost effective manner possible. To do this a 3-D computer graphics data base was established into which was entered the STS, payloads, and KSC facilities. The facility drawing data are enhanced by laser theodolite measurements into an as-built configuration. Elements of the data base were combined to study orbiter/facility interfaces payload/facility access problems and design/arrangement of various GSE to support processing requirements. With timely analysis/design utilizing the 3-D computer graphics system, costly delays can be avoided. Better methodology can be analyzed to determine procedures for cost avoidance

    Operational computer graphics in the flight dynamics environment

    Get PDF
    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed

    Kinect Range Sensing: Structured-Light versus Time-of-Flight Kinect

    Full text link
    Recently, the new Kinect One has been issued by Microsoft, providing the next generation of real-time range sensing devices based on the Time-of-Flight (ToF) principle. As the first Kinect version was using a structured light approach, one would expect various differences in the characteristics of the range data delivered by both devices. This paper presents a detailed and in-depth comparison between both devices. In order to conduct the comparison, we propose a framework of seven different experimental setups, which is a generic basis for evaluating range cameras such as Kinect. The experiments have been designed with the goal to capture individual effects of the Kinect devices as isolatedly as possible and in a way, that they can also be adopted, in order to apply them to any other range sensing device. The overall goal of this paper is to provide a solid insight into the pros and cons of either device. Thus, scientists that are interested in using Kinect range sensing cameras in their specific application scenario can directly assess the expected, specific benefits and potential problem of either device.Comment: 58 pages, 23 figures. Accepted for publication in Computer Vision and Image Understanding (CVIU
    • …
    corecore